Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.983
Filtrar
1.
Planta ; 260(5): 110, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352582

RESUMO

MAIN CONCLUSION: The GhEB1C gene of the EB1 protein family functions as microtubule end-binding protein and may be involved in the regulation of microtubule-related pathways to enhance resistance to Verticillium wilt. The expression of GhEB1C is induced by SA, also contributing to Verticillium wilt resistance. Cotton, as a crucial cash and oil crop, faces a significant threat from Verticillium wilt, a soil-borne disease induced by Verticillium dahliae, severely impacting cotton growth and development. Investigating genes associated with resistance to Verticillium wilt is paramount. We identified and performed a phylogenetic analysis on members of the EB1 family associated with Verticillium wilt in this work. GhEB1C was discovered by transcriptome screening and was studied for its function in cotton defense against V. dahliae. The RT-qPCR analysis revealed significant expression of the GhEB1C gene in cotton leaves. Subsequent localization analysis using transient expression demonstrated cytoplasmic localization of GhEB1C. VIGS experiments indicated that silencing of the GhEB1C gene significantly increased susceptibility of cotton to V. dahliae. Comparative RNA-seq analysis showed that GhEB1C silenced plants exhibited altered microtubule-associated protein pathways and flavonogen-associated pathways, suggesting a role for GhEB1C in defense mechanisms. Overexpression of tobacco resulted in enhanced resistance to V. dahliae as compared to wild-type plants. Furthermore, our investigation into the relationship between the GhEB1C gene and plant disease resistance hormones salicylic axid (SA) and jasmonic acid (JA) revealed the involvement of GhEB1C in the regulation of the SA pathway. In conclusion, our findings demonstrate that GhEB1C plays a crucial role in conferring immunity to cotton against Verticillium wilt, providing valuable insights for further research on plant adaptability to pathogen invasion.


Assuntos
Resistência à Doença , Gossypium , Filogenia , Doenças das Plantas , Proteínas de Plantas , Gossypium/genética , Gossypium/microbiologia , Gossypium/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Ácido Salicílico/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Oxilipinas/metabolismo , Verticillium/fisiologia , Ciclopentanos/metabolismo
2.
Pestic Biochem Physiol ; 204: 106095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277406

RESUMO

Plant growth-promoting rhizobacteria (PGPR) have been reported to suppress various diseases as potential bioagents. It can inhibit disease occurrence through various means such as directly killing pathogens and inducing systemic plant resistance. In this study, a bacterium isolated from soil showed significant inhibition of Valsa mali. Morphological observations and phylogenetic analysis identified the strain as Pseudomonas thivervalensis, named K321. Plate confrontation assays demonstrated that K321 treatment severely damaged V. mali growth, with scanning electron microscopy (SEM) observations showing severe distortion of hyphae due to K321 treatment. In vitro twigs inoculation experiments indicated that K321 had good preventive and therapeutic effects against apple Valsa canker (AVC). Applying K321 on apples significantly enhanced the apple inducing systemic resistance (ISR), including induced expression of apple ISR-related genes and increased ISR-related enzyme activity. Additionally, applying K321 on apples can activate apple MAPK by enhancing the phosphorylation of MPK3 and MPK6. In addition, K321 can promote plant growth by solubilizing phosphate, producing siderophores, and producing 3-indole-acetic acid (IAA). Application of 0.2% K321 increased tomato plant height by 53.71%, while 0.1% K321 increased tomato fresh weight by 59.55%. Transcriptome analysis revealed that K321 can inhibit the growth of V. mali by disrupting the integrity of its cell membrane through inhibiting the metabolism of essential membrane components (fatty acids) and disrupting carbohydrate metabolism. In addition, transcriptome analysis also showed that K321 can enhance plant resistance to AVC by inducing ISR-related hormones and MAPK signaling, and application of K321 significantly induced the transcription of plant growth-related genes. In summary, an excellent biocontrol strain has been discovered that can prevent AVC by inducing apple ISR and directly killing V. mali. This study indicated the great potential of P. thivervalensis K321 for use as a biological agent for the control of AVC.


Assuntos
Malus , Doenças das Plantas , Pseudomonas , Malus/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Pseudomonas/fisiologia , Ascomicetos/fisiologia , Agentes de Controle Biológico , Resistência à Doença
3.
Arch Microbiol ; 206(10): 421, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331179

RESUMO

Wilt and stem rot (WSR) is an emerging syndrome threatening cut lisianthus (Eustoma russellianum) production in Lam Dong province, Vietnam. The disease was observed in all 13 inspected commercial lisianthus greenhouses across major lisianthus cultivation areas in Lam Dong, including Da Lat, Lac Duong, Don Duong, and Duc Trong, with incidence increasing with plant age, ranging from 7.5 to 32.4%. Infected plants displayed stunting, wilting, stem rot and blight, and dieback, with predominance of wilt and stem rot. The disease showed polycyclic behavior, with symptoms shifting from random or scattered in young plants to clustered patterns after the initial flower cutting. Forty-one Fusaria-like fungal isolates recovered from diseased lisianthus plants were identified as Fusarium vanleeuwenii (28 isolates), Neocosmospora solani (11 isolates), and F. annulatum (2 isolates) based on morphological observations and phylogenetic analysis of the internal transcribed spacer (ITS) region and translation elongation factor 1-alpha (TEF-1α) genes. The composition of Fusaria species varied across sites, with F. vanleeuwenii being consistently present. Pathogenicity tests confirmed that isolates of F. vanleeuwenii Li-Fo9511, N. solani Li-Fs4311, and F. annulatum Li-Fp3051 caused typical stem rot in in-vitro assays. In-planta assays showed wilting in seedlings starting two weeks post-infection, with a remarkable increase in disease incidence and severity between five and six weeks, particularly for F. vanleeuwenii Li-Fo9511. The pathogens were re-isolated and morphologically confirmed, fulfilling Koch's postulates. This is the first report of F. vanleeuwenii, N. solani, and F. annulatum as pathogens of lisianthus WSR in Vietnam, highlighting the need for effective control strategies.


Assuntos
Fusarium , Filogenia , Doenças das Plantas , Doenças das Plantas/microbiologia , Vietnã , Fusarium/isolamento & purificação , Fusarium/genética , Fusarium/patogenicidade , Fusarium/classificação , Caules de Planta/microbiologia , DNA Fúngico/genética , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , Ascomicetos/patogenicidade , Ascomicetos/fisiologia
4.
Plant Mol Biol ; 114(5): 105, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316277

RESUMO

MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression at the post-transcriptional level. In plants, miRNAs participate in diverse developmental processes and adaptive responses to biotic and abiotic stress. MiR827 has long been recognized to be involved in plant responses to phosphate starvation. In rice, the miR827 regulates the expression of OsSPX-MFS1 and OsSPX-MFS2, these genes encoding vacuolar phosphate transporters. In this study, we demonstrated that miR827 plays a role in resistance to infection by the fungus Magnaporthe oryzae in rice. We show that MIR827 overexpression enhances susceptibility to infection by M. oryzae which is associated to a weaker induction of defense gene expression during pathogen infection. Conversely, CRISPR/Cas9-induced mutations in the MIR827 gene completely abolish miR827 production and confer resistance to M. oryzae infection. This resistance is accompanied by a reduction of leaf Pi content compared to wild-type plants, whereas Pi levels increase in leaves of the blast-susceptible miR827 overexpressor plants. In wild-type plants, miR827 accumulation in leaves decreases during the biotrophic phase of the infection process. Taken together, our data indicates that silencing MIR827 confers resistance to M. oryzae infection in rice while further supporting interconnections between Pi signaling and immune signaling in plants. Unravelling the role of miR827 during M. oryzae infection provides knowledge to improve blast resistance in rice by CRISPR/Cas9-editing of MIR827.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Regulação da Expressão Gênica de Plantas , MicroRNAs , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Plantas Geneticamente Modificadas , Inativação Gênica , Folhas de Planta/microbiologia , Folhas de Planta/genética , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Magnaporthe/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Curr Microbiol ; 81(11): 378, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327315

RESUMO

The cajuzinho do cerrado (Anacardium humile-Anacardiaceae), a shrub species native to Brazil, is harvested for multiple uses in food and medicine. Members of a harvesting community, near the municipality of Bonito de Minas, Minas Gerais state, Brazil reported characteristic symptoms of shoot blight and dieback reducing pseudofruit and seed production by this plant. This study aimed to identify the etiological agent of this disease. Two fungal isolates were obtained from symptomatic leaf samples and morphologically and molecularly characterized. The fungus was identified, based on morphological analyses, as a probable new species of Pseudoplagiostoma. Phylogenetic analyses based on a combination of DNA sequence data (nuc rDNA ITS1-5.8S-ITS2 region, tef1-α and tub2), confirmed this hypothesis. The isolates obtained were allocated to a distinct, well-supported clade (IB = 0.99, ML = 100%), placed as a unique lineage here proposed as a new species named Pseudoplagiostoma humilis. The pathogenicity test confirmed that this new species was the causal agent of shoot blight and dieback on A. humile. This is the fourteenth Pseudoplagiostoma species reported in the world and the third in Brazil.


Assuntos
Anacardium , DNA Fúngico , Filogenia , Doenças das Plantas , Brasil , Doenças das Plantas/microbiologia , Anacardium/microbiologia , DNA Fúngico/genética , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Análise de Sequência de DNA , Folhas de Planta/microbiologia , DNA Espaçador Ribossômico/genética , DNA Ribossômico/genética
6.
BMC Biol ; 22(1): 197, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256779

RESUMO

BACKGROUND: Cotton is an important economic crop and a host of Liriomyza sativae. Pectin methylesterase (PME)-mediated pectin metabolism plays an indispensable role in multiple biological processes in planta. However, the pleiotropic functions of PME often lead to unpredictable effects on crop resistance to pests. Additionally, whether and how PME affects susceptibility to Liriomyza sativae remain unclear. RESULTS: Here, we isolated GhPME36, which is located in the cell wall, from upland cotton (Gossypium hirsutum L.). Interestingly, the overexpression of GhPME36 in cotton caused severe susceptibility to Liriomyza sativae but increased leaf biomass in Arabidopsis. Cytological observations revealed that the cell wall was thinner with more demethylesterified pectins in GhPME36-OE cotton leaves than in WT leaves, whereas the soluble sugar content of GhPME36-OE cotton leaf cell walls was accordingly higher; both factors attracted Liriomyza sativae to feed on GhPME36-OE cotton leaves. Metabolomic analysis demonstrated that glucose was significantly differentially accumulated. Transcriptomic analysis further revealed DEGs enriched in glucose metabolic pathways when GhPME36 was overexpressed, suggesting that GhPME36 aggravates susceptibility to Liriomyza sativae by affecting both the structure and components of cell wall biosynthesis. Moreover, GhPME36 interacts with another pectin-modifying enzyme, GhC/VIF1, to maintain the dynamic stability of pectin methyl esterification. CONCLUSIONS: Taken together, our results reveal the cytological and molecular mechanisms by which GhPME36 aggravates susceptibility to Liriomyza sativae. This study broadens the knowledge of PME function and provides new insights into plant resistance to pests and the safety of genetically modified plants.


Assuntos
Parede Celular , Gossypium , Folhas de Planta , Proteínas de Plantas , Gossypium/genética , Parede Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Ascomicetos/fisiologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética
7.
BMC Microbiol ; 24(1): 356, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300361

RESUMO

BACKGROUND: Maple is an important ornamental plant in China. With the increasing use of maple trees in landscaping, a symptom of shoot dieback has been observed in Henan province, China. RESULTS: In this study, 28 Diaporthe isolates were obtained from symptomatic shoots of maple trees between 2020 and 2023. Phylogenetic analyses based on five loci (ITS, TEF, CAL, HIS and TUB) coupled with morphology of 12 representative isolates identified three known species (D. eres, D. pescicola and D. spinosa) and one new species, namely D. pseudoacerina sp. nov. Koch's postulates confirmed that all these species were pathogenic. Additionally, D. pseudoacerina was able to infect China wingnut (Pterocarya stenoptera), pear (Pyrus sp.), and black locust (Robinia pseudoacacia). This study marks the first report of Diaporthe spinosa and D. pescicola pathogens infecting maple trees. CONCLUSIONS: These findings enhance the existing knowledge of the taxonomy and host diversity of Diaporthe species as, while also providing valuable information for managing of maple shoot dieback in Henan Province, China.


Assuntos
Acer , Ascomicetos , Filogenia , Doenças das Plantas , Brotos de Planta , Acer/microbiologia , China , Doenças das Plantas/microbiologia , Brotos de Planta/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , DNA Fúngico/genética , Análise de Sequência de DNA , Pyrus/microbiologia
8.
BMC Plant Biol ; 24(1): 846, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251916

RESUMO

BACKGROUND: Septoria tritici blotch (STB) disease causes yield losses of up to 50 per cent in susceptible wheat cultivars and can reduce wheat production. In this study, genomic architecture for adult-plant STB resistance in a Septoria Association Mapping Panel (SAMP) having 181 accessions and genomic regions governing STB resistance in a South Asian wheat panel were looked for. RESULTS: Field experiments during the period from 2019 to 2021 revealed those certain accessions, namely BGD52 (CHIR7/ANB//CHIR1), BGD54 (CHIR7/ANB//CHIR1), IND92 (WH 1218), IND8 (DBW 168), and IND75 (PBW 800), exhibited a high level of resistance. Genetic analysis revealed the presence of 21 stable quantitative trait nucleotides (QTNs) associated with resistance to STB (Septoria tritici blotch) on all wheat chromosomes, except for 2D, 3A, 3D, 4A, 4D, 5D, 6B, 6D, and 7A. These QTNs were predominantly located in chromosome regions previously identified as associated with STB resistance. Three Quantitative Trait Loci (QTNs) were found to have significant phenotypic effects in field evaluations. These QTNs are Q.STB.5A.1, Q.STB.5B.1, and Q.STB.5B.3. Furthermore, it is possible that the QTNs located on chromosomes 1A (Q.STB.1A.1), 2A (Q.STB_DH.2A.1, Q.STB.2A.3), 2B (Q.STB.2B.4), 5A (Q.STB.5A.1, Q.STB.5A.2), and 7B (Q.STB.7B.2) could potentially be new genetic regions associated with resistance. CONCLUSION: Our findings demonstrate the importance of Asian bread wheat as a source of STB resistance alleles and novel stable QTNs for wheat breeding programs aiming to develop long-lasting and wide-ranging resistance to Zymoseptoria tritici in wheat cultivars.


Assuntos
Ascomicetos , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética
9.
Tree Physiol ; 44(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163268

RESUMO

Drought is a significant global issue affecting agricultural production, and the utilization of beneficial rhizosphere microorganisms is one of the effective ways to increase the productivity of crops and forest under drought. In this study, we characterized a novel growth-promoting dark septate endophytes (DSE) fungus R16 (Dothideomycetes sp.) derived from blueberry roots. Hyphae or microsclerotia were visible within the epidermal or cortical cells of R16-colonized blueberry roots, which was consistent with the typical characteristics of DSE fungi. Inoculation with R16 promoted the growth of blueberry seedlings, and the advantage over the control group was more significant under PEG-induced drought. Comparison of physiological indicators related to drought resistance between the inoculated and control groups was performed on the potted blueberry plants, including the chlorophyll content, net photosynthetic rate, root activities, malondialdehyde and H2O2 content, which indicated that R16 colonization mitigated drought injury in blueberry plants. We further analyzed the effects of R16 on phytohormones and non-structural carbohydrates (NSCs) to explore the mechanism of increased drought tolerance by R16 in blueberry seedlings. The results showed that except for the gibberellin content, indole-3-acetic acid, zeatin and abscisic acid varied significantly between the inoculated and control groups. Sucrose phosphate synthase and sorbitol-6-phosphate dehydrogenase activities in mature leaves, the key enzymes responsible for sucrose and sorbitol synthesis, respectively, as well as sorbitol dehydrogenase, sucrose synthase, cell wall invertase, hexokinase and fructokinase in roots, the key enzymes involved in the NSCs metabolism, showed significant differences between the inoculated and control groups before and after drought treatment. These results suggested that the positive effects of R16 colonization on the drought tolerance of blueberry seedlings are partially attributable to the regulation of phytohormone and sugar metabolism. This study provided valuable information for the research on the interaction between DSE fungi and host plants as well as the application of DSE preparations in agriculture.


Assuntos
Mirtilos Azuis (Planta) , Endófitos , Reguladores de Crescimento de Plantas , Mirtilos Azuis (Planta)/microbiologia , Mirtilos Azuis (Planta)/fisiologia , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Endófitos/fisiologia , Secas , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Ascomicetos/fisiologia , Metabolismo dos Carboidratos , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Resistência à Seca
10.
Vet Res Commun ; 48(5): 3423-3427, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39120674

RESUMO

The presence of infective larvae (L3) of gastrointestinal nematode (GIN) parasites in pastures directly contributes to the constant recurrence of infections in ruminant herds. This study aimed to evaluate the nematophagous fungus Duddingtonia flagrans (AC001) (proteolytic crude extract and/or conidia) in the in vitro control of GIN L3 in coprocultures. To produce the proteolytic crude extract, a suspension (107 conidia/mL) of D. flagrans was inoculated into a liquid medium. After 6 days, the medium was filtered, centrifuged, and its proteolytic activity was measured. For the experimental assay, fecal samples were collected directly from the rectal ampulla of naturally infected sheep, and egg counts per gram of feces (EPG) were performed. Coprocultures were prepared using 10 g of fecal material with the groups defined as follows: control group G1 (1.0 mL of denatured proteolytic crude extract); treated group G2 (1.0 mL of active proteolytic crude extract); treated group G3 (1.0 mL of active proteolytic crude extract + 1.0 mL of AC001 conidia). The coprocultures were maintained at room temperature (25ºC), for 7 days, and then the L3 larvae were recovered. The results demonstrated that AC001 successfully produced protease (56.34 U/mL). The treatments with active proteolytic crude extract (G2) and active proteolytic crude extract + AC001 conidia (G3) were significantly different (p < 0.01) from the control group with denatured proteolytic crude extract (G1). AC001 and its proteolytic crude extract acted concomitantly on helminths directly in the fecal environment, suggesting potential future applications in the field.


Assuntos
Ascomicetos , Fezes , Doenças dos Ovinos , Animais , Fezes/parasitologia , Fezes/microbiologia , Ovinos , Ascomicetos/fisiologia , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/terapia , Larva , Controle Biológico de Vetores/métodos , Proteólise , Peptídeo Hidrolases/metabolismo , Infecções por Nematoides/veterinária , Infecções por Nematoides/terapia , Contagem de Ovos de Parasitas/veterinária
11.
Phytopathology ; 114(8): 1917-1925, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135297

RESUMO

The rice blast fungus Magnaporthe oryzae poses a significant challenge to maintaining rice production. Developing rice varieties with resistance to this disease is crucial for its effective control. To understand the genetic variability of blast isolates collected between 2015 and 2017, the 27 monogenic rice lines that carry specific resistance genes were used to evaluate blast disease reactions. Based on criteria such as viability, virulence, and reactions to resistance genes, 20 blast isolates were selected as representative strains. To identify novel resistance genes, a quantitative trait locus analysis was carried out utilizing a mixture of the 20 representative rice blast isolates and a rice population derived from crossing the blast-resistant cultivar 'Cheongcheong' with the blast-susceptible cultivar 'Nagdong'. This analysis revealed a significant locus, RM1227-RM1261 on chromosome 12, that is associated with rice blast resistance. Within this locus, 12 disease resistance-associated protein genes were identified. Among them, OsDRq12, a member of the nucleotide-binding, leucine-rich repeat disease resistance family, was chosen as the target gene for additional computational investigation. The findings of this study have significant implications for enhancing rice production and ensuring food security by controlling rice blast and developing resistant rice cultivars.


Assuntos
Resistência à Doença , Variação Genética , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/imunologia , Oryza/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Locos de Características Quantitativas/genética , Genes de Plantas/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Proteínas de Plantas/genética , Magnaporthe/genética , Magnaporthe/patogenicidade , Magnaporthe/fisiologia
12.
BMC Plant Biol ; 24(1): 763, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123110

RESUMO

Powdery mildew (PM), triggered by Oidium neolycopersici, represents a significant threat and a major concern for the productivity of tomato plants (Solanum lycopersicum L.). The presence of susceptibility (S) genes in plants facilitates pathogen proliferation and their dysfunction can lead to a recessively inherited broad-spectrum and durable type of resistance. Past studies have demonstrated that disrupting the function of DND1 (Defense No Death 1) increases plant resilience against various pathogens, such as powdery mildew (PM), but this comes at the cost of negatively affecting the overall health and vigor of the plant. To investigate the possibility of minimizing the adverse effects of the dnd1 mutation while boosting disease resistance, a CRISPR-Cas9 construct with four single guide RNAs targeting three exons of SlDND1 (Solyc02g088560.4.1) was designed and introduced into the tomato variety Moneymaker (MM) through Agrobacterium tumefaciens-mediated transformation. Three T1 lines (named E1, E3 and E4) were crossed with MM and then selfed to produce TF2 families. All the TF2 plants in homozygous state dnd1/dnd1, showed reduced PM symptoms compared to the heterozygous (DND1/dnd1) and wild type (DND1/DND1) ones. Two full knock-out (KO) mutant events (E1 and E4) encoding truncated DND1 proteins, exhibited clear dwarfness and auto-necrosis phenotypes, while mutant event E3 harbouring deletions of 3 amino acids, showed normal growth in height with less auto-necrotic spots. Analysis of the 3D structures of both the reference and the mutant proteins revealed significant conformational alterations in the protein derived from E3, potentially impacting its function. A dnd1/dnd1 TF2 line (TV181848-9, E3) underwent whole-genome sequencing using Illumina technology, which confirmed the absence of off-target mutations in selected genomic areas. Additionally, no traces of the Cas9 gene were detected, indicating its elimination through segregation. Our findings confirm the role of DND1 as an S-gene in tomato because impairment of this gene leads to a notable reduction in susceptibility to O. neolycopersici. Moreover, we provide, for the first time, a dnd1 mutant allele (E3) that exhibits fitness advantages in comparison with previously reported dnd1 mutant alleles, indicating a possible way to breed with dnd1 mutants.


Assuntos
Ascomicetos , Mutação , Doenças das Plantas , Solanum lycopersicum , Ascomicetos/fisiologia , Sistemas CRISPR-Cas , Resistência à Doença , Edição de Genes , Genes de Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia
13.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39169468

RESUMO

AIMS: The objective of this study was to elucidate the role and mechanism of changes in the rhizosphere microbiome following Arthrobotrys oligospora treatment in the biological control of root-knot nematodes and identify the key fungal and bacterial species that collaborate with A. oligospora to biocontrol root-knot nematodes. METHODS AND RESULTS: We conducted a pot experiment to investigate the impact of A. oligospora treatment on the biocontrol efficiency of A. oligospora against Meloidogyne incognita infecting tomatoes. We analyzed the rhizosphere bacteria and fungi communities of tomato by high-throughput sequencing of the 16S rRNA gene fragment and the internal transcribed spacer (ITS). The results indicated that the application of A. oligospora resulted in a 53.6% reduction in the disease index of M. incognita infecting tomato plants. The bacterial diversity of rhizosphere soil declined in the A. oligospora-treated group, while fungal diversity increased. The A. oligospora treatment enriched the tomato rhizosphere with Acidobacteriota, Firmicutes, Bradyrhizobium, Sphingomonadales, Glomeromycota, and Purpureocillium. These organisms are involved in the utilization of rhizosphere organic matter, nitrogen, and glycerolipids, or play the role of ectomycorrhiza or directly kill nematodes. The networks of bacterial and fungal co-occurrence exhibited a greater degree of stability and complexity in the A. oligospora treatment group. CONCLUSIONS: This study demonstrated the key fungal and bacterial species that collaborate with the A. oligospora in controlling the root-knot nematode and elaborated the potential mechanisms involved. The findings offer valuable insights and inspiration for the advancement of bionematicide based on nematode-trapping fungi.


Assuntos
Doenças das Plantas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Animais , Tylenchoidea/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Controle Biológico de Vetores , Microbiota , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Ascomicetos/fisiologia , Ascomicetos/genética , Fungos/fisiologia , Fungos/genética
14.
Theor Appl Genet ; 137(9): 201, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127987

RESUMO

KEY MESSAGE: Developing genetically resistant soybean cultivars is key in controlling the destructive Sclerotinia Stem Rot (SSR) disease. Here, a GWAS study in Canadian soybeans identified potential marker-trait associations and candidate genes, paving the way for more efficient breeding methods for SSR. Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is one of the most important diseases leading to significant soybean yield losses in Canada and worldwide. Developing soybean cultivars that are genetically resistant to the disease is the most inexpensive and reliable method to control the disease. However, breeding for resistance is hampered by the highly complex nature of genetic resistance to SSR in soybean. This study sought to understand the genetic basis underlying SSR resistance particularly in soybean grown in Canada. Consequently, a panel of 193 genotypes was assembled based on maturity group and genetic diversity as representative of Canadian soybean cultivars. Plants were inoculated and screened for SSR resistance in controlled environments, where variation for SSR phenotypic response was observed. The panel was also genotyped via genotyping-by-sequencing and the resulting genotypic data were imputed using BEAGLE v5 leading to a catalogue of 417 K SNPs. Through genome-wide association analyses (GWAS) using FarmCPU method with threshold of FDR-adjusted p-values < 0.1, we identified significant SNPs on chromosomes 2 and 9 with allele effects of 16.1 and 14.3, respectively. Further analysis identified three potential candidate genes linked to SSR disease resistance within a 100 Kb window surrounding each of the peak SNPs. Our results will be important in developing molecular markers that can speed up the breeding for SSR resistance in Canadian grown soybean.


Assuntos
Ascomicetos , Resistência à Doença , Genótipo , Glycine max , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Glycine max/genética , Glycine max/microbiologia , Resistência à Doença/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Canadá , Fenótipo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Variação Genética , Estudos de Associação Genética , Desequilíbrio de Ligação , Mapeamento Cromossômico
15.
Microbiol Res ; 288: 127841, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153465

RESUMO

In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described Bacillus nakamurai was selected for its strong in vitro antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced B. nakamurai strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in B. velezensis, greenhouse experiments show that B. nakamurai BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by Alternaria solani and Exserohilum turcicum, respectively, at levels similar to or better than B. velezensis QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that B. nakamurai BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.


Assuntos
Alternaria , Bacillus , Metaboloma , Doenças das Plantas , Metabolismo Secundário , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bacillus/metabolismo , Bacillus/genética , Bacillus/classificação , Bacillus/fisiologia , Alternaria/metabolismo , Alternaria/fisiologia , Agentes de Controle Biológico/metabolismo , Zea mays/microbiologia , Solanum lycopersicum/microbiologia , Metabolômica , Ascomicetos/metabolismo , Ascomicetos/fisiologia , Genoma Bacteriano
16.
J Agric Food Chem ; 72(36): 20211-20223, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39197047

RESUMO

Drought dramatically affects plant growth and yield. A previous study indicated that endophytic fungus Phomopsis liquidambaris can improve the drought resistance of peanuts, which is related with the root arbuscular mycorrhizal fungi (AMF) community; however, how root endophytes mediate AMF assembly to affect plant drought resistance remains unclear. Here, we explored the mechanism by which endophytic fungus recruits AMF symbiotic partners via rhizodeposits to improve host drought resistance. The results showed that Ph. liquidambaris enhanced peanut drought resistance by enriching the AMF genus Claroideoglomus of the rhizosphere. Furthermore, metabolomic analysis indicated that Ph. liquidambaris significantly promoted isoformononetin and salicylic acid (SA) synthesis in rhizodeposits, which were correlated with the increase in Claroideoglomus abundance following Ph. liquidambaris inoculation. Coinoculation experiments confirmed that isoformononetin and SA could enrich Claroideoglomus etunicatum in the rhizosphere, thereby improving the drought resistance. This study highlights the crucial role of fungal consortia in plant stress resistance.


Assuntos
Arachis , Secas , Endófitos , Micorrizas , Raízes de Plantas , Rizosfera , Simbiose , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Endófitos/fisiologia , Endófitos/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Ascomicetos/fisiologia , Glomeromycota/fisiologia , Microbiologia do Solo , Resistência à Seca
17.
BMC Plant Biol ; 24(1): 736, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095719

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by the foliar fungus Zymoseptoria tritici, is one of the most damaging disease of wheat in Europe. Genetic resistance against this fungus relies on different types of resistance from non-host resistance (NHR) and host species specific resistance (HSSR) to host resistance mediated by quantitative trait loci (QTLs) or major resistance genes (Stb). Characterizing the diversity of theses resistances is of great importance for breeding wheat cultivars with efficient and durable resistance. While the functional mechanisms underlying these resistance types are not well understood, increasing piece of evidence suggest that fungus stomatal penetration and early establishment in the apoplast are both crucial for the outcome of some interactions between Z. tritici and plants. To validate and extend these previous observations, we conducted quantitative comparative phenotypical and cytological analyses of the infection process corresponding to 22 different interactions between plant species and Z. tritici isolates. These interactions included four major bread wheat Stb genes, four bread wheat accessions with contrasting quantitative resistance, two species resistant to Z. tritici isolates from bread wheat (HSSR) and four plant species resistant to all Z. tritici isolates (NHR). RESULTS: Infiltration of Z. tritici spores into plant leaves allowed the partial bypass of all bread wheat resistances and durum wheat resistance, but not resistances from other plants species. Quantitative comparative cytological analysis showed that in the non-grass plant Nicotiana benthamiana, Z. tritici was stopped before stomatal penetration. By contrast, in all resistant grass plants, Z. tritici was stopped, at least partly, during stomatal penetration. The intensity of this early plant control process varied depending on resistance types, quantitative resistances being the least effective. These analyses also demonstrated that Stb-mediated resistances, HSSR and NHR, but not quantitative resistances, relied on the strong growth inhibition of the few Z. tritici penetrating hyphae at their entry point in the sub-stomatal cavity. CONCLUSIONS: In addition to furnishing a robust quantitative cytological assessment system, our study uncovered three stopping patterns of Z. tritici by plant resistances. Stomatal resistance was found important for most resistances to Z. tritici, independently of its type (Stb, HSSR, NHR). These results provided a basis for the functional analysis of wheat resistance to Z. tritici and its improvement.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Estômatos de Plantas , Triticum , Ascomicetos/fisiologia , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Locos de Características Quantitativas , Interações Hospedeiro-Patógeno
18.
Ann Parasitol ; 70(2): 113-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39154198

RESUMO

Duddingtonia flagrans is a nematode trapping fungus used for the control of gastrointestinal nematodes in livestock. The quantity of chlamydospores of D. flagrans required for the reduction of third-stage larvae (L3) of sheep gastrointestinal nematodes (GIN) is largely unknown, and a matter of discussion. The aim of this experiment was to determine in vitro the nematophagous activity of four different concentrations of D. flagrans (1000, 3000, 6250, or 11000 chlamydospores/ml) in the presence of varying numbers of GIN third-stage larvae (L3) (500, 1000, 1500). Additionally, the study sought to evaluate the efficacy of this fungus on Haemonchus contortus, Teladorsagia circumcincta, Trichostrongylus colubriformis and Chabertia ovina. The results showed that as fungal concentrations increased, so did the larval reduction of third-stage infective larvae in each test. L3s number was not a determining factor in the efficacy against GIN. The comparison between various concentrations of chlamydospores revealed significant differences, particularly between 1000 and 11000 chlamydospores (P≤0.05). Regarding the larval reduction of the GIN species considered, D. flagrans demonstrated the same effectiveness across all species tested. The results of the current study confirm the efficacy and underscore the importance of D. flagrans as an alternative for controlling of GIN.


Assuntos
Ascomicetos , Nematoides , Infecções por Nematoides , Doenças dos Ovinos , Animais , Ovinos , Projetos Piloto , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/prevenção & controle , Infecções por Nematoides/veterinária , Infecções por Nematoides/parasitologia , Infecções por Nematoides/prevenção & controle , Ascomicetos/fisiologia , Larva , Controle Biológico de Vetores/métodos , Duddingtonia/fisiologia
19.
Sci Rep ; 14(1): 18908, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143118

RESUMO

Propagule dispersal is a crucial aspect of the survival and reproduction of sessile organisms, such as plants and fungi. As such, the colours of fleshy fruits serve as a visual cue for animal dispersers. However, little is known about how, or whether, specific traits of fungal fruiting bodies, such as colour or shape, attract animal dispersers, and additionally the identities of fungal dispersers are poorly understood. Globally, most truffle-like fungi are dull-coloured, subterranean, and likely have scents that are attractive to mammalian dispersers. In Aotearoa-New Zealand, however, brightly coloured truffle-like fungi that emerge from the forest floor have seemingly proliferated. This proliferation has prompted the hypothesis that they are adapted to dispersal by a bird-dominated fauna. In our study, we used the literature and citizen science data (GBIF) to explore whether colourful species occur at a higher proportion of the total truffle-like fungi flora in Aotearoa-New Zealand than elsewhere in the world. In addition, we tested for a relationship between biotic factors (avian frugivory and forest cover) and abiotic factors (precipitation, radiation, and temperature) and the prevalence of brightly coloured truffle-like fungi across the world. The most colourful truffle-like fungi are in three defined regions: Australia, South and Central America and the Caribbean, and Aotearoa-NZ. Potential dispersers and the environment both relate to the distribution of truffle-like fungi: we found that increasing levels of frugivory were associated with higher proportions of colourful truffle-like fungi. This finding provides new insights into drivers of certain fungal traits, and their interactions between birds and fungi. Unique ecosystems, such as Aotearoa-NZ's bird-dominated biota, provide fascinating opportunities to explore how plants and fungi interact with the sensory systems of animals.


Assuntos
Aves , Nova Zelândia , Animais , Aves/fisiologia , Aves/microbiologia , Fungos/fisiologia , Cor , Ascomicetos/fisiologia , Adaptação Fisiológica , Carpóforos/fisiologia
20.
BMC Biol ; 22(1): 168, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113027

RESUMO

Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.


Assuntos
Ascomicetos , Folhas de Planta , Folhas de Planta/microbiologia , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...