Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 777
Filtrar
1.
Mycopathologia ; 189(5): 86, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302505

RESUMO

Caspofungin, a lipopeptide, is an antifungal drug that belong to the class of echinocandin. It inhibits fungal cell wall ß-(1,3)-glucan synthase activity and is the second-line of drug for invasive aspergillosis, a fatal infection caused mainly by Aspergillus fumigatus. On the other hand, Enfumafungin is a natural triterpene glycoside also with a ß-(1,3)-glucan synthase inhibitory activity and reported to have antifungal potential. In the present study, we compared the growth as well as modifications in the A. fumigatus cell wall upon treatment with Caspofungin or Enfumafungin, consequentially their immunomodulatory capacity on human dendritic cells. Caspofungin initially inhibited the growth of A. fumigatus, but the effect was lost over time. By contrast, Enfumafungin inhibited this fungal growth for the duration investigated. Both Caspofungin and Enfumafungin caused a decrease in the cell wall ß-(1,3)-glucan content with a compensatory increase in the chitin, and to a minor extent they also affected cell wall galactose content. Treatment with these two antifungals did not result in the exposure of ß-(1,3)-glucan on A. fumigatus mycelial surface. Enzymatic digestion suggested a modification of ß-(1,3)-glucan structure, specifically its branching, upon Enfumafungin treatment. While there was no difference in the immunostimulatory capacity of antifungal treated A. fumigatus conidia, alkali soluble-fractions from Caspofungin treated mycelia weakly stimulated the dendritic cells, possibly due to an increased content of immunosuppressive polysaccharide galactosaminogalactan. Overall, we demonstrate a novel mechanism that Enfumafungin not only inhibits ß-(1,3)-glucan synthase activity, but also causes modifications in the structure of ß-(1,3)-glucan in the A. fumigatus cell wall.


Assuntos
Antifúngicos , Aspergillus fumigatus , Caspofungina , Parede Celular , Células Dendríticas , Equinocandinas , Glucosiltransferases , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Humanos , Parede Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Antifúngicos/farmacologia , Equinocandinas/farmacologia , Caspofungina/farmacologia , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , beta-Glucanas/farmacologia , Lipopeptídeos/farmacologia , Células Cultivadas , Quitina/farmacologia , Glicosídeos , Triterpenos
2.
Viruses ; 16(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39205182

RESUMO

Numerous Aspergillus fumigatus (Af) airborne spores are inhaled daily by humans and animals due to their ubiquitous presence. The interaction between the spores and the respiratory epithelium, as well as its impact on the epithelial barrier function, remains largely unknown. The epithelial barrier protects the respiratory epithelium against viral infections. However, it can be compromised by environmental contaminants such as pollen, thereby increasing susceptibility to respiratory viral infections, including alphaherpesvirus equine herpesvirus type 1 (EHV-1). To determine whether Af spores disrupt the epithelial integrity and enhance susceptibility to viral infections, equine respiratory mucosal ex vivo explants were pretreated with Af spore diffusate, followed by EHV-1 inoculation. Spore proteases were characterized by zymography and identified using mass spectrometry-based proteomics. Proteases of the serine protease, metalloprotease, and aspartic protease groups were identified. Morphological analysis of hematoxylin-eosin (HE)-stained sections of the explants revealed that Af spores induced the desquamation of epithelial cells and a significant increase in intercellular space at high and low concentrations, respectively. The increase in intercellular space in the epithelium caused by Af spore proteases correlated with an increase in EHV-1 infection. Together, our findings demonstrate that Af spore proteases disrupt epithelial integrity, potentially leading to increased viral infection of the respiratory epithelium.


Assuntos
Aspergillus fumigatus , Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Peptídeo Hidrolases , Mucosa Respiratória , Esporos Fúngicos , Animais , Herpesvirus Equídeo 1/fisiologia , Herpesvirus Equídeo 1/patogenicidade , Aspergillus fumigatus/enzimologia , Cavalos , Mucosa Respiratória/virologia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/veterinária , Peptídeo Hidrolases/metabolismo , Doenças dos Cavalos/virologia , Doenças dos Cavalos/microbiologia , Células Epiteliais/virologia , Células Epiteliais/microbiologia
3.
Appl Environ Microbiol ; 90(9): e0113824, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39158312

RESUMO

Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.


Assuntos
Aspergillus fumigatus , Parede Celular , Proteínas Fúngicas , Glucose-6-Fosfato Isomerase , Nitratos , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Via de Pentose Fosfato , Glicólise
4.
Sci Rep ; 14(1): 19661, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179646

RESUMO

Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.


Assuntos
Aspergillus fumigatus , Sistemas CRISPR-Cas , Celulase , Proteínas Fúngicas , Edição de Genes , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Celulase/genética , Celulase/metabolismo , Edição de Genes/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Introdução de Genes , Biofilmes/crescimento & desenvolvimento , Fermentação
5.
Environ Sci Pollut Res Int ; 31(35): 48085-48102, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017871

RESUMO

Biomass pretreatment for the production of second-generation (2G) ethanol and biochemical products is a challenging process. The present study investigated the synergistic efficiency of purified carboxymethyl cellulase (CMCase), ß-glucosidase, and xylanase from Aspergillus fumigatus JCM 10253 in the hydrolysis of alkaline-pretreated sugarcane bagasse (SCB). The saccharification of pretreated SCB was optimised using a combination of CMCase and ß-glucosidase (C + ß; 1:1) and addition of xylanase (C + ß + xyl; 1:1:1). Independent and dependent variables influencing enzymatic hydrolysis were investigated using response surface methodology (RSM). Hydrolysis using purified CMCase and ß-glucosidase achieved yields of 18.72 mg/mL glucose and 6.98 mg/mL xylose. Incorporation of xylanase in saccharification increased the titres of glucose (22.83 mg/mL) and xylose (9.54 mg/mL). Furthermore, characterisation of SCB biomass by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy respectively confirmed efficient structural disintegration and revealed the degree of crystallinity and spectral characteristics. Therefore, depolymerisation of lignin to produce high-value chemicals is essential for sustainable and competitive biorefinery development.


Assuntos
Aspergillus fumigatus , Biomassa , Celulose , Saccharum , Hidrólise , Aspergillus fumigatus/enzimologia , Celulase/metabolismo , Xilose/metabolismo , beta-Glucosidase/metabolismo , Açúcares/metabolismo
6.
Commun Biol ; 7(1): 704, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851817

RESUMO

Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.


Assuntos
Aspergilose , Aspergillus fumigatus , Sirtuínas , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Sirtuínas/genética , Sirtuínas/metabolismo , Virulência , Animais , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Acetilação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Mariposas/microbiologia
7.
Protein Sci ; 33(7): e5071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38895984

RESUMO

Tuberculosis necrotizing toxin (TNT) is a protein domain discovered on the outer membrane of Mycobacterium tuberculosis (Mtb), and the fungal pathogen Aspergillus fumigatus. TNT domains have pure NAD(P) hydrolytic activity, setting them apart from other NAD-cleaving domains such as ADP-ribosyl cyclase and Toll/interleukin-1 receptor homology (TIR) domains which form a wider set of products. Importantly, the Mtb TNT domain has been shown to be involved in immune evasion via depletion of the intracellular NAD pool of macrophages. Therefore, an intriguing hypothesis is that TNT domains act as "NAD killers" in host cells facilitating pathogenesis. Here, we explore the phylogenetic distribution of TNT domains and detect their presence solely in bacteria and fungi. Within fungi, we discerned six TNT clades. In addition, X-ray crystallography and AlphaFold2 modeling unveiled clade-specific strategies to promote homodimer stabilization of the fungal enzymes, namely, Ca2+ binding, disulfide bonds, or hydrogen bonds. We show that dimer stabilization is a requirement for NADase activity and that the group-specific strategies affect the active site conformation, thereby modulating enzyme activity. Together, these findings reveal the evolutionary lineage of fungal TNT enzymes, corroborating the hypothesis of them being pure extracellular NAD (eNAD) cleavers, with possible involvement in microbial warfare and host immune evasion.


Assuntos
Mycobacterium tuberculosis , NAD , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , NAD/metabolismo , Domínios Proteicos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Cristalografia por Raios X , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Evolução Molecular , Modelos Moleculares , Filogenia , NAD+ Nucleosidase/metabolismo , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética
8.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862481

RESUMO

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Assuntos
Antifúngicos , Aspergillus fumigatus , Quinases Dyrk , Proteínas Fúngicas , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Animais , Antifúngicos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Camundongos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Azóis/farmacologia , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Pulmão/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Feminino
9.
mBio ; 15(7): e0118424, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832777

RESUMO

Group III hybrid histidine kinases are fungal-specific proteins and part of the multistep phosphorelay, representing the initial part of the high osmolarity glycerol (HOG) pathway. TcsC, the corresponding kinase in Aspergillus fumigatus, was expected to be a cytosolic protein but is targeted to the nucleus. Activation of TcsC by the antifungal fludioxonil has lethal consequences for the fungus. The agent triggers a fast and TcsC-dependent activation of SakA and later on a redistribution of TcsC to the cytoplasm. High osmolarity also activates TcsC, which then exits the nucleus or concentrates in spot-like, intra-nuclear structures. The sequence corresponding to the N-terminal 208 amino acids of TcsC lacks detectable domains. Its loss renders TcsC cytosolic and non-responsive to hyperosmotic stress, but it has no impact on the antifungal activity of fludioxonil. A point mutation in one of the three putative nuclear localization sequences, which are present in the N-terminus, prevents the nuclear localization of TcsC, but not its ability to respond to hyperosmotic stress. Hence, this striking intracellular localization is no prerequisite for the role of TcsC in the adaptive response to hyperosmotic stress, instead, TcsC proteins that are present in the nuclei seem to modulate the cell wall composition of hyphae, which takes place in the absence of stress. The results of the present study underline that the spatiotemporal dynamics of the individual components of the multistep phosphorelay is a crucial feature of this unique signaling hub. IMPORTANCE: Signaling pathways enable pathogens, such as Aspergillus fumigatus, to respond to a changing environment. The TcsC protein is the major sensor of the high osmolarity glycerol (HOG) pathway of A. fumigatus and it is also the target of certain antifungals. Insights in its function are therefore relevant for the pathogenicity and new therapeutic treatment options. TcsC was expected to be cytoplasmic, but we detected it in the nucleus and showed that it translocates to the cytoplasm upon activation. We have identified the motif that guides TcsC to the nucleus. An exchange of a single amino acid in this motif prevents a nuclear localization, but this nuclear targeting is no prerequisite for the TcsC-mediated stress response. Loss of the N-terminal 208 amino acids prevents the nuclear localization and renders TcsC unable to respond to hyperosmotic stress demonstrating that this part of the protein is of crucial importance.


Assuntos
Aspergillus fumigatus , Núcleo Celular , Dioxóis , Proteínas Fúngicas , Histidina Quinase , Pirróis , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Histidina Quinase/metabolismo , Histidina Quinase/genética , Histidina Quinase/química , Núcleo Celular/metabolismo , Pirróis/farmacologia , Pirróis/metabolismo , Dioxóis/farmacologia , Dioxóis/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Pressão Osmótica , Citoplasma/metabolismo , Transporte Proteico , Regulação Fúngica da Expressão Gênica , Concentração Osmolar , Transdução de Sinais
10.
Org Biomol Chem ; 22(28): 5783-5789, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-38938184

RESUMO

Aspergillus fumigatus is a saprophytic fungus and opportunistic pathogen often causing fatal infections in immunocompromised patients. Recently AfKDNAse, an exoglycosidase hydrolyzing 3-deoxy-D-galacto-D-glycero-nonulosonic acid (KDN), a rare sugar from the sialic acid family, was identified and characterized. The principal function of AfKDNAse is still unclear, but a study suggests a critical role in fungal cell wall morphology and virulence. Potent AfKDNAse inhibitors are required to better probe the enzyme's biological role and as potential antivirulence factors. In this work, we developed a set of AfKDNAse inhibitors based on enzymatically stable thio-KDN motifs. C2, C9-linked heterodi-KDN were designed to fit into unusually close KDN sugar binding pockets in the protein. A polymeric compound with an average of 54 KDN motifs was also designed by click chemistry. Inhibitory assays performed on recombinant AfKDNAse showed a moderate and strong enzymatic inhibition for the two classes of compounds, respectively. The poly-KDN showed more than a nine hundred fold improved inhibitory activity (IC50 = 1.52 ± 0.37 µM, 17-fold in a KDN molar basis) compared to a monovalent KDN reference, and is to our knowledge, the best synthetic inhibitor described for a KDNase. Multivalency appears to be a relevant strategy for the design of potent KDNase inhibitors. Importantly, poly-KDN was shown to strongly decrease filamentation when co-cultured with A. fumigatus at micromolar concentrations, opening interesting perspectives in the development of antivirulence factors.


Assuntos
Aspergillus fumigatus , Glicosídeo Hidrolases , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/efeitos dos fármacos , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Modelos Moleculares , Estrutura Molecular
11.
Angew Chem Int Ed Engl ; 63(34): e202405823, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856634

RESUMO

Invasive fungal disease accounts for about 3.8 million deaths annually, an unacceptable rate that urgently prompts the discovery of new knowledge-driven treatments. We report the use of camelid single-domain nanobodies (Nbs) against fungal ß-1,3-glucanosyltransferases (Gel) involved in ß-1,3-glucan transglycosylation. Crystal structures of two Nbs with Gel4 from Aspergillus fumigatus revealed binding to a dissimilar CBM43 domain and a highly conserved catalytic domain across fungal species, respectively. Anti-Gel4 active site Nb3 showed significant antifungal efficacy in vitro and in vivo prophylactically and therapeutically against different A. fumigatus and Cryptococcus neoformans isolates, reducing the fungal burden and disease severity, thus significantly improving immunocompromised animal survival. Notably, C. deneoformans (serotype D) strains were more susceptible to Nb3 and genetic Gel deletion than C. neoformans (serotype A) strains, indicating a key role for ß-1,3-glucan remodelling in C. deneoformans survival. These findings add new insight about the role of ß-1,3-glucan in fungal biology and demonstrate the potential of nanobodies in targeting fungal enzymes to combat invasive fungal diseases.


Assuntos
Aspergillus fumigatus , Domínio Catalítico , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/enzimologia , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/imunologia , Antifúngicos/química , Antifúngicos/farmacologia , Animais , Camundongos , Glucana Endo-1,3-beta-D-Glucosidase
12.
Nat Commun ; 15(1): 4261, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769341

RESUMO

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Assuntos
Antifúngicos , Aspergilose , Aspergillus , Ergosterol , Proteínas Fúngicas , Metiltransferases , Triazóis , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Antifúngicos/farmacologia , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Ergosterol/metabolismo , Ergosterol/biossíntese , Triazóis/farmacologia , Regulação Fúngica da Expressão Gênica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Feminino , Testes de Sensibilidade Microbiana , Virulência/genética
13.
J Immunol ; 211(5): 804-815, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436030

RESUMO

Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.


Assuntos
Aspergillus fumigatus , Candida albicans , Fosfopiruvato Hidratase , Animais , Humanos , Camundongos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Candida albicans/enzimologia , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Monócitos/metabolismo , Monócitos/microbiologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfopiruvato Hidratase/metabolismo , Linfócitos B/metabolismo , Linfócitos B/microbiologia
14.
J Biol Chem ; 298(6): 102003, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504355

RESUMO

Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 µM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.


Assuntos
Aspergilose , Aspergillus fumigatus , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Glucanos/metabolismo , Humanos , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo
15.
Proteins ; 90(2): 435-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34495558

RESUMO

Aspergillus fumigatus is a saprophytic ubiquitous fungus whose spores can trigger reactions such as allergic bronchopulmonary aspergillosis or the fatal invasive pulmonary aspergillosis. To survive in the lungs, the fungus must adapt to a hypoxic and nutritionally restrictive environment, exploiting the limited availability of aromatic amino acids (AAAs) in the best possible way, as mammals do not synthesize them. A key enzyme for AAAs catabolism in A. fumigatus is AroH, a pyridoxal 5'-phosphate-dependent aromatic aminotransferase. AroH was recently shown to display a broad substrate specificity, accepting L-kynurenine and α-aminoadipate as amino donors besides AAAs. Given its pivotal role in the adaptability of the fungus to nutrient conditions, AroH represents a potential target for the development of innovative therapies against A. fumigatus-related diseases. We have solved the crystal structure of Af-AroH at 2.4 Å resolution and gained new insight into the dynamics of the enzyme's active site, which appears to be crucial for the design of inhibitors. The conformational plasticity of the active site pocket is probably linked to the wide substrate specificity of AroH.


Assuntos
Aspergillus fumigatus/enzimologia , Transaminases/química , Domínio Catalítico , Especificidade por Substrato
16.
mSphere ; 6(6): e0092221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878292

RESUMO

Aspergillus fumigatus isolates display significant heterogeneity in growth, virulence, pathology, and inflammatory potential in multiple murine models of invasive aspergillosis. Previous studies have linked the initial germination of a fungal isolate in the airways to the inflammatory and pathological potential, but the mechanism(s) regulating A. fumigatus germination in the airways is unresolved. To explore the genetic basis for divergent germination phenotypes, we utilized a serial passaging strategy in which we cultured a slow germinating strain (AF293) in a murine-lung-based medium for multiple generations. Through this serial passaging approach, a strain emerged with an increased germination rate that induces more inflammation than the parental strain (herein named LH-EVOL for lung homogenate evolved). We identified a potential loss-of-function allele of Afu5g08390 (sskA) in the LH-EVOL strain. The LH-EVOL strain had a decreased ability to induce the SakA-dependent stress pathway, similar to AF293 ΔsskA and CEA10. In support of the whole-genome variant analyses, sskA, sakA, or mpkC loss-of-function strains in the AF293 parental strain increased germination both in vitro and in vivo. Since the airway surface liquid of the lungs contains low glucose levels, the relationship of low glucose concentration on germination of these mutant AF293 strains was examined; interestingly, in low glucose conditions, the sakA pathway mutants exhibited an enhanced germination rate. In conclusion, A. fumigatus germination in the airways is regulated by SskA through the SakA mitogen-activated protein kinase (MAPK) pathway and drives enhanced disease initiation and inflammation in the lungs. IMPORTANCE Aspergillus fumigatus is an important human fungal pathogen particularly in immunocompromised individuals. Initiation of growth by A. fumigatus in the lung is important for its pathogenicity in murine models. However, our understanding of what regulates fungal germination in the lung environment is lacking. Through a serial passage experiment using lung-based medium, we identified a new strain of A. fumigatus that has increased germination potential and inflammation in the lungs. Using this serially passaged strain, we found it had a decreased ability to mediate signaling through the osmotic stress response pathway. This finding was confirmed using genetic null mutants demonstrating that the osmotic stress response pathway is critical for regulating growth in the murine lungs. Our results contribute to the understanding of A. fumigatus adaptation and growth in the host lung environment.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/metabolismo , Pulmão/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Inflamação , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Pressão Osmótica , Transdução de Sinais , Virulência
17.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946697

RESUMO

Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1-5) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60-200 µM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.


Assuntos
Antifúngicos/química , Aspergillus fumigatus/enzimologia , Quitinases , Inibidores Enzimáticos/química , Proteínas Fúngicas , Simulação de Acoplamento Molecular , Quitinases/antagonistas & inibidores , Quitinases/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/química
18.
J Biol Chem ; 297(6): 101421, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798071

RESUMO

The discovery of oxidative cleavage of recalcitrant polysaccharides by lytic polysaccharide monooxygenases (LPMOs) has affected the study and industrial application of enzymatic biomass processing. Despite being widespread in fungi, LPMOs belonging to the auxiliary activity (AA) family AA11 have been understudied. While these LPMOs are considered chitin active, some family members have little or no activity toward chitin, and the only available crystal structure of an AA11 LPMO lacks features found in bacterial chitin-active AA10 LPMOs. Here, we report structural and functional characteristics of a single-domain AA11 LPMO from Aspergillus fumigatus, AfAA11A. The crystal structure shows a substrate-binding surface with features resembling those of known chitin-active LPMOs. Indeed, despite the absence of a carbohydrate-binding module, AfAA11A has considerable affinity for α-chitin and, more so, ß-chitin. AfAA11A is active toward both these chitin allomorphs and enhances chitin degradation by an endoacting chitinase, in particular for α-chitin. The catalytic activity of AfAA11A on chitin increases when supplying reactions with hydrogen peroxide, showing that, like LPMOs from other families, AfAA11A has peroxygenase activity. These results show that, in stark contrast to the previously characterized AfAA11B from the same organism, AfAA11A likely plays a role in fungal chitin turnover. Thus, members of the hitherto rather enigmatic family of AA11 LPMOs show considerable structural and functional differences and may have multiple roles in fungal physiology.


Assuntos
Aspergillus fumigatus/enzimologia , Quitina/genética , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Cristalografia por Raios X , Domínios Proteicos , Especificidade por Substrato
19.
Pak J Pharm Sci ; 34(4): 1333-1340, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34799305

RESUMO

Extra cellular ß-galactosidase enzyme was purified and characterized from Aspergillus fumigatus PCSIR- 2013. Estimated molecular mass of the enzyme was approximately 95 kDa. by native polyacrylamide gel electrophoresis. Initially, different fermentation parameters were optimized for maximum production of ß-galactosidase. The kinetic study of the partially purified enzyme exhibited that it remained active in broad range of temperature from 25°C to 70°C with an optimum of 60°C. The Km and Vmax were calculated as 9.95mmol/l and 51.78 U/ml/min, respectively. The optimum pH was 5.0, when reaction mixture was incubated for 30 min. The enzyme was very stable in the presence of different metal ions, although Na+ (16%) stimulates the activity at 10mM concentration. In contrast, Ba+2 and Hg+2 have negative effect on enzyme activity and activity decreased to 54% and 19%, respectively. Thermo stability study was revealed that the enzyme retained 72% of its activity at 50°C. Whereas, when enzyme was incubated at 60°C for 120 min, its residual activity was decreased to 42.0%. However, the enzyme was completely inactivated at 80°C after 120 min of pre-incubation. Among different surfactant which incorporated with enzyme, Tween 20 and Triton X-100 both have stimulatory effect and activity increased to 29% and 17%, respectively.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/isolamento & purificação , beta-Galactosidase/isolamento & purificação , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , beta-Galactosidase/metabolismo
20.
Sci Rep ; 11(1): 21055, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702838

RESUMO

Aspergillus fumigatus is a fungal pathogen whose effects can be debilitating and potentially fatal in immunocompromised patients. Current drug treatment options for this infectious disease are limited to just a few choices (e.g. voriconazole and amphotericin B) and these themselves have limitations due to potentially adverse side effects. Furthermore, the likelihood of the development of resistance to these current drugs is ever present. Thus, new treatment options are needed for this infection. A new potential antifungal drug target is acetohydroxyacid synthase (AHAS; EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, and a target for many commercial herbicides. In this study, we have expressed, purified and characterised the catalytic subunit of AHAS from A. fumigatus and determined the inhibition constants for several known herbicides. The most potent of these, penoxsulam and metosulam, have Ki values of 1.8 ± 0.9 nM and 1.4 ± 0.2 nM, respectively. Molecular modelling shows that these compounds are likely to bind into the herbicide binding pocket in a mode similar to Candida albicans AHAS. We have also shown that these two compounds inhibit A. fumigatus growth at a concentration of 25 µg/mL. Thus, AHAS inhibitors are promising leads for the development of new anti-aspergillosis therapeutics.


Assuntos
Acetolactato Sintase , Antifúngicos/química , Aspergillus fumigatus/enzimologia , Proteínas Fúngicas , Herbicidas/química , Pirimidinas/química , Sulfonamidas/química , Triazóis/química , Uridina/análogos & derivados , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/química , Candida albicans/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Uridina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...