Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.065
Filtrar
1.
J Med Case Rep ; 18(1): 354, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103930

RESUMO

BACKGROUND: Invasive Aspergillosis is a fungal infection caused by Aspergillus species, typically posing life-threatening risks to immunocompromised individuals. While occurrences in immunocompetent hosts are rare, a recent case report documented fulminant pulmonary aspergillosis in an immunocompetent patient during autopsy. Here, we present a case of invasive aspergillosis in an immunocompetent woman, manifesting with disseminated lesions. CASE PRESENTATION: A 29-year-old Asian woman presented to our hospital in March 2022, reporting chest pain and shortness of breath persisting for two months. Upon examination, she appeared thin and unwell, with no notable abnormalities otherwise. Radiographic imaging revealed an ill-defined lesion in her left lung. Subsequent bronchoscopy and lavage were performed, followed by initiation of empirical antibiotic therapy. Lavage results were negative for gram staining, culture, and ZN staining for AFB, but revealed numerous septate hyphae on fungal smear. Histopathological examination indicated chronic granulomatous inflammation with septal fungal hyphae, indicative of aspergillosis. Subsequent culture confirmed Aspergillus species, prompting initiation of voriconazole therapy. Remarkably, the patient exhibited significant improvement, with weight gain and restored appetite observed within a short period. Within 2 months of treatment, her symptoms resolved, and she resumed near-normal daily activities. CONCLUSION: This case highlights the diagnosis of aspergillosis in an immunocompetent individual presenting with disseminated nodular lesions across the lungs, mediastinum, and abdomen. Clinicians should maintain a high index of suspicion for aspergillosis in cases of non-resolving pneumonia and disseminated nodular lesions, even in patients lacking traditional predisposing factors.


Assuntos
Antifúngicos , Imunocompetência , Voriconazol , Humanos , Feminino , Adulto , Voriconazol/uso terapêutico , Antifúngicos/uso terapêutico , Broncoscopia , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergillus/isolamento & purificação , Aspergilose/diagnóstico , Aspergilose/tratamento farmacológico , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/microbiologia
2.
Mycoses ; 67(8): e13782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109555

RESUMO

BACKGROUND: Rapid galactomannan tests, such as the sõna Aspergillus GM Lateral Flow Assay (GM-LFA) and the Aspergillus Galactomannan Ag VIRCLIA® Monotest (GM-Monotest), which are suitable for the analysis of single samples, have the potential to accelerate diagnosis of invasive aspergillosis (IA). OBJECTIVES: To compare the performance of the GM-Monotest and the GM-LFA for the diagnosis of IA. PATIENTS/METHODS: Two patient cohorts were analysed: adults who had received an allogeneic haematopoietic stem-cell transplant (alloHSCT-cohort) and patients with proven/probable IA from a 5-year period (cross-sectional IA-cohort). In the alloHSCT-cohort, weekly serum samples were tested, whereas in the cross-sectional IA-cohort sera and bronchoalveolar lavage fluids were analysed. The diagnostic performance was calculated using two definitions for positivity: (1) a single positive GM result and (2) at least two positive GM results from consecutive samples. IA classification followed EORTC/MSG 2019. RESULTS: The alloHSCT-cohort included 101 patients. Four had proven/probable IA, 26 possible IA and 71 no IA. The specificity for one positive serum and two consecutively positive sera was 88.7% and 100% (GM-Monotest) and 85.9% and 98.6% (GM-LFA). Comparison of ROC curves in the alloHSCT-cohort showed no significant difference. The cross-sectional IA-cohort included 59 patients with proven/probable IA. The sensitivity for one positive sample and two consecutively positive samples was 83.1% and 55.1% (GM-Monotest) and 86.4% and 71.4% (GM-LFA). CONCLUSIONS: Both assays showed comparable diagnostic performance with a higher sensitivity for the GM-LFA if two consecutive positive samples were required for positivity. However, due to poor reproducibility, positive GM-LFA results should always be confirmed.


Assuntos
Aspergillus , Galactose , Mananas , Sensibilidade e Especificidade , Humanos , Mananas/sangue , Mananas/análise , Galactose/análogos & derivados , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Transversais , Adulto , Idoso , Aspergillus/isolamento & purificação , Aspergillus/imunologia , Aspergilose Pulmonar Invasiva/diagnóstico , Antígenos de Fungos/sangue , Antígenos de Fungos/análise , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/química , Imunoensaio/métodos , Transplante de Células-Tronco Hematopoéticas , Aspergilose/diagnóstico , Aspergilose/microbiologia , Estudos de Coortes , Adulto Jovem
3.
Mycoses ; 67(8): e13789, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39179520

RESUMO

During the COVID-19 pandemic, many patients in intensive care units (ICUs) were affected by invasive fungal infections, including aspergillosis, contributing to a high mortality rate. Diagnosing proven COVID-19-associated pulmonary aspergillosis (CAPA) requires clinical and radiological evaluations, along with laboratory testing of bronchoalveolar lavage samples or lung biopsies. However, these procedures and equipment are often inaccessible in developing countries or regions with limited resources, including Brazil. Consequently, alternative diagnostic methods, such as measuring Aspergillus galactomannan (GM) in tracheal aspirate (TA), have been explored for CAPA diagnosis. Nonetheless, research on the efficacy of TA-based diagnostic tests is limited. This study aimed to assess the performance of the IMMY® Sona Aspergillus lateral flow assay (LFA) for GM detection in TA samples from 60 ICU patients with suspected CAPA at two tertiary hospitals in Campo Grande, Brazil. The ELISA method (Platelia Aspergillus AG, Bio-Rad®) was used to detect Aspergillus GM in TA samples, serving as the microbiological criterion and reference test. Fifteen patients (12.4%) were identified as having possible CAPA. The overall accuracy of LFA was 94%, and the tests demonstrated an agreement of 93.1% (Cohen's kappa of 0.83). Based on our findings, the LFA for Aspergillus GM detection in TA samples exhibited excellent performance, proving to be a valuable diagnostic tool for potential CAPA. In a systematic review, two studies were included, and the meta-analysis revealed pooled estimates provided a sensitivity of 86% (95% CI, 80%-91%) and specificity of 93% (95% CI, 86%-97%). The diagnostic odds ratio (DOR) for identification of Aspergillus using LFA was 103.38 (95% CI, 38.03-281.03). Despite its lower sensitivity compared to our study, the LFA appears to be a promising diagnostic option for CAPA, particularly in suspected cases that have not received antifungal therapy. This enables timely antifungal treatment and could reduce mortality rates in regions where bronchoscopy is unavailable or limited.


Assuntos
Aspergillus , COVID-19 , Galactose , Mananas , Sensibilidade e Especificidade , Traqueia , Humanos , Galactose/análogos & derivados , Mananas/análise , Brasil , COVID-19/complicações , COVID-19/diagnóstico , Aspergillus/isolamento & purificação , Traqueia/microbiologia , Pessoa de Meia-Idade , Estudos Transversais , Masculino , Feminino , Aspergilose Pulmonar/diagnóstico , Idoso , Adulto , SARS-CoV-2/isolamento & purificação , Unidades de Terapia Intensiva
4.
Sci Transl Med ; 16(760): eadl5934, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141701

RESUMO

The global incidence of invasive fungal infections (IFIs) has increased over the past few decades, mainly in immunocompromised patients, and is associated with high mortality and morbidity. Aspergillus fumigatus is one of the most common and deadliest IFI pathogens. Major hurdles to treating fungal infections remain the lack of rapid and definitive diagnosis, including the frequent need for invasive procedures to provide microbiological confirmation, and the lack of specificity of structural imaging methods. To develop an Aspergillus-specific positron emission tomography (PET) imaging agent, we focused on fungal-specific sugar metabolism. We radiolabeled cellobiose, a disaccharide known to be metabolized by Aspergillus species, and synthesized 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB) by enzymatic conversion of 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) with a radiochemical yield of 60 to 70%, a radiochemical purity of >98%, and 1.5 hours of synthesis time. Two hours after [18F]FCB injection in A. fumigatus pneumonia as well as A. fumigatus, bacterial, and sterile inflammation myositis mouse models, retained radioactivity was only seen in foci with live A. fumigatus infection. In vitro testing confirmed production of ß-glucosidase enzyme by A. fumigatus and not by bacteria, resulting in hydrolysis of [18F]FCB into glucose and [18F]FDG, the latter being retained by the live fungus. The parent molecule was otherwise promptly excreted through the kidneys, resulting in low background radioactivity and high target-to-nontarget ratios at A. fumigatus infectious sites. We conclude that [18F]FCB is a promising and clinically translatable Aspergillus-specific PET tracer.


Assuntos
Aspergillus fumigatus , Celobiose , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Celobiose/metabolismo , Aspergillus fumigatus/metabolismo , Camundongos , Aspergilose/diagnóstico por imagem , Fluordesoxiglucose F18/química , Aspergillus/metabolismo , Distribuição Tecidual , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo
5.
Braz J Biol ; 84: e280796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140501

RESUMO

Marine organisms produce a variety of compounds with pharmacological activities. In order to better comprehend the medicinal value of five particular seaweed orders Ulvales (Ulva intestinalis), Bryopsidales (Codium decorticatum), Ectocarpales (Iyengaria stellata), Dictyotales (Spatoglossum aspermum) and Gigartinales (Hypnea musciformis), a bioactive analysis including the screening of phytochemical components, antioxidant and antimicrobial activities was the aim of the investigation. The species include U. intestinalis was collected from Sandspit, while C. decorticatum, I. stellata, S. aspermum, and H. musciformis were gathered from Buleji. These species evaluated for their ability to inhibit human infectious gram positive pathogens Staphylococcus aureus, Staphylococcus epidermidis as well as gram negative bacteria Escherichia coli. Additionally vegetable pathogen Fusarium oxysporum, and fruit pathogens (Aspergillus niger and Aspergillus flavus) were evaluated to determine the zone of inhibition. Two organic solvents, ethanol and methanol, were used to prepare seaweed extract. The disc diffusion method was utilized to quantify the zone of inhibition and the DPPH method was employed to measure the antioxidant activity. The study unveiled various phyto-constituents in the tested seaweeds, with flavonoids, tannins, and proteins found in all selected species, while saponins, terpenoids, and carbohydrates were absent in I. stellata and S. aspermum. Notably, ethanolic extracts of I. stellata and S. aspermum demonstrated superior higher antioxidant activity, with increasing percentages of inhibition from 1 to 6 mg/ml. Furthermore, the findings indicated that the ethanolic extract of U. intestinalis displayed the highest resistance against F. oxysporum and A. flavous among other seaweeds. Meanwhile, the ethanolic extract of C. decorticatum exhibited the highest resistance against A. Niger. Additionally, the ethanolic extract of I. stellata and H. musciformis displayed the highest resistance against the gram-negative bacteria E. coli and the gram-positive bacteria S. epidermidis, whereas the methanolic extract of U. intestinalis demonstrated the highest resistance against the gram-positive bacteria S. aureus. The findings of this investigation show that a range of bioactive compounds with antioxidant properties are involved in the antimicrobial activities of disease-causing pathogens.


Assuntos
Antibacterianos , Alga Marinha , Alga Marinha/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Aspergillus/efeitos dos fármacos , Antioxidantes/farmacologia
6.
Int J Biol Macromol ; 277(Pt 2): 134306, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094860

RESUMO

Fungal infections pose severe and potentially lethal threats to plant, animal, and human health. Ergosterol has served as the primary target for developing antifungal medications. However, many antifungal drugs remain highly toxic to humans due to similarity in cell membrane composition between fungal and animal cells. Iturin A, lipopeptide produced by Bacillus subtilis, efficiently inhibit various fungi, but demonstrated safety in oral administration, indicating the existence of targets different from ergosterol. To pinpoint the exact antifungal target of iturin A, we used homologous recombination to knock out and overexpress erg3, a key gene in ergosterol synthesis. Saccharomyces cerevisiae and Aspergillus carbonarius were transformed using the LiAc/SS-DNNPEG and Agrobacterium-mediated transformation (AMT), respectively. Surprisingly, increasing ergosterol content did not augment antifungal activity. Furthermore, iturin A's antifungal activity against S. cerevisiae was reduced while it pre-incubation with voltage-gated potassium (Kv) channel inhibitor, indicating that Kv activation was responsible for cell death. Iturin A was found to activate the Kv protein, stimulating K+ efflux from cell. In vitro tests confirmed interaction between iturin A and Kv protein. This study highlights Kv as one of the precise targets of iturin A in its antifungal activity, offering a novel target for the development of antifungal medications.


Assuntos
Antifúngicos , Bacillus subtilis , Peptídeos Cíclicos , Saccharomyces cerevisiae , Antifúngicos/farmacologia , Antifúngicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Bacillus subtilis/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Lipopeptídeos/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/genética , Ergosterol , Aspergillus/efeitos dos fármacos , Aspergillus/metabolismo , Potássio/metabolismo , Testes de Sensibilidade Microbiana
7.
Med Mycol ; 62(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39138060

RESUMO

Although research on aspergillosis and mucormycosis confection is important to optimize antifungal therapy, data on this issue is scarce. Thus, we systematically investigated aspergillosis coinfection in patients with proven mucormycosis. Medical records of adult patients with proven mucormycosis whose formalin-fixed paraffin-embedded (FFPE) tissue sections were available, in a tertiary hospital from August 2007 to July 2023 were retrospectively reviewed to assess coinfection with aspergillosis. We noted cultures of fungi from sterile and non-sterile sites and performed polymerase chain reaction (PCR) assays on FFPE tissues to detect Aspergillus- and Mucorales-specific DNA. Sixty-seven patients with proven mucormycosis, including 12 (18%) with a positive culture of the mucormycosis agent from sterile site cultures, were enrolled. Fungal cultures from sterile and non-sterile sites revealed Aspergillus spp. growth in nine (13%) of the 67 patients, including two sterile and seven non-sterile cultures. The fungal PCR analysis from the FFPE sections was positive for Aspergillus-specific PCR in five (7%) and positive for both Aspergillus- and Mucorales-specific PCR results in eight (12%). Overall, 21 (31%) of the 67 patients with proven mucormycosis had microbiologic and/or molecular evidence of aspergillosis coinfection. Positive blood or bronchoalveolar lavage fluid galactomannan results were more common in the coinfection group (67% [14/21]) than in the mucormycosis group (37% [17/46], P = .024). No significant difference in mortality between the two groups was observed. Approximately one-third of patients with proven mucormycosis exhibited molecular and/or microbiologic evidence of aspergillosis coinfection. Further research is needed to identify patients with aspergillosis and mucormycosis coinfections, for optimal antifungal therapy.


The study aims to investigate the coinfection between mucormycosis and aspergillosis. Key findings reveal that approximately 31% of patients demonstrated evidence of coinfection, which emphasizes the importance of considering both pathogens in diagnosis and treatment decisions.


Assuntos
Aspergillus , Coinfecção , Mucorales , Mucormicose , Humanos , Mucormicose/complicações , Mucormicose/microbiologia , Coinfecção/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Mucorales/isolamento & purificação , Mucorales/genética , Aspergillus/isolamento & purificação , Adulto , Aspergilose/microbiologia , Aspergilose/complicações , Reação em Cadeia da Polimerase , DNA Fúngico/genética , Centros de Atenção Terciária , Idoso de 80 Anos ou mais
8.
Wei Sheng Yan Jiu ; 53(4): 656-663, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39155236

RESUMO

OBJECTIVE: To understand the status and problems of microbial pollution in shopping malls and supermarkets in China. METHODS: Microbial pollution in shopping malls and supermarkets was assessed by literature search, key information extraction and analysis. The strengths, weaknesses, opportunities and threats(SWOT) of risk control of pathogenic microorganisms in shopping malls and supermarkets were analyzed by SWOT analysis. RESULTS: Common bacteria in the indoor air of shopping malls and supermarkets included staphylococcus and Bacillus, and common fungi include Aspergillus and Penicillium. The bacteria detected in dust samples, escalator surfaces and floor surfaces were mainly Proteobacteria and Actinomyces. The complete public places laws and regulations, standards and health supervision system were the advantages of the risk prevention and control countermeasures of microbial contamination in shopping malls and supermarkets. At the same time, it also had the disadvantages of incomplete microbial-related indexes in the premises, and insufficiently detailed countermeasures for prevention and control in the premises. There were opportunities for multi-sectoral participation and post-licensing risk prevention, and it was also facing challenges brought by many factors affecting the health microenviroment and over-disinfection. CONCLUSION: The main sites for microbial risk prevention and control in superstore-type public places included high-frequency contact areas, key public supplies and utensils, indoor air, etc. , which could be prevented and controlled through a variety of measures such as controlling the release of the source, dilution and reduction, disinfection and denaturation, etc. , and exploring a comprehensive prevention and control system that involves the autonomy of the organization, industry self-regulation, collaboration of multi-government departments, and participation of the whole society.


Assuntos
Poluição do Ar em Ambientes Fechados , Supermercados , China , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Bactérias/isolamento & purificação , Bactérias/classificação , Fungos/isolamento & purificação , Staphylococcus/isolamento & purificação , Aspergillus/isolamento & purificação , Humanos , Bacillus/isolamento & purificação , Monitoramento Ambiental/métodos
9.
Molecules ; 29(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124966

RESUMO

The fruit processing industry is responsible for disposing of huge amounts of byproducts, especially fruit peels (FPs), which are often discarded in landfills. Using FPs in biotechnological processes contributes to a circular economy, reducing the environmental burden of FPs and increasing the revenue of the fruit processing industry. This study was focused on upgrading the nutritional value of orange (OPs) and banana (BPs) peels by solid-state fermentation (SSF) with filamentous fungi. SSF factors (moisture, fermentation time, inoculum size, ammonium sulfate (AS), and corn steep liquor (CSL)) and fungi species (Aspergillus ibericus and Rhizopus oryzae) were studied by a variable screening Plackett-Burman design. Both fungi grew on untreated FPs, increasing their protein content and antioxidant activity. Moisture, AS, and CSL were further studied by a Box-Behnken design with A. ibericus. Fermented OPs at 70% moisture and 0.005 g/g AS increased their protein content by 200%, whereas BPs at 70% moisture and 0.005 g/g CSL increased by 123%. Fermented peels were enriched in protein, fiber, and minerals, with a low content of carbohydrates and soluble sugars. Fermented OPs and BPs showed higher antioxidant activity than unfermented peels. The SSF of these FPs is an innovative approach that contributes to obtaining rich nutrient-fermented peels for food.


Assuntos
Fermentação , Frutas , Valor Nutritivo , Rhizopus oryzae , Frutas/microbiologia , Frutas/química , Frutas/metabolismo , Rhizopus oryzae/metabolismo , Aspergillus/metabolismo , Musa/microbiologia , Antioxidantes/metabolismo , Citrus sinensis/microbiologia , Citrus sinensis/química
10.
Food Microbiol ; 123: 104587, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038900

RESUMO

Accurate identification of the fungal community spontaneously colonizing food products, aged in natural and not controlled environments, provides information about potential mycotoxin risk associated with its consumption. Autochthonous mycobiota colonizing cheese aging in Dossena mines, was investigated and characterized by two approaches: microbial isolations and metabarcoding. Microbial isolations and metabarcoding analysis were conducted on cheese samples, obtained by four batches, produced in four different seasons of the year, aged for 90 and 180 days, by five dairy farms. The two approaches, with different taxonomical resolution power, highlighted Penicillium biforme among filamentous fungi, collected from 58 out of 68 cheeses, and Debaryomyces hansenii among yeasts, as the most abundant species (31 ÷ 65%), none representing a health risk for human cheese consumption. Shannon index showed that the richness of mycobiota increases after 180 days of maturation. Beta diversity analysis highlighted significant differences in composition of mycobiota of cheese produced by different dairy farms and aged for different durations. Weak negative growth interaction between P. biforme and Aspergillus westerdijkiae by in vitro analysis was observed leading to hypothesize that a reciprocal control is possible, also affected by natural environmental conditions, possibly disadvantageous for the last species.


Assuntos
Queijo , Fungos , Queijo/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Microbiologia de Alimentos , Micobioma , Penicillium/isolamento & purificação , Penicillium/classificação , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Aspergillus/genética , Aspergillus/classificação , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Contaminação de Alimentos/análise , Indústria de Laticínios , Debaryomyces/genética , Biodiversidade
11.
J Agric Food Chem ; 72(28): 15998-16009, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949246

RESUMO

Aflatoxin B1 is a notorious mycotoxin with mutagenicity and carcinogenicity, posing a serious hazard to human and animal health. In this study, an AFB1-degrading dipeptidyl-peptidase III mining from Aspergillus terreus HNGD-TM15 (ADPP III) with a molecular weight of 79 kDa was identified. ADPP III exhibited optimal activity toward AFB1 at 40 °C and pH 7.0, maintaining over 80% relative activity at 80 °C. The key amino acid residues that affected enzyme activity were identified as H450, E451, H455, and E509 via bioinformatic analysis and site-directed mutagenesis. The degradation product of ADPP III toward AFB1 was verified to be AFD1. The zebrafish hepatotoxicity assay verified the toxicity of the AFB1 degradation product was significantly weaker than that of AFB1. The result of this study proved that ADPP III presented a promising prospect for industrial application in food and feed detoxification.


Assuntos
Aflatoxina B1 , Aspergillus , Dipeptidil Peptidases e Tripeptidil Peptidases , Proteínas Fúngicas , Peixe-Zebra , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Aspergillus/enzimologia , Aspergillus/genética , Aspergillus/química , Aspergillus/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estabilidade Enzimática , Cinética , Peso Molecular , Concentração de Íons de Hidrogênio , Especificidade por Substrato
12.
Sci Total Environ ; 948: 174978, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047840

RESUMO

This study addresses the environmental problem of PET plastic through in silico bioprospecting for the identification and experimental validation of novel PET degrading eukaryotes through the in silico bioprospectingI of PETases, employing a methodology that combines Hidden Markov Models (HMMs), clustering techniques, molecular docking, and dynamic simulations. A total of 424 putative PETase sequences were identified from 219 eukaryotic organisms, highlighting six sequences with low affinity energies. The Aspergillus luchuensis sequence showed the lowest Gibbs free energy and exhibited stability at different temperatures in molecular dynamics assays. Experimental validation, through a plate clearance assay and HPLC, confirmed PETase activity in three wild-type fungal strains, with A. luchuensis showing the highest efficiency. The results obtained demonstrate the effectiveness of combining computational and experimental approaches as proof of concept to discover and validate eukaryotes with PET-degrading capabilities opening new perspectives for the sustainable management of this type of waste and contributing to its environmental mitigation.


Assuntos
Biodegradação Ambiental , Bioprospecção , Eucariotos , Simulação por Computador , Aspergillus/enzimologia
13.
Org Lett ; 26(31): 6670-6674, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39073982

RESUMO

The great variety and fascinating complexity of terpenoid skeletons are achieved through different cyclizations catalyzed by terpene cyclases. Here, we report a sesquiterpene cyclase (MfdS) from Aspergillus ustus for the formation of malfilanol D, a member of the group of biochemically less investigated sesquiterpenes with a bicyclo[5.4.0]undecane skeleton. Feeding 13C-labeled acetates in Aspergillus nidulans with the mfdS sequence provides evidence for a C-1 to C-10 cyclization with subsequent 1,2-alkyl and 1,2-hydride shifts in the formation of the 6/7-fused rings.


Assuntos
Aspergillus , Sesquiterpenos , Aspergillus/química , Aspergillus/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Estrutura Molecular , Ciclização , Alcanos/química , Alcanos/metabolismo , Aspergillus nidulans/metabolismo , Aspergillus nidulans/química , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/metabolismo
14.
Metabolomics ; 20(4): 75, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980562

RESUMO

INTRODUCTION: Microbial communities affect several aspects of the earth's ecosystem through their metabolic interaction. The dynamics of this interaction emerge from complex multilevel networks of crosstalk. Elucidation of this interaction could help us to maintain the balance for a sustainable future. OBJECTIVES: To investigate the chemical language among highly abundant microbial genera in the rhizospheres of medicinal plants based on the metabolomic analysis at the interaction level. METHODS: Coculturing experiments involving three microbial species: Aspergillus (A), Trichoderma (T), and Bacillus (B), representing fungi (A, T) and bacteria (B), respectively. These experiments encompassed various interaction levels, including dual cultures (AB, AT, TB) and triple cultures (ATB). Metabolic profiling by LC-QTOFMS revealed the effect of interaction level on the productivity and diversity of microbial specialized metabolites. RESULTS: The ATB interaction had the richest profile, while the bacterial profile in the monoculture condition had the lowest. Two native compounds of the Aspergillus genus, aspergillic acid and the dipeptide asperopiperazine B, exhibited decreased levels in the presence of the AT interaction and were undetectable in the presence of bacteria during the interaction. Trichodermarin N and Trichodermatide D isolated from Trichoderma species exclusively detected during coexistence with bacteria (TB and ATB). These findings indicate that the presence of Bacillus activates cryptic biosynthetic gene clusters in Trichoderma. The antibacterial activity of mixed culture extracts was stronger than that of the monoculture extracts. The TB extract exhibited strong antifungal activity compared to the monoculture extract and other mixed culture treatments. CONCLUSION: The elucidation of medicinal plant microbiome interaction chemistry and its effect on the environment will also be of great interest in the context of medicinal plant health Additionally, it sheds light on the content of bioactive constituents, and facilitating the discovery of novel antimicrobials.


Assuntos
Interações Microbianas , Plantas Medicinais , Rizosfera , Plantas Medicinais/metabolismo , Plantas Medicinais/microbiologia , Aspergillus/metabolismo , Bactérias/metabolismo , Trichoderma/metabolismo , Bacillus/metabolismo , Fungos/metabolismo , Metabolômica , Técnicas de Cocultura , Microbiologia do Solo
15.
ACS Appl Bio Mater ; 7(7): 4510-4518, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950150

RESUMO

Fungal proliferation can lead to adverse effects for human health, due to the production of pathogenic and allergenic toxins and also through the creation of fungal biofilms on sensitive surfaces (i.e., medical equipment). On top of that, food spoilage from fungal activity is a major issue, with food losses exceeding 30% annually. In this study, the effect of the surface micro- and nanotopography, material (aluminum, Al, and poly(methyl methacrylate), PMMA), and wettability against Aspergillus awamori is investigated. The fungal activity is monitored using dynamic conditions by immersing the surfaces inside fungal spore-containing suspensions and measuring the fungal biomass growth, while the surfaces with the optimum antifungal properties are also evaluated by placing them near spore suspensions of A. awamori on agar plates. Al- and PMMA-based superhydrophobic surfaces demonstrate a passive-like antifungal profile, and the fungal growth is significantly reduced (1.6-2.2 times lower biomass). On the other hand, superhydrophilic PMMA surfaces enhance fungal proliferation, resulting in a 2.6 times higher fungal total dry weight. In addition, superhydrophobic surfaces of both materials exhibit antifouling and antiadhesive properties, whereas both superhydrophobic surfaces also create an "inhibition" zone against the growth of A. awamori when tested on agar plates.


Assuntos
Aspergillus , Materiais Biocompatíveis , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Proliferação de Células/efeitos dos fármacos
16.
J Agric Food Chem ; 72(30): 16860-16866, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031782

RESUMO

Itaconate is a promising platform chemical with broad applicability, including the synthesis of poly(methyl methacrylate). Most studies on microbial itaconate production entail the use of crop-based feedstock, which imposes constraints due to its limited supply. Brown macroalgae have recently gained attention as next-generation biomass owing to their high biomass productivity and carbohydrate content and amenability to mass production. Therefore, the use of macroalgae for itaconate production warrants exploration. In this study, the direct production of itaconate from brown macroalgae was demonstrated using engineered Vibrio sp. dhg, which has emerged as an efficient platform host for brown macroalgal biorefineries. Specifically, to enhance production, cis-aconitate decarboxylase (Cad) from Aspergillus terreus was heterologously expressed and isocitrate dehydrogenase (icd) was deleted. Notably, the resulting strain, VIC, achieved itaconate titers of 2.5 and 1.5 g/L from a mixture of alginate and mannitol (10 g/L of each) and 40 g/L of raw Saccharina japonica (S. japonica), respectively. Overall, this study highlights the utility of brown macroalgae as feedstock, as well as that of Vibrio sp. dhg as a platform strain for improving itaconate bioproduction.


Assuntos
Engenharia Metabólica , Phaeophyceae , Alga Marinha , Succinatos , Vibrio , Vibrio/metabolismo , Vibrio/genética , Vibrio/crescimento & desenvolvimento , Alga Marinha/metabolismo , Alga Marinha/química , Phaeophyceae/metabolismo , Phaeophyceae/química , Succinatos/metabolismo , Aspergillus/metabolismo , Aspergillus/genética , Aspergillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa
17.
Microb Cell Fact ; 23(1): 209, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054459

RESUMO

BACKGROUND: The presence of inorganic pollutants and heavy metals in industrial effluents has become a serious threat and environmental issues. Fungi have a remarkable ability to exclude heavy metals from wastewater through biosorption in eco-friendly way. Tannase plays an important role in bioconversion of tannin, a major constituent of tannery effluent, to gallic acid which has great pharmaceutical applications. Therefore, the aim of the current study was to exploit the potential of tannase from Aspergillus glaucus and fungal biomass waste for the bioremediation of heavy metals and tannin. RESULTS: Tannase from A. glaucus was partially purified 4.8-fold by ammonium sulfate precipitation (80%). The enzyme was optimally active at pH 5.0 and 40 °C and stable at this temperature for 1 h. Tannase showed high stability at different physiological conditions, displayed about 50% of its activity at 60 °C and pH range 5.0-6.0. Immobilization of tannase was carried out using methods such. as entrapment in Na-alginate and covalent binding to chitosan. The effects of Na-alginate concentrations on the beads formation and enzyme immobilization revealed that maximum immobilization efficiency (75%) was obtained with 3% Na-alginate. A potential reusability of the immobilized enzyme was showed through keeping 70% of its relative activity up to the fourth cycle. The best bioconversion efficiency of tannic acid to gallic acid by immobilized tannase was at 40 °C with tannic acid concentration up to 50 g/l. Moreover, bioremediation of heavy metal (Cr3+, Pb2+, Cu2+, Fe3+, and Mn2+) from aqueous solution using A. glaucus biomass waste was achieved with uptake percentage of (37.20, 60.30, 55.27, 79.03 and 21.13 respectively). The biomass was successfully used repeatedly for removing Cr3+ after using desorbing agent (0.1 N HCl) for three cycles. CONCLUSION: These results shed the light on the potential use of tannase from locally isolated A. glaucus in the bioremediation of industrial tanneries contained heavy metals and tannin.


Assuntos
Aspergillus , Biodegradação Ambiental , Biomassa , Hidrolases de Éster Carboxílico , Enzimas Imobilizadas , Metais Pesados , Taninos , Taninos/metabolismo , Taninos/química , Aspergillus/enzimologia , Aspergillus/metabolismo , Metais Pesados/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Temperatura , Estabilidade Enzimática
18.
Mar Drugs ; 22(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057430

RESUMO

Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and biological activities of nitrogen heterocycles that are produced by marine-derived Aspergillus species from January 2019 to January 2024, and their relevant biological activities. A total of 306 new nitrogen heterocycles, including seven major categories-indole alkaloids, diketopiperazine alkaloids, quinazoline alkaloids, isoquinoline alkaloids pyrrolidine alkaloids, cyclopeptide alkaloids, and other heterocyclic alkaloids-are presented in this review. Among these nitrogen heterocycles, 52 compounds had novel skeleton structures. Remarkably, 103 compounds showed various biological activities, such as cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities, and 21 compounds showed potent activities. This paper will guide further investigations into the structural diversity and biological activities of nitrogen heterocycles derived from the Aspergillus species and their potential contributions to the future development of new natural drug products in the medicinal and agricultural fields.


Assuntos
Alcaloides , Organismos Aquáticos , Aspergillus , Aspergillus/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Nitrogênio/química , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Humanos , Descoberta de Drogas/métodos , Relação Estrutura-Atividade
19.
Toxins (Basel) ; 16(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39057942

RESUMO

Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.


Assuntos
Aflatoxinas , Aspergillus , Indústria de Laticínios , Fusarium , Moscas Domésticas , Estações do Ano , Zearalenona , Animais , Fusarium/metabolismo , México , Aspergillus/metabolismo , Aspergillus/isolamento & purificação , Aflatoxinas/biossíntese , Moscas Domésticas/microbiologia , Contaminação de Alimentos/análise , Fazendas
20.
Toxins (Basel) ; 16(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057954

RESUMO

Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus , Trichoderma , Compostos Orgânicos Voláteis , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos dos fármacos , Aflatoxinas/biossíntese , Trichoderma/metabolismo , Trichoderma/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico/farmacologia , Antibiose , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...