Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.652
Filtrar
1.
Medicine (Baltimore) ; 103(28): e38983, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996095

RESUMO

RATIONALE: Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a rare autoimmune disease of the central nervous system that affects the meninges, brain, spinal cord, and optic nerves. GFAP astrocytopathy can coexist with a variety of antibodies, which is known as overlap syndrome. Anti-NMDAR-positive encephalitis overlap syndrome has been reported; however, encephalitis overlap syndrome with both anti-NMDAR and sulfatide-IgG positivity has not been reported. PATIENT CONCERNS: The patient was a 50-year-old male who was drowsy and had chills and weak limbs for 6 months. His symptoms worsened after admission to our hospital with persistent high fever, dysphoria, gibberish, and disturbance of consciousness. Positive cerebrospinal fluid NMDA, GFAP antibodies, and serum sulfatide antibody IgG were positive. DIAGNOSES: Autoimmune GFAP astrocytopathy with anti-NMDAR and sulfatide-IgG-positive encephalitis overlap syndrome. INTERVENTIONS: In addition to ventilator support and symptomatic supportive treatment, step-down therapy with methylprednisolone (1000 mg/d, halved every 3 days) and pulse therapy with human immunoglobulin (0.4 g/(kg d) for 5 days) were used. OUTCOMES: After 6 days of treatment, the patient condition did not improve, and the family signed up to give up the treatment and left the hospital. CONCLUSIONS: Patients with autoimmune GFAP astrocytopathy may be positive for anti-NMDAR and sulfatide-IgG, and immunotherapy may be effective in patients with severe conditions. LESSONS: Autoimmune GFAP astrocytopathy with nonspecific symptoms is rarely reported and is easy to be missed and misdiagnosed. GFAP astrocytopathy should be considered in patients with fever, headache, disturbance of consciousness, convulsions, and central infections that do not respond to antibacterial and viral agents. Autoimmune encephalopathy-related antibody testing should be performed as soon as possible, early diagnosis should be confirmed, and immunomodulatory therapy should be administered promptly.


Assuntos
Proteína Glial Fibrilar Ácida , Sulfoglicoesfingolipídeos , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Glial Fibrilar Ácida/imunologia , Proteína Glial Fibrilar Ácida/sangue , Sulfoglicoesfingolipídeos/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/líquido cefalorraquidiano , Autoanticorpos/sangue , Metilprednisolona/uso terapêutico , Encefalite/diagnóstico , Encefalite/imunologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encefalite Antirreceptor de N-Metil-D-Aspartato/imunologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Astrócitos/imunologia , Astrócitos/patologia , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/imunologia
2.
Front Immunol ; 15: 1402349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938572

RESUMO

Objective: Immunoregulation is a complex and critical process in the pathological process of spinal cord injury (SCI), which is regulated by various factors and plays an important role in the functional repair of SCI. This study aimed to explore the research hotspots and trends of glial cell immunoregulation after SCI from a bibliometric perspective. Methods: Data on publications related to glial cell immunoregulation after SCI, published from 2004 to 2023, were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, and keywords in the topic were quantitatively analyzed using the R package "bibliometrix", VOSviewer, Citespace, and the Bibliometrics Online Analysis Platform. Results: A total of 613 papers were included, with an average annual growth rate of 9.39%. The papers came from 36 countries, with the United States having the highest output, initiating collaborations with 27 countries. Nantong University was the most influential institution. We identified 3,177 authors, of whom Schwartz, m, of the Weizmann Institute of Science, was ranked first regarding both field-specific H-index (18) and average number of citations per document (151.44). Glia ranked first among journals with 2,574 total citations. The keywords "microglia," "activation," "macrophages," "astrocytes," and "neuroinflammation" represented recent hot topics and are expected to remain a focus of future research. Conclusion: These findings strongly suggest that the immunomodulatory effects of microglia, astrocytes, and glial cell interactions may be critical in promoting nerve regeneration and repair after SCI. Research on the immunoregulation of glial cells after SCI is emerging, and there should be greater cooperation and communication between countries and institutions to promote the development of this field and benefit more SCI patients.


Assuntos
Bibliometria , Neuroglia , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/imunologia , Humanos , Neuroglia/imunologia , Animais , Astrócitos/imunologia
3.
J Neuroinflammation ; 21(1): 161, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915059

RESUMO

BACKGROUND: Pediatric acute transverse myelitis (ATM) accounts for 20-30% of children presenting with a first acquired demyelinating syndrome (ADS) and may be the first clinical presentation of a relapsing ADS such as multiple sclerosis (MS). B cells have been strongly implicated in the pathogenesis of adult MS. However, little is known about B cells in pediatric MS, and even less so in pediatric ATM. Our lab previously showed that plasmablasts (PB), the earliest B cell subtype producing antibody, are expanded in adult ATM, and that these PBs produce self-reactive antibodies that target neurons. The goal of this study was to examine PB frequency and phenotype, immunoglobulin selection, and B cell receptor reactivity in pediatric patients presenting with ATM to gain insight to B cell involvement in disease. METHODS: We compared the PB frequency and phenotype of 5 pediatric ATM patients and 10 pediatric healthy controls (HC) and compared them to previously reported adult ATM patients using cytometric data. We purified bulk IgG from the plasma samples and cloned 20 recombinant human antibodies (rhAbs) from individual PBs isolated from the blood. Plasma-derived IgG and rhAb autoreactivity was measured by mean fluorescence intensity (MFI) in neurons and astrocytes of murine brain or spinal cord and primary human astrocytes. We determined the potential impact of these rhAbs on astrocyte health by measuring stress and apoptotic response. RESULTS: We found that pediatric ATM patients had a reduced frequency of peripheral blood PB. Serum IgG autoreactivity to neurons in EAE spinal cord was similar in the pediatric ATM patients and HC. However, serum IgG autoreactivity to astrocytes in EAE spinal cord was reduced in pediatric ATM patients compared to pediatric HC. Astrocyte-binding strength of rhAbs cloned from PBs was dependent on somatic hypermutation accumulation in the pediatric ATM cohort, but not HC. A similar observation in predilection for astrocyte binding over neuron binding of individual antibodies cloned from PBs was made in EAE brain tissue. Finally, exposure of human primary astrocytes to these astrocyte-binding antibodies increased astrocytic stress but did not lead to apoptosis. CONCLUSIONS: Discordance in humoral immune responses to astrocytes may distinguish pediatric ATM from HC.


Assuntos
Astrócitos , Mielite Transversa , Humanos , Mielite Transversa/imunologia , Animais , Feminino , Astrócitos/metabolismo , Astrócitos/imunologia , Criança , Camundongos , Masculino , Adolescente , Plasmócitos/imunologia , Plasmócitos/metabolismo , Autoanticorpos/imunologia , Autoanticorpos/sangue , Camundongos Endogâmicos C57BL , Células Cultivadas , Pré-Escolar , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Medula Espinal/metabolismo , Medula Espinal/imunologia , Medula Espinal/patologia
4.
J Integr Neurosci ; 23(6): 119, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38940087

RESUMO

OBJECTIVES: The majority of neuromyelitis optica spectrum disorders (NMOSD) patients are seropositive for aquaporin-4 (AQP4)-specific antibodies [also named neuromyelitis optica immunoglobulin G antibodies (NMO-IgG)]. Although NMO-IgG can induce pathological changes in the central nervous system (CNS), the immunological changes in the CNS and peripheral tissue remain largely unknown. We investigated whether NMO-IgG binds to tissue expressing AQP4 and induces immunological changes in the peripheral tissue and CNS. METHODS: C57BL/6 female mice were assigned into an NMOSD or control group. Pathological and immunological changes in peripheral tissue and CNS were measured by immunostaining and flow cytometry, respectively. Motor impairment was measured by open-field test. RESULTS: We found that NMO-IgG did bind to astrocyte- and AQP4-expressing peripheral tissue, but induced glial fibrillary acidic protein and AQP4 loss only in the CNS. NMO-IgG induced the activation of microglia and modulated microglia polarization toward the classical (M1) phenotype, but did not affect innate or adaptive immune cells in the peripheral immune system, such as macrophages, neutrophils, Th17/Th1, or IL-10-producing B cells. In addition, NMOSD mice showed significantly less total distance traveled and higher immobility time in the open field. CONCLUSIONS: We found that injection of human NMO-IgG led to astrocytopathic lesions with microglial activation in the CNS. However, there were no significant pathological or immunological changes in the peripheral tissues.


Assuntos
Aquaporina 4 , Imunoglobulina G , Camundongos Endogâmicos C57BL , Neuromielite Óptica , Animais , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Aquaporina 4/imunologia , Feminino , Humanos , Camundongos , Modelos Animais de Doenças , Microglia/metabolismo , Microglia/imunologia , Microglia/efeitos dos fármacos , Autoanticorpos/imunologia , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia
5.
Methods Mol Biol ; 2807: 271-283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743235

RESUMO

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Assuntos
Astrócitos , Barreira Hematoencefálica , Células Endoteliais , Infecções por HIV , HIV-1 , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/metabolismo , Humanos , Astrócitos/virologia , Astrócitos/metabolismo , Astrócitos/imunologia , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , HIV-1/imunologia , HIV-1/fisiologia , Infecções por HIV/virologia , Infecções por HIV/imunologia , Pericitos/virologia , Pericitos/metabolismo , Pericitos/imunologia , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/imunologia , Técnicas de Cocultura/métodos , Células Cultivadas , Encéfalo/virologia , Encéfalo/imunologia , Encéfalo/metabolismo
6.
Immunity ; 57(5): 938-940, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749396

RESUMO

Astrocytes respond to all forms of central nervous system maladies. In a recent issue of Nature, Lee et al. demonstrate that astrocytes encode inflammatory stimuli as epigenetic memory, which strengthens responses to subsequent stimuli and exacerbates pathology in disease models.


Assuntos
Astrócitos , Inflamação , Astrócitos/imunologia , Inflamação/imunologia , Humanos , Animais , Epigênese Genética
7.
BMJ Case Rep ; 17(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724215

RESUMO

Autoimmune encephalitis due to glial fibrillar acidic protein (GFAP) astrocytopathy is a rare cause of subacute neuropsychiatric changes. In this case, a young patient presented with a viral prodrome and meningismus, followed by progressive encephalopathy and movement disorders over the span of 2 weeks. Due to his clinical trajectory, inflammatory cerebrospinal fluid (CSF) analysis, initial normal brain imaging and negative serum autoimmune encephalopathy panel, his initial diagnosis was presumed viral meningoencephalitis. The recurrence and progression of neuropsychiatric symptoms and myoclonus despite antiviral treatment prompted further investigation, inclusive of testing for CSF autoimmune encephalopathy autoantibodies, yielding a clinically meaningful, positive GFAP autoantibody. This case highlights the importance of appropriately testing both serum and CSF autoantibodies when an autoimmune encephalitic process is considered. Through this case, we review the clinical and radiographic manifestations of GFAP astrocytopathy, alongside notable pearls pertaining to this autoantibody syndrome and its management.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Proteína Glial Fibrilar Ácida , Adulto , Humanos , Masculino , Astrócitos/patologia , Astrócitos/imunologia , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/imunologia , Diagnóstico Diferencial , Encefalite/diagnóstico , Encefalite/imunologia , Proteína Glial Fibrilar Ácida/sangue , Proteína Glial Fibrilar Ácida/imunologia , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Doença de Hashimoto/diagnóstico , Doença de Hashimoto/sangue , Imageamento por Ressonância Magnética
8.
Front Immunol ; 15: 1361685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665914

RESUMO

A 54-year-old Japanese man presented with headache and fever the day after SARS-CoV-2 vaccination. He became deeply unconscious within a week. Brain MRI showed periventricular linear enhancements and a few spotty lesions in the cerebral white matter. Cerebrospinal fluid (CSF) testing showed mild pleocytosis. He was treated with intravenous methylprednisolone and plasma exchange. However, the white matter lesions enlarged to involve the brainstem and cerebellum, and long cord spinal lesions appeared. Anti-glial fibrillary acidic protein (GFAP) antibody was positive in the CSF and serum, and he was therefore diagnosed as autoimmune GFAP-astrocytopathy (GFAP-A). In addition, high-dose immunoglobulin therapy was administered twice, but his symptoms did not improve; the white matter lesions enlarged further, and modified Rankin Scale score increased to 5. A brain biopsy specimen showed infiltration of macrophages and CD4 + lymphocytes together with neuron and oligodendrocytic injuries and glial scar. Although GFAP-A generally responds well to steroids, the present case developed GFAP-A following SARS-CoV-2 vaccination, with refractory to intensive immunosuppressive therapy and atypical pathologic findings of infiltration of CD4 + lymphocytes and demyelination.


Assuntos
COVID-19 , Proteína Glial Fibrilar Ácida , SARS-CoV-2 , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Glial Fibrilar Ácida/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Astrócitos/imunologia , Astrócitos/patologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Vacinação/efeitos adversos , Encéfalo/patologia , Encéfalo/diagnóstico por imagem
9.
Trends Immunol ; 45(5): 320-321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632002

RESUMO

Astrocytes are essential cells of the mammalian central nervous system (CNS), with key roles in development, homeostasis, and disease. Lee and colleagues recently showed that astrocytes can develop epigenetic memory, which enhances proinflammatory responses to subsequent stimulation, potentially driving sustained neurological disease pathology, such as in multiple sclerosis (MS).


Assuntos
Astrócitos , Doenças Neuroinflamatórias , Astrócitos/imunologia , Humanos , Animais , Doenças Neuroinflamatórias/imunologia , Esclerose Múltipla/imunologia , Epigênese Genética , Sistema Nervoso Central/imunologia , Inflamação/imunologia , Doença Crônica
10.
Mult Scler Relat Disord ; 85: 105527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432014

RESUMO

OBJECTIVE: The differential diagnosis between autoimmune glial fibrillary acidic protein astrocytopathy (AGFAPA) mimicking tuberculous meningitis and tuberculous meningitis (TBM) remains challenging in clinical practice. This study aims to identify the clinical, laboratory parameters, and clinical score systems that may be helpful in differentiating AGFAPA from TBM. METHOD: Overall 22 AGFAPA patients who were initially misdiagnosed as TBM (AGFAPA-TBM) and 30 confirmed TBM patients were included. The clinical, laboratory, imaging parameters, Thwaites systems, and Lancet consensus scoring systems (LCSS) of all patients were reviewed. Logistic regression was employed to establish a diagnostic formula to differentiate AGFAPA-TBM from TBM. The receiver operating characteristic (ROC) curve was applied to determine the best diagnostic critical point of the formula. RESULTS: Urinary retention was more frequent in AGFAPA-TBM patients (72.7% vs 33.3%, p = 0.012). A significantly lower ratio of T-SPOT. TB was noted in AGFAPA-TBM patients (9.1% vs 82.1%, p < 0.001). We found the LCSS was able to differentiate AGFAPA-TBM from TBM (AUC value 0.918, 95% CI=0.897-0.924). Furthermore, we set up a new scoring system with three variables: urinary retention, T-SPOT. TB, and cerebral imaging criteria in LCSS. The proposed diagnostic score ranges from -8 to 2, and a score of ≥ 0 was suggestive of AGFAPA-TBM (AUC value 0.938, 95% CI=0.878-0.951). CONCLUSIONS: This study is the first to evaluate the Thwaites system and LCSS in AGFAPA-TBM and TBM. We provide an alternative diagnostic formula to differentiate AGFAPA-TBM from TBM and suggest testing for GFAP antibodies to avoid misdiagnosis when this scoring system meets AGFAPA-TBM.


Assuntos
Proteína Glial Fibrilar Ácida , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico , Feminino , Masculino , Diagnóstico Diferencial , Proteína Glial Fibrilar Ácida/imunologia , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Estudos Retrospectivos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/imunologia , Astrócitos/imunologia , Autoanticorpos/sangue
11.
Curr Cancer Drug Targets ; 24(6): 579-594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310461

RESUMO

Glioblastoma (GBM) stands as the most aggressive and lethal among the main types of primary brain tumors. It exhibits malignant growth, infiltrating the brain tissue, and displaying resistance toward treatment. GBM is a complex disease characterized by high degrees of heterogeneity. During tumour growth, microglia and astrocytes, among other cells, infiltrate the tumour microenvironment and contribute extensively to gliomagenesis. Tumour-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, are the most numerous nonneoplastic populations in the tumour microenvironment in GBM. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumour microenvironment, which mostly induces tumour aggressiveness and drug resistance. The immunosuppressive tumour microenvironment of GBM provides multiple pathways for tumour immune evasion, contributing to tumour progression. Additionally, TAMs and astrocytes can contribute to tumour progression through the release of cytokines and activation of signalling pathways. In this review, we summarize the role of the microenvironment in GBM progression, focusing on neuroinflammation. These recent advancements in research of the microenvironment hold the potential to offer a promising approach to the treatment of GBM in the coming times.


Assuntos
Neoplasias Encefálicas , Progressão da Doença , Glioblastoma , Doenças Neuroinflamatórias , Microambiente Tumoral , Humanos , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Astrócitos/patologia , Astrócitos/metabolismo , Astrócitos/imunologia , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Transdução de Sinais , Microglia/patologia , Microglia/imunologia
12.
J Neuroimmunol ; 382: 578174, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573633

RESUMO

We describe three cases of overlapping Epstein-Barr virus (EBV) Encephalitis and Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy (GFAP-A). The three cases all presented with initial symptoms of fever, headache, coma, and posture tremor of the upper limbs, then followed by limb weakness and dysuria. All of the three cases were on ventilators. Case 1 and 2 improved dramatically after intravenous methylprednisoloneand immunoglobulin treatment. However, case 3 presented dyspneic, and died from gastrointestinal hemorrhage. The GFAP-A triggered by EBV intracranial infection could initially masquerade as EBV encephalitis only, and the detection of GFAP antibody is essential for differentiation.


Assuntos
Astrócitos , Doenças Autoimunes do Sistema Nervoso , Encefalite , Infecções por Vírus Epstein-Barr , Proteína Glial Fibrilar Ácida , Humanos , Anticorpos , Astrócitos/imunologia , Astrócitos/metabolismo , Autoanticorpos , Encefalite/complicações , Encefalite/imunologia , Encefalite/terapia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/imunologia , Herpesvirus Humano 4 , Imunoglobulinas Intravenosas , Metilprednisolona/uso terapêutico , Glucocorticoides/uso terapêutico , Doenças Autoimunes do Sistema Nervoso/complicações , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/terapia , Diagnóstico Diferencial
13.
Proc Natl Acad Sci U S A ; 119(35): e2211310119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994674

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Astrocytes are the most abundant glial cells in the CNS, and their dysfunction contributes to the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Recent advances highlight the pivotal role of cellular metabolism in programming immune responses. However, the underlying immunometabolic mechanisms that drive astrocyte pathogenicity remain elusive. Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme involved in cellular redox reactions and a substrate for NAD+-dependent enzymes. Cellular NAD+ levels are dynamically controlled by synthesis and degradation, and dysregulation of this balance has been associated with inflammation and disease. Here, we demonstrate that cell-autonomous generation of NAD+ via the salvage pathway regulates astrocyte immune function. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in the salvage pathway, results in depletion of NAD+, inhibits oxidative phosphorylation, and limits astrocyte inflammatory potential. We identified CD38 as the main NADase up-regulated in reactive mouse and human astrocytes in models of neuroinflammation and MS. Genetic or pharmacological blockade of astrocyte CD38 activity augmented NAD+ levels, suppressed proinflammatory transcriptional reprogramming, impaired chemotactic potential to inflammatory monocytes, and ameliorated EAE. We found that CD38 activity is mediated via calcineurin/NFAT signaling in mouse and human reactive astrocytes. Thus, NAMPT-NAD+-CD38 circuitry in astrocytes controls their ability to meet their energy demands and drives the expression of proinflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, MS. Our results identify candidate therapeutic targets in MS.


Assuntos
ADP-Ribosil Ciclase 1 , Astrócitos , Encefalomielite Autoimune Experimental , Esclerose Múltipla , NAD , ADP-Ribosil Ciclase 1/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Autoimunidade , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Humanos , Camundongos , Esclerose Múltipla/imunologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo
14.
Exp Neurol ; 348: 113943, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34863998

RESUMO

Astrocytes control many processes of the nervous system in health and disease, and respond to injury quickly. Astrocytes produce neuroprotective factors in the injured brain to clear cellular debris and to orchestrate neurorestorative processes that are beneficial for neurological recovery after traumatic brain injury (TBI). However, astrocytes also become dysregulated and produce cytotoxic mediators that hinder CNS repair by induction of neuronal dysfunction and cell death. Hence, we discuss the potential role of astrocytes in neuropathological processes such as neuroinflammation, neurogenesis, synaptogenesis and blood-brain barrier repair after TBI. Thus, an improved understanding of the dual role of astrocytes may advance our knowledge of post-brain injury recovery, and provide opportunities for the development of novel therapeutic strategies for TBI.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Mediadores da Inflamação/metabolismo , Animais , Astrócitos/imunologia , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Lesões Encefálicas Traumáticas/imunologia , Morte Celular/fisiologia , Humanos , Mediadores da Inflamação/imunologia , Neurogênese/fisiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo
16.
Sci Rep ; 11(1): 23569, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876649

RESUMO

Microvascular compression of the trigeminal root entry zone (TREZ) is the main cause of most primary trigeminal neuralgia (TN), change of glial plasticity was previously studied in the TREZ of TN rat model induced by chronic compression. To better understand the role of astrocytes and immune cells in the TREZ, different cell markers including glial fibrillary acidic protein (GFAP), complement C3, S100A10, CD45, CD11b, glutamate-aspartate transporter (GLAST), Iba-1 and TMEM119 were used in the TN rat model by immunohistochemistry and flow cytometry. On the post operation day 28, GFAP/C3-positive A1 astrocytes and GFAP/S100A10-positive A2 astrocytes were activated in the TREZ after compression injury, there were no statistical differences in the ratios of A1/A2 astrocytes between the sham and TN groups. There was no significant difference in Iba-1-positive cells between the two groups. The ratios of infiltrating lymphocytes (CD45+CD11b-) (p = 0.0075) and infiltrating macrophages (CD45highCD11b+) (p = 0.0388) were significantly higher than those of the sham group. In conclusion, different subtypes A1/A2 astrocytes in the TREZ were activated after compression injury, infiltrating macrophages and lymphocytes increased, these neuroimmune cells in the TREZ may participate in the pathogenesis of TN rat model.


Assuntos
Neuralgia do Trigêmeo/imunologia , Neuralgia do Trigêmeo/patologia , Animais , Anexina A2/metabolismo , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Complemento C3/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Neuroglia/imunologia , Neuroglia/metabolismo , Neuroglia/patologia , Ratos , Ratos Sprague-Dawley , Proteínas S100/metabolismo , Nervo Trigêmeo/imunologia , Nervo Trigêmeo/metabolismo , Nervo Trigêmeo/patologia
17.
Cell Rep ; 37(13): 110158, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965428

RESUMO

Non-neuronal responses in neurodegenerative disease have received increasing attention as important contributors to disease pathogenesis and progression. Here we utilize single-cell RNA sequencing to broadly profile 13 cell types in three different mouse models of Alzheimer disease (AD), capturing the effects of tau-only, amyloid-only, or combined tau-amyloid pathology. We highlight microglia, oligodendrocyte, astrocyte, and T cell responses and compare them across these models. Notably, we identify two distinct transcriptional states for oligodendrocytes emerging differentially across disease models, and we determine their spatial distribution. Furthermore, we explore the impact of Trem2 deletion in the context of combined pathology. Trem2 knockout mice exhibit severely blunted microglial responses to combined tau and amyloid pathology, but responses from non-microglial cell types (oligodendrocytes, astrocytes, and T cells) are relatively unchanged. These results delineate core transcriptional states that are engaged in response to AD pathology, and how they are influenced by a key AD risk gene, Trem2.


Assuntos
Doença de Alzheimer/patologia , Amiloide/química , Astrócitos/patologia , Glicoproteínas de Membrana/fisiologia , Oligodendroglia/patologia , Receptores Imunológicos/fisiologia , Linfócitos T/imunologia , Proteínas tau/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/imunologia , Oligodendroglia/metabolismo
18.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960633

RESUMO

The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.


Assuntos
Encefalite Viral/imunologia , Herpes Simples/imunologia , Imunidade Inata , Inflamação , Vírus da Raiva/imunologia , Raiva/imunologia , Simplexvirus/imunologia , Animais , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/virologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Encefalite Viral/virologia , Herpes Simples/virologia , Humanos , Microglia/imunologia , Microglia/virologia , Neuroglia/imunologia , Neuroglia/virologia , Raiva/virologia , Transdução de Sinais
19.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884629

RESUMO

In recent years, much attention has been paid to the study of the therapeutic effect of the microelement selenium, its compounds, especially selenium nanoparticles, with a large number of works devoted to their anticancer effects. Studies proving the neuroprotective properties of selenium nanoparticles in various neurodegenerative diseases began to appear only in the last 5 years. Nevertheless, the mechanisms of the neuroprotective action of selenium nanoparticles under conditions of ischemia and reoxygenation remain unexplored, especially for intracellular Ca2+ signaling and neuroglial interactions. This work is devoted to the study of the cytoprotective mechanisms of selenium nanoparticles in the neuroglial networks of the cerebral cortex under conditions of ischemia/reoxygenation. It was shown for the first time that selenium nanoparticles dose-dependently induce the generation of Ca2+ signals selectively in astrocytes obtained from different parts of the brain. The generation of these Ca2+ signals by astrocytes occurs through the release of Ca2+ ions from the endoplasmic reticulum through the IP3 receptor upon activation of the phosphoinositide signaling pathway. An increase in the concentration of cytosolic Ca2+ in astrocytes leads to the opening of connexin Cx43 hemichannels and the release of ATP and lactate into the extracellular medium, which trigger paracrine activation of the astrocytic network through purinergic receptors. Incubation of cerebral cortex cells with selenium nanoparticles suppresses ischemia-induced increase in cytosolic Ca2+ and necrotic cell death. Activation of A2 reactive astrocytes exclusively after ischemia/reoxygenation, a decrease in the expression level of a number of proapoptotic and proinflammatory genes, an increase in lactate release by astrocytes, and suppression of the hyperexcitation of neuronal networks formed the basis of the cytoprotective effect of selenium nanoparticles in our studies.


Assuntos
Astrócitos/citologia , Cálcio/metabolismo , Gliose/tratamento farmacológico , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Selênio/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/metabolismo , Sinalização do Cálcio , Gliose/imunologia , Gliose/metabolismo , Gliose/patologia , Nanopartículas/química , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Selênio/química
20.
J Neuroinflammation ; 18(1): 252, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727934

RESUMO

OBJECTIVE: Astrocytes participate in the local innate immune response of the central nervous system. In response to stress such as ischemia, activated cells release endogenous factors known as damage-associated molecular patterns (DAMPs). Self-extracellular RNA (eRNA) is such a ubiquitous alarm signal. However, it is unclear whether eRNA is involved in the early acute phase of cerebral ischemia and is sufficient to sensitize astrocytes towards a DAMP or PAMP (pathogen-associated molecular pattern) reaction. METHODS: Pro-inflammatory activation upon eRNA stimulation was characterized in primary murine astrocyte cultures. In vivo, an experimental stroke model was used to localize and quantify eRNA in murine brain sections. Using primary cortical neurons and the mouse hippocampal neuronal cell line HT-22, neuronal RNA release upon stress conditions related to cerebral hypoxia/ischemia was analyzed. RESULTS: While low-dose eRNA alone did not promote pro-inflammatory activation of astrocytes in culture, it strongly enhanced the expression of pro-inflammatory cytokines in the presence of either Pam2CSK4, a synthetic PAMP molecule that mimics bacterial infection, or high mobility group box 1 (HMGB1), a prominent DAMP. Synergism of eRNA/Pam2CSK4 and eRNA/HMGB1 was prevented by blockage of the astroglial toll-like receptor (TLR)-2. Inhibition of NF-κB- and mitogen-activated protein kinase-dependent signaling pathways hampered eRNA/Pam2CSK4-mediated pro-inflammatory activation of astrocytes. In vivo, the amount of non-nuclear, presumably extracellular ribosomal RNA in close proximity to neurons significantly accumulated across the infarct core and peri-infarct areas that was accompanied by transcriptional up-regulation of various pro-inflammatory factors. Accordingly, the exposure of neurons to hypoxic/ischemic stress in vitro resulted in the release of eRNA, partly mediated by active cellular processes dependent on the cytosolic calcium level. CONCLUSION: The DAMP signal eRNA can sensitize astrocytes as active players in cerebral innate immunity towards exogenous and endogenous activators of inflammation (PAMPs and DAMPs) in a synergistic manner via TLR2-NF-κB-dependent signaling mechanisms. These findings provide new insights into the pathogenesis of ischemic stroke and other inflammatory neurological disorders. Further studies will clarify whether administration of RNase in vivo may serve as an effective treatment for inflammatory brain pathologies.


Assuntos
Alarminas/imunologia , Astrócitos/imunologia , Inflamação/imunologia , RNA/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Camundongos , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...