Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.200
Filtrar
1.
Food Microbiol ; 122: 104545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839231

RESUMO

Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.


Assuntos
Aspergillus niger , Temperatura Alta , Aspergillus niger/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Dióxido de Carbono/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Alicyclobacillus/crescimento & desenvolvimento , Alicyclobacillus/fisiologia , Bebidas Gaseificadas/microbiologia , Byssochlamys/crescimento & desenvolvimento , Microbiologia de Alimentos , Zygosaccharomyces/crescimento & desenvolvimento , Zygosaccharomyces/fisiologia , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Meios de Cultura/química , Meios de Cultura/metabolismo
2.
BMC Genom Data ; 25(1): 40, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724915

RESUMO

Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.


Assuntos
Fusarium , Doenças das Plantas , Tulipa , Doenças das Plantas/microbiologia , Fusarium/patogenicidade , Tulipa/microbiologia , Botrytis/patogenicidade , Penicillium chrysogenum/patogenicidade , Aspergillus niger/patogenicidade , Virulência , Raízes de Plantas/microbiologia
3.
Biotechnol J ; 19(5): e2400014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719614

RESUMO

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Assuntos
Aspergillus niger , Fermentação , Malatos , Engenharia Metabólica , NADP , Aspergillus niger/metabolismo , Aspergillus niger/genética , Malatos/metabolismo , Engenharia Metabólica/métodos , NADP/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
4.
PLoS One ; 19(5): e0298716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748703

RESUMO

The purpose of current research work was to investigate the effect of mutagenesis on endoglucanase B activity of indigenous strain of Aspergillus niger and its heterologous expression studies in the pET28a+ vector. The physical and chemical mutagens were employed to incorporate mutations in A. niger. For determination of mutations, mRNA was isolated followed by cDNA synthesis and cellulase gene was amplified, purified and sequenced both from native and mutant A. niger. On comparison of gene sequences, it was observed that 5 nucleotide base pairs have been replaced in the mutant cellulase. The mutant recombinant enzyme showed 4.5 times higher activity (428.5 µmol/mL/min) as compared to activity of native enzyme (94 µmol/mL/min). The mutant gene was further investigated using Phyre2 and I-Tesser tools which exhibited 71% structural homology with Endoglucanase B of Thermoascus aurantiacus. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg) and hydrogen bonds analysis were carried at 35°C and 50°C to explore the integrity of structure of recombinant mutant endoglucanase B which corresponded to its optimal temperature. Hydrogen bonds analysis showed more stability of recombinant mutant endoglucanase B as compared to native enzyme. Both native and mutant endoglucanase B genes were expressed in pET 28a+ and purified with nickel affinity chromatography. Theoretical masses determined through ExPaSy Protparam were found 38.7 and 38.5 kDa for native and mutant enzymes, respectively. The optimal pH and temperature values for the mutant were 5.0 and 50°C while for native these were found 4.0 and 35°C, respectively. On reacting with carboxy methyl cellulose (CMC) as substrate, the mutant enzyme exhibited less Km (0.452 mg/mL) and more Vmax (50.25 µmol/ml/min) as compared to native having 0.534 mg/mL as Km and 38.76 µmol/ml/min as Vmax. Among metal ions, Mg2+ showed maximum inducing effect (200%) on cellulase activity at 50 mM concentration followed by Ca2+ (140%) at 100 mM concentration. Hence, expression of a recombinant mutant cellulase from A. niger significantly enhanced its cellulytic potential which could be employed for further industrial applications at pilot scale.


Assuntos
Aspergillus niger , Celulase , Aspergillus niger/enzimologia , Aspergillus niger/genética , Celulase/genética , Celulase/metabolismo , Celulase/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Mutação , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Temperatura , Concentração de Íons de Hidrogênio
5.
PLoS One ; 19(5): e0302185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805421

RESUMO

In this investigation, we explore the harnessing of bamboo shoot residues (BSR) as a viable source for ruminant feed through fungal treatment, with the overarching objective of elevating feed quality and optimizing bamboo shoot utilization. The white-rot fungi (Wr.fungi), Aspergillus niger (A.niger), and its co-cultures (A.niger&Wr.fungi) were employed to ferment BSR. And the impact of different fermentation methods and culture time on the chemical composition (Crude protein Ash, neutral detergent fibre and acid detergent fibers), enzyme activity (Cellulase, Laccase, Filter paperase and Lignin peroxidase activities), and rumen digestibility in vitro were assessed. The findings reveal a nota ble 30.39% increase in crude protein in fermented BSR, accompanied by respective decreases of 13.02% and 17.31% in acid detergent fiber and neutral detergent fibre content. Enzyme activities experienced augmentation post-fermentation with A.niger&Wr.fungi. Specifically, the peak Cellulase, Laccase, and Lignin peroxidase activities for BSR with Wr.fungi treatment reached 748.4 U/g, 156.92 U/g, and 291.61 U/g, respectively, on the sixth day of fermentation. Concurrently, NH3-N concentration exhibited an upward trend with prolonged fermentation time. Total volatile fatty acids registered a decline, and the Acetate/Propionate ratio reached its nadir after 6 days of fermentation under the A.niger&Wr.fungi treatment. These outcomes furnish a theoretical foundation for the development of ruminant feeds treated via fungal co-culture.


Assuntos
Ração Animal , Fermentação , Ruminantes , Animais , Ração Animal/análise , Aspergillus niger/metabolismo , Brotos de Planta/química , Rúmen/microbiologia , Fungos/metabolismo
6.
World J Microbiol Biotechnol ; 40(7): 223, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819502

RESUMO

The ß-fructofuranosidase enzyme from Aspergillus niger has been extensively used to commercially produce fructooligosaccharides from sucrose. In this study, the native and an engineered version of the ß-fructofuranosidase enzyme were expressed in Pichia pastoris under control of the glyceraldehyde-3-phosphate dehydrogenase promoter, and production was evaluated in bioreactors using either dissolved oxygen (DO-stat) or constant feed fed-batch feeding strategies. The DO-stat cultivations produced lower biomass concentrations but this resulted in higher volumetric activity for both strains. The native enzyme produced the highest volumetric enzyme activity for both feeding strategies (20.8% and 13.5% higher than that achieved by the engineered enzyme, for DO-stat and constant feed, respectively). However, the constant feed cultivations produced higher biomass concentrations and higher volumetric productivity for both the native as well as engineered enzymes due to shorter process time requirements (59 h for constant feed and 155 h for DO-stat feed). Despite the DO-stat feeding strategy achieving a higher maximum enzyme activity, the constant feed strategy would be preferred for production of the ß-fructofuranosidase enzyme using glycerol due to the many industrial advantages related to its enhanced volumetric enzyme productivity.


Assuntos
Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos , Glicerol , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Reatores Biológicos/microbiologia , Glicerol/metabolismo , Fermentação , Aspergillus niger/genética , Aspergillus niger/enzimologia , Saccharomycetales/genética , Saccharomycetales/enzimologia , Oxigênio/metabolismo , Regiões Promotoras Genéticas , Meios de Cultura/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oligossacarídeos
7.
Arch Microbiol ; 206(6): 273, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772954

RESUMO

Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.


Assuntos
Aspergillus niger , Campos Magnéticos , Peptídeo Hidrolases , Aspergillus niger/enzimologia , Aspergillus niger/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biomassa , Micélio/enzimologia , Micélio/crescimento & desenvolvimento , Micélio/genética
8.
Nat Commun ; 15(1): 4486, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802389

RESUMO

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Assuntos
Adaptação Fisiológica , Aspergillus niger , Bacillus subtilis , Lipopeptídeos , Bacillus subtilis/fisiologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Aspergillus niger/fisiologia , Aspergillus niger/crescimento & desenvolvimento , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Interações Microbianas/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cocultura , Mutação , Parede Celular/metabolismo
9.
Sci Total Environ ; 933: 173171, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38740208

RESUMO

Phosphogypsum (PG) is the produced solid waste during phosphorus (P) extraction from phosphate rocks. PG is featured by its abundant PO43- and SO42-. This study investigated the utilization of PG as a material for lead (Pb) remediation, with the assistance of functional fungus. Aspergillus niger (A. niger) is a typical phosphate-solubilizing fungi (PSF), which has high ability to secret organic acids. Oxalic acid is its major secreted organic acid, which is often applied to enhance the P release from phosphate minerals. In this study, synthetic oxalic acid increased the immobilization rate of Pb2+ up to >99 % with the addition of PG. Then, it was observed that biogenic oxalic acid from A. niger can achieve comparable remediation effects. This was due to that PG could provide sufficient P for fungal growth, which allowed sustainable remediation. Subsequently, oxalic acid secreted by A. niger significantly increased the release of active P from PG, and then induced the formation of PPb minerals. In addition, other metabolites of A. niger (such as tyrosine-like substance) can also be complexed with Pb2+. Simultaneously, A. niger did not induce evidently elevation water-soluble fluorine (F) as PG contained abundant Ca2+. Moreover, this study elucidated that oversupply of PG promoted the formation of anglesite (Ksp = 1.6 × 10-8, relatively unstable), whereas the formation of lead oxalate (Ksp = 4.8 × 10-10, relatively stable) was reduced. This study hence shed a bright light on the sustainable utilization of PG for fungus-assisted remediation of heavy metals.


Assuntos
Aspergillus niger , Biodegradação Ambiental , Sulfato de Cálcio , Chumbo , Fosfatos , Fósforo , Poluentes do Solo , Chumbo/metabolismo , Fósforo/metabolismo , Aspergillus niger/metabolismo , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Recuperação e Remediação Ambiental/métodos
10.
Sci Rep ; 14(1): 11537, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773211

RESUMO

The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO2 atmosphere, and 2 h of daily UV irradiation). We evaluated colony-forming units (CFU) and water content at three different regolith depths before and after exposure periods of 3 and 7 days, respectively. Each organism was tested under three conditions: one without the addition of salts to the regolith, one containing sodium chlorate, and one with sodium perchlorate. Our results reveal that the residual water content after the exposure experiments increased with regolith depth, along with the organism survival rates in chlorate-containing and salt-free samples. The survival rates of the three organisms in perchlorate-containing regolith were consistently lower for all organisms and depths compared to chlorate, with the most significant difference being observed at a depth of 10-12 cm, which corresponds to the depth with the highest residual water content. The postulated reason for this is an increase in the salt concentration at this depth due to the freezing of water, showing that for these organisms, perchlorate brines are more toxic than chlorate brines under the experimental conditions. This underscores the significance of chlorate salts when considering the habitability of Martian environments.


Assuntos
Cloratos , Meio Ambiente Extraterreno , Marte , Percloratos , Percloratos/metabolismo , Cloratos/metabolismo , Aspergillus niger/metabolismo , Saccharomycetales/metabolismo , Água/química , Viabilidade Microbiana
11.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738910

RESUMO

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Assuntos
Aspergillus niger , Sucos de Frutas e Vegetais , Proteínas Fúngicas , Polissacarídeo-Liases , Aspergillus niger/enzimologia , Aspergillus niger/genética , Sucos de Frutas e Vegetais/análise , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Manipulação de Alimentos , Ácidos/química , Ácidos/metabolismo , Ácidos/farmacologia , Citrus sinensis/química , Pectinas/química , Pectinas/metabolismo , Estabilidade Enzimática
12.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710898

RESUMO

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Assuntos
Antifúngicos , Aspergillus niger , Candida albicans , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Imidazóis , Nanofibras , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Antifúngicos/química , Nanofibras/química , Candida albicans/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Imidazóis/química , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana/métodos , Portadores de Fármacos/química , Estabilidade de Medicamentos
13.
Food Res Int ; 184: 114273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609250

RESUMO

Soy sauce is a traditional fermented food produced from soybean and wheat under the action of microorganisms. The soy sauce brewing process mainly involves two steps, namely koji fermentation and moromi fermentation. In the koji fermentation process, enzymes from starter molds, such as protease, aminopeptidase, carboxypeptidase, l-glutaminase, amylase, and cellulase, hydrolyze the protein and starch in the raw ingredients to produce short-chain substances. However, the enzymatic reactions may be diminished after being subjected to moromi fermentation due to its high NaCl concentration. These enzymatically hydrolyzed products are further metabolized by lactic acid bacteria and yeasts during the moromi fermentation process into organic acids and aromatic compounds, giving soy sauce a unique flavor. Thus, the starter molds, such as Aspergillus oryzae, Aspergillus sojae, and Aspergillus niger, and their secreted enzymes play crucial roles in soy sauce brewing. This review comprehensively covers the characteristics of the starter molds mainly used in soy sauce brewing, the enzymes produced by starter molds, and the roles of enzymes in the degradation of raw material. We also enumerate current problems in the production of soy sauce, aiming to offer some directions for the improvement of soy sauce taste.


Assuntos
Alimentos de Soja , Fermentação , Peptídeo Hidrolases , Aspergillus niger , Catálise
14.
Appl Microbiol Biotechnol ; 108(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639796

RESUMO

Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-ß-1,4-xylanase F1 gene (xynF1) and the endo-ß-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-ß-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New ß-1,4-xylanase and LPMO derived from AS events were characterized.


Assuntos
Processamento Alternativo , Aspergillus niger , Aspergillus niger/metabolismo , Lignina/metabolismo
15.
Food Microbiol ; 121: 104523, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637085

RESUMO

This study investigated the fungicidal efficiency and mechanism of action of dielectric barrier discharge cold atmosphere plasma (DBD-CAP) in inactivating Aspergillus niger (A. niger) spores. The disinfection efficacy and quality of dried jujube used as the processing application object were also studied. The results indicated that the Weibull + Tail model performed better for spore inactivation curves at different voltages among various treatment times, and the spore cells were reduced by 4.05 log (cfu/mL) in spores suspension at 70 kV after 15 min of treatment. This disinfection impact was further supported by scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, which showed that the integrity of the cell membrane was damaged, and the intracellular content leaked out after DBD-CAP treatment. Elevated levels of reactive oxygen species (ROS) during the treatment increased the relative conductivity of cells, and leakage of nucleic acids and proteins further supported the disinfection impact. Additionally, the growth and toxicity of surviving A. niger spores after treatment were also greatly reduced. When DBD-CAP was applied to disinfecting dried jujube, the spore number exhibited a 2.67 log cfu/g reduction after treatment without significant damage observed onto the quality (P > 0.05).


Assuntos
Aspergillus , Gases em Plasma , Ziziphus , Aspergillus niger , Gases em Plasma/farmacologia , Desinfecção/métodos
16.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675509

RESUMO

This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released from RPDF through SSF was 17.22 mg GAE/g DW, which was significantly higher than that achieved through alkaline hydrolysis extraction (5.33 mg GAE/g DW). The BPs released through SSF exhibited superior antioxidant and α-glucosidase inhibitory activities compared to that released through alkaline hydrolysis. Chemical composition analysis revealed that SSF released several main compounds, including ellagic acid, epigallocatechin, p-hydroxybenzoic acid, quercetin, and 3,4-dihydroxyphenylpropionic acid. Mechanism analysis indicated that the disruption of tight structure, chemical bonds, and hemicellulose was crucial for the release of BPs from RPDF. This study provides valuable information on the potential application of SSF for the efficient release of BPs from RPDF, contributing to the utilization of RPDF as a functional food ingredient.


Assuntos
Antioxidantes , Aspergillus niger , Fibras na Dieta , Fermentação , Frutas , Compostos Fitoquímicos , Polifenóis , Rosa , Aspergillus niger/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Fibras na Dieta/metabolismo , Rosa/química , Frutas/química , Compostos Fitoquímicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
17.
Int J Food Microbiol ; 417: 110710, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38643598

RESUMO

Postharvest loss caused by a range of pathogens necessitates exploring novel antifungal compounds that are safe and efficient in managing the pathogens. This study evaluated the antifungal activity of ethyl ferulate (EF) and explored its mechanisms of action against Alternaria alternata, Aspergillus niger, Botrytis cinerea, Penicillium expansum, Penicillium digitatum, Geotrichum candidum and evaluated its potential to inhibit postharvest decay. The results demonstrated that EF exerts potent antifungal activity against a wide board of postharvest pathogens. Results also revealed that its antifungal mechanism is multifaceted: EF may be involved in binding to and disturbing the integrity of the fungal plasma membrane, causing leakage of intracellular content and losing normal morphology and ultrastructure. EF also induced oxidative stress in the pathogen, causing membrane lipid peroxidation and malondialdehyde accumulation. EF inhibited the critical gene expression of the pathogen, affecting its metabolic regulation, antioxidant metabolism, and cell wall degrading enzymes. EF exhibited antifungal inhibitory activity when applied directly into peel wounds or after incorporation with chitosan coating. Due to its wide board and efficient antifungal activity, EF has the potential to provide a promising alternative to manage postharvest decay.


Assuntos
Antifúngicos , Botrytis , Ácidos Cafeicos , Penicillium , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Alternaria/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Conservação de Alimentos/métodos , Geotrichum/efeitos dos fármacos , Fungos/efeitos dos fármacos , Microbiologia de Alimentos , Frutas/microbiologia , Estresse Oxidativo/efeitos dos fármacos
18.
Int J Food Microbiol ; 417: 110685, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579546

RESUMO

Cinnamaldehyde displays strong antifungal activity against fungi such as Aspergillus niger, but its precise molecular mechanisms of antifungal action remain inadequately understood. In this investigation, we applied chemoproteomics and bioinformatic analysis to unveil the target proteins of cinnamaldehyde in Aspergillus niger cells. Additionally, our study encompassed the examination of cinnamaldehyde's effects on cell membranes, mitochondrial malate dehydrogenase activity, and intracellular ATP levels in Aspergillus niger cells. Our findings suggest that malate dehydrogenase could potentially serve as an inhibitory target of cinnamaldehyde in Aspergillus niger cells. By disrupting the activity of malate dehydrogenase, cinnamaldehyde interferes with the mitochondrial tricarboxylic acid (TCA) cycle, leading to a significant decrease in intracellular ATP levels. Following treatment with cinnamaldehyde at a concentration of 1 MIC, the inhibition rate of MDH activity was 74.90 %, accompanied by an 84.5 % decrease in intracellular ATP content. Furthermore, cinnamaldehyde disrupts cell membrane integrity, resulting in the release of cellular contents and subsequent cell demise. This study endeavors to unveil the molecular-level antifungal mechanism of cinnamaldehyde via a chemoproteomics approach, thereby offering valuable insights for further development and utilization of cinnamaldehyde in preventing and mitigating food spoilage.


Assuntos
Acroleína , Acroleína/análogos & derivados , Antifúngicos , Aspergillus niger , Proteínas Fúngicas , Malato Desidrogenase , Acroleína/farmacologia , Aspergillus niger/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacologia , Trifosfato de Adenosina/metabolismo , Proteômica , Testes de Sensibilidade Microbiana , Ciclo do Ácido Cítrico/efeitos dos fármacos
20.
Fungal Biol ; 128(2): 1705-1713, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575244

RESUMO

The effects of acoustic waves on growth inhibition of food spoilage fungi (Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus and Botrytis cinerea) on the medium and strawberry surfaces were investigated. Firstly, single-frequency sound waves (250, 500, 1000, 2000, 4000, 8000, 12,000 and 16,000 Hz) were induced on inoculated medium with fungi spores for 24 h and growth diameter of each mold was evaluated during the incubation period. In the second stage, the sound waves with two frequencies of 250 Hz and 16,000 Hz were induced on inoculated strawberries with fungi spores at 5 °C for different times (2, 4, 6, 8 and 10 days). The results from the first stage indicated that the sound waves inhibited the growth of A. niger (20.02%) at 250 Hz and B. cinerea (4/64%) at 4000 Hz on potato dextrose agar (PDA) surface. Also, comparison of the growth diameter of some species of Aspergillus revealed various responses in presence of 250 Hz frequency. In the second stage, applying a frequency of 250 Hz over a period of 10 days proved to be more effective in inhibiting the growth of A. niger and B. cinerea on strawberries inoculated with fungal spores. Consequently, the shelf lives of the strawberries significantly increased to 26 days and 18 days, respectively, under this treatment. Based on the findings, it is concluded that sounding with acoustic waves can be used as a green and cheap technology along with other technologies to improve food safety.


Assuntos
Fragaria , Fragaria/microbiologia , Frutas/microbiologia , Esporos Fúngicos , Aspergillus niger , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA