Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.048
Filtrar
1.
Sci Rep ; 14(1): 20707, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237554

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by a premutation of the FMR1 gene on the X chromosome. Despite the pervasive physical and cognitive effects of FXTAS, no studies have examined language in symptomatic males and females, limiting utility as an outcome measure in clinical trials of FXTAS. The goal of this work is to determine (a) the extent to which male and female FMR1 premutation carriers with FXTAS symptoms differ in their language use and (b) whether language production predicts FXTAS symptoms. Thirty-one individuals with the FMR1 premutation (21M, 10F), ages 58-85 years with some symptoms of FXTAS, were recruited from a larger cross-sectional study. Participants completed a five-minute monologic language sample. Language transcripts were assessed for rate of dysfluencies, lexical-semantics, syntax, and speech rate. Multivariable linear and ordinal regressions were used to predict FXTAS-associated symptoms, cognitive functioning, and executive functioning. Males and females did not differ in their language use. Language production predicted FXTAS symptom severity, cognitive functioning, and executive functioning. Language production difficulties may co-occur with FXTAS-associated symptoms and may be a viable outcome measure in future clinical trials, with future research needed.


Assuntos
Ataxia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Idioma , Tremor , Humanos , Masculino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Feminino , Tremor/genética , Idoso , Pessoa de Meia-Idade , Ataxia/genética , Idoso de 80 Anos ou mais , Estudos Transversais , Cognição
2.
Handb Clin Neurol ; 203: 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39174244

RESUMO

The primary episodic ataxias (EAs) are a group of autosomal-dominant disorders characterized by transient recurrent incoordination and truncal instability, often triggered by physical exertion or emotional stress and variably associated with progressive baseline ataxia. There are now nine designated subtypes EA1-9 (OMIM) and late onset cerebellar ataxia with episodic features as newly designated SCA27B, based largely on genetic loci. Mutations have been identified in multiple individuals and families in 4 of the 9 EA subtypes, mostly with the onset before adulthood. This chapter focuses on the clinical assessment and management of EA, genetic diagnosis, and neurophysiologic consequences of the causative mutations in the best characterized EA syndromes: EA1 caused by mutations in KCNA1 encoding a neuronal voltage-gated potassium channel, EA2 caused by mutations in CACNA1A encoding a neuronal voltage-gated calcium channel, EA6 caused by mutations in SLC1A3 encoding a glutamate transporter that is also an anion channel, and SCA27B with late onset episodic ataxia caused by an intronic trinucleotide repeat in FGF14 encoding fibroblast growth factor 14 important in regulating the distribution of voltage-gated sodium channels in the cerebellar Purkinje and granule cells. The study of EA has illuminated previously unrecognized but important roles of ion channels and transporters in brain function with shared mechanisms underlying cerebellar ataxia, migraine, and epilepsy.


Assuntos
Ataxia , Mutação , Humanos , Ataxia/genética , Ataxia/diagnóstico , Mutação/genética , Fatores de Crescimento de Fibroblastos/genética , Canal de Potássio Kv1.1/genética , Canais de Cálcio/genética , Transportador 1 de Aminoácido Excitatório
3.
Nucleic Acids Res ; 52(16): 9745-9759, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39106168

RESUMO

Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Neurônios , Grânulos de Estresse , Animais , Grânulos de Estresse/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Humanos , Neurônios/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Camundongos , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Ataxia/genética , Ataxia/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Alphavirus/genética , Alphavirus/metabolismo , Ratos , Proteínas de Transporte/metabolismo , Drosophila/metabolismo , Grânulos Citoplasmáticos/metabolismo , Estresse Fisiológico , Proteínas de Ligação a DNA
4.
Mol Genet Genomic Med ; 12(8): e2505, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108195

RESUMO

BACKGROUND: Biallelic variants in the major facilitator superfamily domain containing 8 gene (MFSD8) are associated with distinct clinical presentations that range from typical late-infantile neuronal ceroid lipofuscinosis type 7 (CLN7 disease) to isolated adult-onset retinal dystrophy. Classic late-infantile CLN7 disease is a severe, rare neurological disorder with an age of onset typically between 2 and 6 years, presenting with seizures and/or cognitive regression. Its clinical course is progressive, leading to premature death, and often includes visual loss due to severe retinal dystrophy. In rare cases, pathogenic variants in MFSD8 can be associated with isolated non-syndromic macular dystrophy with variable age at onset, in which the disease process predominantly or exclusively affects the cones of the macula and where there are no neurological or neuropsychiatric manifestations. METHODS: Here we present longitudinal studies on four adult-onset patients who were biallelic for four MFSD8 variants. RESULTS: Two unrelated patients who presented with adult-onset ataxia and had macular dystrophy on examination were homozygous for a novel variant in MFSD8 NM_152778.4: c.935T>C p.(Ile312Thr). Two other patients presented in adulthood with visual symptoms, and one of these developed mild to moderate cerebellar ataxia years after the onset of visual symptoms. CONCLUSIONS: Our observations expand the knowledge on biallelic pathogenic MFSD8 variants and confirm that these are associated with a spectrum of more heterogeneous clinical phenotypes. In MFSD8-related disease, adult-onset recessive ataxia can be the presenting manifestation or may occur in combination with retinal dystrophy.


Assuntos
Degeneração Macular , Humanos , Adulto , Masculino , Feminino , Degeneração Macular/genética , Degeneração Macular/patologia , Idade de Início , Ataxia/genética , Ataxia/patologia , Alelos , Pessoa de Meia-Idade , Mutação , Proteínas de Membrana Transportadoras/genética , Fenótipo
5.
BMC Med Genomics ; 17(1): 203, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123271

RESUMO

BACKGROUND: A comprehensive understanding of the genetic basis of rare diseases and their regulatory mechanisms is essential for human molecular genetics. However, the genetic mutant spectrum of pathogenic genes within the Chinese population remains underrepresented. Here, we reported previously unreported functional ABHD12 variants in two Chinese families and explored the correlation between genetic polymorphisms and phenotypes linked to PHARC syndrome. METHODS: Participants with biallelic pathogenic ABHD12 variants were recruited from the Chinese Deafness Genetics Cohort. These participants underwent whole-genome sequencing. Subsequently, a comprehensive literature review was conducted. RESULTS: Two Han Chinese families were identified, one with a compound heterozygous variant and the other with a novel homozygous variant in ABHD12. Among 65 PHARC patients, including 62 from the literature and 3 from this study, approximately 90% (57 out of 63) exhibited hearing loss, 82% (50 out of 61) had cataracts, 82% (46 out of 56) presented with retinitis pigmentosa, 79% (42 out of 53) experienced polyneuropathy, and 63% (36 out of 57) displayed ataxia. Seventeen different patterns were observed in the five main phenotypes of PHARC syndrome. A total of 33 pathogenic variants were identified in the ABHD12. Compared with other genotypes, individuals with biallelic truncating variants showed a higher incidence of polyneuropathy (p = 0.006), but no statistically significant differences were observed in the incidence of hearing loss, ataxia, retinitis pigmentosa and cataracts. CONCLUSIONS: The diagnosis of PHARC syndrome is challenging because of its genetic heterogeneity. Therefore, exploring novel variants and establishing genotype-phenotype correlations can significantly enhance gene diagnosis and genetic counseling for this complex disease.


Assuntos
Ataxia , Catarata , Estudos de Associação Genética , Monoacilglicerol Lipases , Linhagem , Fenótipo , Polineuropatias , Retinose Pigmentar , Humanos , Masculino , Feminino , Ataxia/genética , Catarata/genética , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Polineuropatias/genética , Monoacilglicerol Lipases/genética , Mutação , Adulto , Criança , Adolescente , Genótipo
6.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125677

RESUMO

In this study, the potential role and interaction of the APOε and KLOTHO genes on the penetrance of fragile X-associated tremor/ataxia syndrome (FXTAS) and on the IQ trajectory were investigated. FXTAS was diagnosed based on molecular, clinical and radiological criteria. Males with the premutation (PM) over 50 years, 165 with and 34 without an FXTAS diagnosis, were included in this study and were compared based on their APO (ε2-ε3-ε4) and KLOTHO variant (KL-VS) genotypes. The effect of APOε4 on FXTAS stage and on diagnosis did not differ significantly by KL-VS genotype with interaction effect p = 0.662 and p = 0.91, respectively. In the FXTAS individuals with an APOε2 allele, a marginal significance was observed towards a larger decline in verbal IQ (VIQ) in individuals with an APOε4 allele compared to those without an APOε4 allele (p = 0.071). In conclusion, our findings suggest that the APOε4 and KL-VS genotypes alone or through their interaction effect do not appear to predispose to either FXTAS diagnosis or stage in male carriers of the PM allele. A further study is needed to establish the trend of IQ decline in the FXTAS individuals who carry APOε4 with APOε2 compared to those without APOε4.


Assuntos
Ataxia , Síndrome do Cromossomo X Frágil , Glucuronidase , Proteínas Klotho , Tremor , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Apolipoproteínas E/genética , Ataxia/genética , Síndrome do Cromossomo X Frágil/genética , Predisposição Genética para Doença , Genótipo , Glucuronidase/genética , Penetrância , Tremor/genética
7.
Biochim Biophys Acta Bioenerg ; 1865(4): 149492, 2024 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960080

RESUMO

Mitochondrial DNA (mtDNA) mutations, including the m.3243A>G mutation that causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), are associated with secondary coenzyme Q10 (CoQ10) deficiency. We previously demonstrated that PPARGC1A knockdown repressed the expression of PDSS2 and several COQ genes. In the present study, we compared the mitochondrial function, CoQ10 status, and levels of PDSS and COQ proteins and genes between mutant cybrids harboring the m.3243A>G mutation and wild-type cybrids. Decreased mitochondrial energy production, defective respiratory function, and reduced CoQ10 levels were observed in the mutant cybrids. The ubiquinol-10:ubiquinone-10 ratio was lower in the mutant cybrids, indicating blockage of the electron transfer upstream of CoQ, as evident from the reduced ratio upon rotenone treatment and increased ratio upon antimycin A treatment in 143B cells. The mutant cybrids exhibited downregulation of PDSS2 and several COQ genes and upregulation of COQ8A. In these cybrids, the levels of PDSS2, COQ3-a isoform, COQ4, and COQ9 were reduced, whereas those of COQ3-b and COQ8A were elevated. The mutant cybrids had repressed PPARGC1A expression, elevated ATP5A levels, and reduced levels of mtDNA-encoded proteins, nuclear DNA-encoded subunits of respiratory enzyme complexes, MNRR1, cytochrome c, and DHODH, but no change in TFAM, TOM20, and VDAC1 levels. Alterations in the CoQ10 level in MELAS may be associated with mitochondrial energy deficiency and abnormal gene regulation. The finding of a reduction in the ubiquinol-10:ubiquinone-10 ratio in the MELAS mutant cybrids differs from our previous discovery that cybrids harboring the m.8344A>G mutation exhibit a high ubiquinol-10:ubiquinone-10 ratio.


Assuntos
DNA Mitocondrial , Metabolismo Energético , Mitocôndrias , Mutação , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiência , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Ataxia/genética , Ataxia/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Linhagem Celular Tumoral , Debilidade Muscular , Doenças Mitocondriais
8.
J Neurol ; 271(9): 6038-6044, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39030458

RESUMO

INTRODUCTION: Ubiquitin C-terminal hydrolase L1 (UCHL1) has been associated with a severe, complex autosomal recessive spastic paraplegia (HSP79) [1] [2] [3] [4]. More recently, UCHL1 loss of function (LoF) variants have been associated to an autosomal dominant disease characterized by late-onset spastic ataxia, neuropathy, and frequent optic atrophy [5]. METHODS: Routine clinical care whole-genome (WGS) and exome (ES) sequencing. RESULTS: We present three families with autosomal dominant UCHL1-related disorder. The clinical phenotype mainly associated optic atrophy, mixed cerebellar and sensory ataxia, and possible hearing loss. We delineated two major phenotypes, even within the same family: (1) juvenile severe optic atrophy followed by a later-onset ataxia, or (2) late-onset ataxia with asymptomatic or mild optic atrophy. The families harboured three novel heterozygous variants in UCHL1: two loss of function (p.Lys115AsnfsTer40; c.171_174 + 7del11), and one missense (p.Asp176Asn) involving the catalytic site of the protein and potentially altering the adjacent splice site. DISCUSSION: We confirm the existence of dominantly inherited UCHL1 pathogenic variants. We describe a considerable intrafamilial phenotypic variability, with two main phenotypes. Optic atrophy was consistently present, but with varying degrees of severity. Neither delayed motor or intellectual development, nor dysmorphic features were part of the dominant phenotype in comparison with the autosomal recessive form. The molecular mechanism appears to be haploinsufficiency. UCHL1 monoallelic variants should therefore be considered in any case of early-onset optic atrophy or in late-onset complex ataxic syndrome with asymptomatic optic atrophy.


Assuntos
Ataxia , Linhagem , Fenótipo , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/genética , Masculino , Feminino , Adulto , Ataxia/genética , Ataxia/fisiopatologia , Pessoa de Meia-Idade , Mutação , Atrofia Óptica/genética
9.
J Neurogenet ; 38(2): 27-34, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975939

RESUMO

Tropical ataxic neuropathy (TAN) is characterised by ataxic polyneuropathy, degeneration of the posterior columns and pyramidal tracts, optic atrophy, and sensorineural hearing loss. It has been attributed to nutritional/toxic etiologies, but evidence for the same has been equivocal. TAN shares common clinical features with inherited neuropathies and mitochondrial disorders, it may be hypothesised that genetic abnormalities may underlie the pathophysiology of TAN. This study aimed to establish evidence for mitochondrial dysfunction by adopting an integrated biochemical and multipronged genetic analysis. Patients (n = 65) with chronic progressive ataxic neuropathy with involvement of visual and/or auditory pathways underwent deep phenotyping, genetic studies including mitochondrial DNA (mtDNA) deletion analysis, mtDNA and clinical exome sequencing (CES), and respiratory chain complex (RCC) assay. The phenotypic characteristics included dysfunction of visual (n = 14), auditory (n = 12) and visual + auditory pathways (n = 29). Reduced RCC activity was present in 13 patients. Mitochondrial DNA deletions were noted in five patients. Sequencing of mtDNA (n = 45) identified a homoplasmic variant (MT-ND6) and a heteroplasmic variant (MT-COI) in one patient each. CES (n = 45) revealed 55 variants in nuclear genes that are associated with neuropathy (n = 27), deafness (n = 7), ataxia (n = 4), and mitochondrial phenotypes (n = 5) in 36 patients. This study provides preliminary evidence that TAN is associated with a spectrum of genetic abnormalities, including those associated with mitochondrial dysfunction, which is in contradistinction from the prevailing hypothesis that TAN is related to dietary toxins. Analysing the functional relevance of these genetic variants may improve the understanding of the pathogenesis of TAN.


Assuntos
Ataxia , DNA Mitocondrial , Humanos , Masculino , Feminino , DNA Mitocondrial/genética , Adulto , Pessoa de Meia-Idade , Ataxia/genética , Adolescente , Doenças Mitocondriais/genética , Adulto Jovem , Mitocôndrias/genética , Criança , Idoso , Sequenciamento do Exoma , Fenótipo
10.
Orphanet J Rare Dis ; 19(1): 264, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997701

RESUMO

BACKGROUND AND OBJECTIVES: Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG-repeat expansions (> 200) in the FMR1 gene leading to lack of expression. Espansion between 55 and 200 triplets fall within the premutation range (PM) and can lead to different clinical conditions, including fragile X- primary ovarian insufficiency (FXPOI), fragile X-associated neuropsychiatric disorders (FXAND) and fragile X-associated tremor/ataxia syndrome (FXTAS). Although there is not a current cure for FXS and for the Fragile X-PM associated conditions (FXPAC), timely diagnosis as well as the implementation of treatment strategies, psychoeducation and behavioral intervention may improve the quality of life (QoL) of people with FXS or FXPAC. With the aim to investigate the main areas of concerns and the priorities of treatment in these populations, the Italian National Fragile X Association in collaboration with Bambino Gesù Children's Hospital, conducted a survey among Italian participants. METHOD: Here, we present a survey based on the previous study that Weber and colleagues conducted in 2019 and that aimed to investigate the main symptoms and challenges in American individuals with FXS. The survey has been translated into Italian language to explore FXS needs of treatment also among Italian individuals affected by FXS, family members, caretakers, and professionals. Furthermore, we added a section designated only to people with PM, to investigate the main symptoms, daily living challenges and treatment priorities. RESULTS: Anxiety, challenging behaviors, language difficulties and learning disabilities were considered the major areas of concern in FXS, while PM was reported as strongly associated to cognitive problems, social anxiety, and overthinking. Anxiety was reported as a treatment priority in both FXS and PM. CONCLUSION: FXS and PM can be associated with a range of cognitive, affective, and physical health complications. Taking a patient-first perspective may help clinicians to better characterize the cognitive-behavioral phenotype associated to these conditions, and eventually to implement tailored therapeutic approaches.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Feminino , Itália , Masculino , Inquéritos e Questionários , Adulto , Qualidade de Vida , Pessoa de Meia-Idade , Ataxia/genética , Ataxia/terapia , Adulto Jovem , Adolescente , Tremor/genética , Tremor/terapia , Criança
11.
Neurobiol Dis ; 199: 106600, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996985

RESUMO

Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.


Assuntos
Cerebelo , Disautonomia Familiar , Camundongos Knockout , Fenótipo , Animais , Disautonomia Familiar/genética , Disautonomia Familiar/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Camundongos , Modelos Animais de Doenças , Ataxia/genética , Ataxia/patologia , Ataxia/metabolismo , Células-Tronco Neurais/metabolismo , Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular
12.
Neurobiol Dis ; 199: 106555, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38844245

RESUMO

Progressive myoclonus ataxia (PMA) is a rare clinical syndrome characterized by the presence of progressive myoclonus and ataxia, and can be accompanied by mild cognitive impairment and infrequent epileptic seizures. This is the first study to describe the natural history of PMA and identify clinical, electrophysiological, and genetic features explaining the variability in disease progression. A Dutch cohort of consecutive patients meeting the criteria of the refined definition of PMA was included. The current phenotype was assessed during in-person consultation by movement disorders experts, and retrospective data was collected to describe disease presentation and progression, including brain imaging and therapy efficacy. Extensive genetic and electrophysiological tests were performed. The presence of cortical hyperexcitability was determined, by either the identification of a cortical correlate of myoclonic jerks with simultaneous electromyography-electroencephalography or a giant somatosensory evoked potential. We included 34 patients with PMA with a median disease duration of 15 years and a clear progressive course in most patients (76%). A molecular etiology was identified in 82% patients: ATM, CAMTA1, DHDDS, EBF3, GOSR2, ITPR1, KCNC3, NUS1, POLR1A, PRKCG, SEMA6B, SPTBN2, TPP1, ZMYND11, and a 12p13.32 deletion. The natural history is a rather homogenous onset of ataxia in the first two years of life followed by myoclonus in the first 5 years of life. Main accompanying neurological dysfunctions included cognitive impairment (62%), epilepsy (38%), autism spectrum disorder (27%), and behavioral problems (18%). Disease progression showed large variability ranging from an epilepsy free PMA phenotype (62%) to evolution towards a progressive myoclonus epilepsy (PME) phenotype (18%): the existence of a PMA-PME spectrum. Cortical hyperexcitability could be tested in 17 patients, and was present in 11 patients and supported cortical myoclonus. Interestingly, post-hoc analysis showed that an absence of cortical hyperexcitability, suggesting non-cortical myoclonus, was associated with the PMA-end of the spectrum with no epilepsy and milder myoclonus, independent of disease duration. An association between the underlying genetic defects and progression on the PMA-PME spectrum was observed. By describing the natural history of the largest cohort of published patients with PMA so far, we see a homogeneous onset with variable disease progression, in which phenotypic evolution to PME occurs in the minority. Genetic and electrophysiological features may be of prognostic value, especially the determination of cortical hyperexcitability. Furthermore, the identification of cortical and non-cortical myoclonus in PMA helps us gain insight in the underlying pathophysiology of myoclonus.


Assuntos
Progressão da Doença , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Estudos Retrospectivos , Eletroencefalografia/métodos , Idoso , Eletromiografia , Ataxia/genética , Ataxia/fisiopatologia , Adolescente , Mioclonia/fisiopatologia , Mioclonia/genética
13.
Nephrology (Carlton) ; 29(9): 612-616, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38838054

RESUMO

Primary coenzyme Q10 deficiency-1, caused by COQ2 disease-causing variants, is an autosomal recessive disorder, and genetic testing is the gold standard for diagnosing this condition. A Chinese boy with steroid-resistant nephrotic syndrome, focal segmental glomerulosclerosis, and progressive kidney insufficiency was included in the study. Electron microscopy revealed the glomerular basement membrane with irregular thickness and lamellation with diffuse effacement of foot processes in the podocytes, and swollen mitochondria with abnormal cristae in the podocytes. Coenzyme Q10 supplementation started about 3 weeks after the onset of mild kidney dysfunction did not improve the proband's kidney outcome. Proband-only whole-exome sequencing and Sanger sequencing revealed two heteroallelic COQ2 variants: a maternally inherited novel variant c.1013G > A[p.(Gly338Glu)] in exon 6 and a variant of unknown origin c.1159C > T[p.(Arg387*)] in exon 7. Subsequent long-read sequencing demonstrated these two variants were located on different alleles. Our report extends the phenotypic and genotypic spectrum of COQ2 glomerulopathy.


Assuntos
Membrana Basal Glomerular , Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Ubiquinona , Humanos , Masculino , Síndrome Nefrótica/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Membrana Basal Glomerular/ultraestrutura , Membrana Basal Glomerular/patologia , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Fenótipo , Predisposição Genética para Doença , Ataxia/genética , Sequenciamento do Exoma , Debilidade Muscular/genética , Biópsia , Mutação , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Alquil e Aril Transferases
14.
Neuropharmacology ; 257: 110035, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876310

RESUMO

We previously showed that the PDE4 inhibitor apremilast reduces ethanol consumption in mice by protein kinase A (PKA) and GABAergic mechanisms. Preventing PKA phosphorylation of GABAA ß3 subunits partially blocked apremilast-mediated decreases in drinking. Here, we produced Gabrb1-S409A mice to render GABAA ß1 subunits resistant to PKA-mediated phosphorylation. Mass spectrometry confirmed the presence of the S409A mutation and lack of changes in ß1 subunit expression or phosphorylation at other residues. ß1-S409A male and female mice did not differ from wild-type C57BL/6J mice in expression of Gabrb1, Gabrb2, or Gabrb3 subunits or in behavioral characteristics. Apremilast prolonged recovery from ethanol ataxia to a greater extent in Gabrb1-S409A mice but prolonged recovery from zolpidem and propofol to a similar extent in both genotypes. Apremilast shortened recovery from diazepam ataxia in wild-type but prolonged recovery in Gabrb1-S409A mice. In wild-type mice, the PKA inhibitor H89 prevented apremilast modulation of ataxia by ethanol and diazepam, but not by zolpidem. In Gabrb1-S409A mice, inhibiting PKA or EPAC2 (exchange protein directly activated by cAMP) partially reversed apremilast potentiation of ethanol, diazepam, and zolpidem ataxia. Apremilast prevented acute tolerance to ethanol ataxia in both genotypes, but there were no genotype differences in ethanol consumption before or after apremilast. In contrast to results in Gabrb3-S408A/S409A mice, PKA phosphorylation of ß1-containing GABAA receptors is not required for apremilast's effects on acute tolerance or on ethanol consumption but is required for its ability to decrease diazepam intoxication. Besides PKA we identified EPAC2 as an additional cAMP-dependent mechanism by which apremilast regulates responses to GABAergic drugs.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Etanol , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 4 , Receptores de GABA-A , Talidomida , Animais , Talidomida/farmacologia , Talidomida/análogos & derivados , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Masculino , Feminino , Etanol/farmacologia , Camundongos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efeitos dos fármacos , Técnicas de Introdução de Genes , Fosforilação/efeitos dos fármacos , Ataxia/genética , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/genética , Camundongos Transgênicos , Diazepam/farmacologia
15.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891946

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and retinal pigment epithelial atrophy, leading to severe visual impairment or blindness. RP can be classified as nonsyndromic or syndromic with complex clinical phenotypes. Three unrelated Polish probands affected with retinitis pigmentosa coexisting with cerebellar ataxia were recruited for this study. Clinical heterogeneity and delayed appearance of typical disease symptoms significantly prolonged the patients' diagnostic process. Therefore, many clinical and genetic tests have been performed in the past. Here, we provide detailed clinical and genetic analysis results of the patients. Whole-exome sequencing (WES) and targeted NGS analysis allow the identification of four novel and two previously reported variants in the following genes: ABHD12, FLVCR1, and PNPLA6. The use of next-generation sequencing (NGS) methods finally allowed for confirmation of the clinical diagnosis. Ultra-rare diseases such as PHARC, PCARP, and Oliver-McFarlane syndromes were diagnosed in patients, respectively. Our findings confirmed the importance of the application of next-generation sequencing methods, especially in ultra-rare genetic disorders with overlapping features.


Assuntos
Sequenciamento do Exoma , Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Masculino , Feminino , Linhagem , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Proteínas de Membrana Transportadoras/genética , Monoacilglicerol Lipases/genética , Mutação , Ataxia/genética , Ataxia/diagnóstico , Fenótipo , Aciltransferases , Catarata , Fosfolipases , Polineuropatias
16.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928282

RESUMO

Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.


Assuntos
Biotina , Deficiência de Biotinidase , Biotinidase , Homeostase , Humanos , Biotina/metabolismo , Deficiência de Biotinidase/metabolismo , Deficiência de Biotinidase/diagnóstico , Deficiência de Biotinidase/genética , Deficiência de Biotinidase/tratamento farmacológico , Biotinidase/metabolismo , Biotinidase/genética , Deficiência de Holocarboxilase Sintetase/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Animais , Ataxia/metabolismo , Ataxia/genética , Doenças dos Gânglios da Base
17.
Am J Med Genet A ; 194(9): e63655, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38711238

RESUMO

The association of early-onset non-progressive ataxia and miosis is an extremely rare phenotypic entity occasionally reported in the literature. To date, only one family (two siblings and their mother) has benefited from a genetic diagnosis by the identification of a missense heterozygous variant (p.Arg36Cys) in the ITPR1 gene. This gene encodes the inositol 1,4,5-trisphosphate receptor type 1, an intracellular channel that mediates calcium release from the endoplasmic reticulum. Deleterious variants in this gene are known to be associated with two types of spinocerebellar ataxia, SCA15 and SCA29, and with Gillespie syndrome that is associated with ataxia, partial iris hypoplasia, and intellectual disability. In this work, we describe a novel individual carrying a heterozygous missense variant (p.Arg36Pro) at the same position in the N-terminal suppressor domain of ITPR1 as the family previously reported, with the same phenotype associating early-onset non-progressive ataxia and miosis. This second report confirms the implication of ITPR1 in the miosis-ataxia syndrome and therefore broadens the clinical spectrum of the gene. Moreover, the high specificity of the phenotype makes it a recognizable syndrome of genetic origin.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato , Miose , Feminino , Humanos , Ataxia/genética , Ataxia/patologia , Heterozigoto , Receptores de Inositol 1,4,5-Trifosfato/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Miose/genética , Miose/patologia , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Idoso
18.
Orphanet J Rare Dis ; 19(1): 200, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755691

RESUMO

BACKGROUND: MT-ATP6 is a mitochondrial gene which encodes for the intramembrane subunit 6 (or A) of the mitochondrial ATP synthase, also known asl complex V, which is involved in the last step of oxidative phosphorylation to produce cellular ATP through aerobic metabolism. Although classically associated with the NARP syndrome, recent evidence highlights an important role of MT-ATP6 pathogenic variants in complicated adult-onset ataxias. METHODS: We describe two unrelated patients with adult-onset cerebellar ataxia associated with severe optic atrophy and mild cognitive impairment. Whole mitochondrial DNA sequencing was performed in both patients. We employed patients' primary fibroblasts and cytoplasmic hybrids (cybrids), generated from patients-derived cells, to assess the activity of respiratory chain complexes, oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential. RESULTS: In both patients, we identified the same novel m.8777 T > C variant in MT-ATP6 with variable heteroplasmy level in different tissues. We identifed an additional heteroplasmic novel variant in MT-ATP6, m.8879G > T, in the patients with the most severe phenotype. A significant reduction in complex V activity, OCR and ATP production was observed in cybrid clones homoplasmic for the m.8777 T > C variant, while no functional defect was detected in m.8879G > T homoplasmic clones. In addition, fibroblasts with high heteroplasmic levelsof m.8777 T > C variant showed hyperpolarization of mitochondrial membranes. CONCLUSIONS: We describe a novel pathogenic mtDNA variant in MT-ATP6 associated with adult-onset ataxia, reinforcing the value of mtDNA screening within the diagnostic workflow of selected patients with late onset ataxias.


Assuntos
Ataxia , ATPases Mitocondriais Próton-Translocadoras , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ataxia/genética , Ataxia/patologia , DNA Mitocondrial/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Itália , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo
19.
CPT Pharmacometrics Syst Pharmacol ; 13(8): 1327-1340, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38769902

RESUMO

The Scale for the Assessment and Rating of Ataxia (SARA) is widely used for assessing the severity and progression of genetic cerebellar ataxias. SARA is now considered a primary end point in several ataxia treatment trials, but its underlying composite item measurement model has not yet been tested. This work aimed to evaluate the composite properties of SARA and its items using item response theory (IRT) and to demonstrate its applicability across even ultra-rare genetic ataxias. Leveraging SARA subscores data from 1932 visits from 990 patients of the Autosomal Recessive Cerebellar Ataxias (ARCA) registry, we assessed the performance of SARA using IRT methodology. The item characteristics were evaluated over the ataxia severity range of the entire ataxia population as well as the assessment validity across 115 genetic ARCA subpopulations. A unidimensional IRT model was able to describe SARA item data, indicating that SARA captures one single latent variable. All items had high discrimination values (1.5-2.9) indicating the effectiveness of the SARA in differentiating between subjects with different disease statuses. Each item contributed between 7% and 28% of the total assessment informativeness. There was no evidence for differences between the 115 genetic ARCA subpopulations in SARA applicability. These results show the good discrimination ability of SARA with all of its items adding informational value. The IRT framework provides a thorough description of SARA on the item level, and facilitates its utilization as a clinical outcome assessment in upcoming longitudinal natural history or treatment trials, across a large number of ataxias, including ultra-rare ones.


Assuntos
Ataxia Cerebelar , Índice de Gravidade de Doença , Humanos , Masculino , Feminino , Adulto , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Pessoa de Meia-Idade , Sistema de Registros , Adulto Jovem , Adolescente , Doenças Raras/genética , Doenças Raras/diagnóstico , Criança , Progressão da Doença , Ataxia/genética , Ataxia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...