Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.520
Filtrar
1.
Cancer Med ; 13(14): e70049, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39056567

RESUMO

BACKGROUND/OBJECTIVES: Ataxia telangiectasia (A-T) is an inherited multisystem disorder with increased sensitivity to ionising radiation and elevated cancer risk. Although other cancer predisposition syndromes have established cancer screening protocols, evidence-based guidelines for cancer screening in A-T are lacking. This study sought to assess feasibility of a cancer screening protocol based on whole-body MRI (WB-MRI) in children and young people with A-T. DESIGN/METHODS: Children and young people with A-T were invited to undergo a one-off non-sedated 3-Tesla WB-MRI. Completion rate of WB-MRI was recorded and diagnostic image quality assessed by two experienced radiologists, with pre-specified success thresholds for scan completion of >50% participants and image quality between acceptable to excellent in 65% participants. Positive imaging findings were classified according to the ONCO-RADS system. Post-participation interviews were performed with recruited families to assess the experience of participating and feelings about waiting for, and communication of, the findings of the scan. RESULTS: Forty-six children and young people with A-T were identified, of which 36 were eligible to participate, 18 were recruited and 16 underwent WB-MRI. Nineteen parents participated in interviews. Fifteen participants (83%) completed the full WB-MRI scan protocol. The pre-specified image quality criterion was achieved with diagnostic images obtained in at least 93% of each MRI sequence. Non-malignant scan findings were present in 4 (25%) participants. Six themes were identified from the interviews: (1) anxiety is a familiar feeling, (2) the process of MRI scanning is challenging for some children and families, (3) preparation is essential to reduce stress, (4) WB-MRI provides the reassurance about the physical health that families need, (5) WB-MRI experience turned out to be a positive experience and (6) WB-MRI allows families to be proactive. CONCLUSION: This study shows that WB-MRI for cancer screening is feasible and well-accepted by children and young people with A-T and their families.


Assuntos
Ataxia Telangiectasia , Detecção Precoce de Câncer , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Ataxia Telangiectasia/diagnóstico por imagem , Criança , Feminino , Masculino , Adolescente , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/psicologia , Imagem Corporal Total/métodos , Adulto Jovem , Pré-Escolar , Neoplasias/diagnóstico por imagem , Neoplasias/psicologia , Adulto
4.
Pediatr Neurol ; 156: 85-90, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733859

RESUMO

BACKGROUND: Ataxia telangiectasia (AT) is a genetic multisystemic disorder affecting the nervous system. Data on neurocognitive functioning in AT are limited and focused on patients at various stages of disease. Because of the genetic nature of the disorder, parents of patients may also display subtle neurological problems. This study aimed to evaluate neurocognitive functioning in patients with AT and their unaffected parents. METHODS: The study included 26 patients with AT and 41 parents among which 13 patients and 18 parents were evaluated with neurocognitive tests. Clinical and radiological data were reviewed retrospectively. Data were analyzed with descriptive statistics. RESULTS: The median ages of patients and parents were 12.5 years (interquartile range [IQR] = 9.5) and 38.0 years (IQR = 12.0), respectively. Median intelligence quotients were 62.0 (IQR = 21.3) and 82.5 (IQR = 16.8), respectively, for patients and parents. Rates of intellectual disability for patients and parents were 100.0% and 83.3%, respectively. Areas of impairment in patients in decreasing order of frequency were motor skills, visual perception/memory, visual-manual coordination, spontaneous/focused and sustained attention (100.0% for each), social judgment, as well as vocabulary and arithmetic skills (75.0% for each). Areas of impairment in unaffected parents in decreasing order of frequency were visual-manual coordination (77.8%), working memory (76.5%), and visual perception and motor skills (66.7% for each). CONCLUSION: Intellectual disabilities, visual-spatial disabilities, and reduced visual-motor coordination seem to be similar in patients with AT and their parents. These results should be replicated with larger samples from multiple centers and may form putative cognitive endophenotypes for the disorder.


Assuntos
Ataxia Telangiectasia , Pais , Humanos , Ataxia Telangiectasia/fisiopatologia , Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/genética , Masculino , Feminino , Criança , Adulto , Adolescente , Estudos Retrospectivos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Testes Neuropsicológicos , Pessoa de Meia-Idade , Deficiência Intelectual/fisiopatologia , Adulto Jovem
5.
Blood Cancer Discov ; 5(4): 267-275, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747501

RESUMO

Somatic variants in DNA damage response genes such as ATM are widespread in hematologic malignancies. ATM protein is essential for double-strand DNA break repair. Germline ATM deficiencies underlie ataxia-telangiectasia (A-T), a disease manifested by radiosensitivity, immunodeficiency, and predisposition to lymphoid malignancies. Patients with A-T diagnosed with malignancies have poor tolerance to chemotherapy or radiation. In this study, we investigated chimeric antigen receptor (CAR) T cells using primary T cells from patients with A-T (ATM-/-), heterozygote donors (ATM+/-), and healthy donors. ATM-/- T cells proliferate and can be successfully transduced with CARs, though functional impairment of ATM-/- CAR T-cells was observed. Retroviral transduction of the CAR in ATM-/- T cells resulted in high rates of chromosomal lesions at CAR insertion sites, as confirmed by next-generation long-read sequencing. This work suggests that ATM is essential to preserve genome integrity of CAR T-cells during retroviral manufacturing, and its lack poses a risk of chromosomal translocations and potential leukemogenicity. Significance: CAR T-cells are clinically approved genetically modified cells, but the control of genome integrity remains largely uncharacterized. This study demonstrates that ATM deficiency marginally impairs CAR T-cell function and results in high rates of chromosomal aberrations after retroviral transduction, which may be of concern in patients with DNA repair deficiencies.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Receptores de Antígenos Quiméricos , Retroviridae , Linfócitos T , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Linfócitos T/imunologia , Retroviridae/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/imunologia , Transdução Genética , Dano ao DNA , Imunoterapia Adotiva/métodos
6.
Clin Immunol ; 263: 110233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697554

RESUMO

Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Animais , Células Matadoras Naturais/imunologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Timoma/imunologia , Timoma/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Citotoxicidade Imunológica , Neoplasias do Timo/imunologia , Neoplasias do Timo/genética , Transdução de Sinais , Proteínas de Membrana , Antígenos de Histocompatibilidade Classe I
7.
Curr Med Sci ; 44(2): 261-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561595

RESUMO

DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.


Assuntos
Ataxia Telangiectasia , Citocinas , Humanos , Citocinas/genética , Ataxia Telangiectasia/genética , Dano ao DNA , DNA/metabolismo , Transdução de Sinais
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38686720

RESUMO

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Proteínas Nucleares , Humanos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animais , Reparo do DNA , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Síndrome de Quebra de Nijmegen/metabolismo , Síndrome de Quebra de Nijmegen/genética
9.
Eur J Paediatr Neurol ; 50: 57-63, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669738

RESUMO

BACKGROUND: Ataxia telangiectasia (AT) is an autosomal recessive multisystem disorder. Most patients have progressive cerebellar ataxia, oculocutaneous telangiectasia, frequent pulmonary infection, and an increased risk of malignancies. Although N-acetyl-dl-leucine (ADLL) has shown some efficacy in patients with AT, its more pharmacologically active enantiomer, N-acetyl-l-leucine (NALL), has just recently been investigated in ataxic individuals. The current study assessed the efficacy of NALL in patients with AT. METHODS: This 2 × 2 crossover, double-blind, randomized clinical trial was conducted on 20 patients with AT. After excluding four patients, 16 subjects (eight females, eight males; mean age 9.8 ± 3.5 years) with a definitive genetic diagnosis of AT were randomly assigned to one of two study groups, with one group receiving 1-4 g/day NALL or a placebo for six weeks. Subjects then had a 4-week washout before crossing over to the other treatment for an additional six weeks. The Spinocerebellar Ataxia Functional Index (SCAFI) and the Scale for Assessment and Rating of Ataxia (SARA) score assessed patients' motor function. Quality of life (QOL) was evaluated by a specialist using the PedsQL questionnaire. Fasting blood samples were taken from all subjects before and after each intervention to determine potential side effects. RESULTS: Although patients' nausea and constipation were improved, the results failed to reveal any significant benefits of NALL treatment on ataxia symptoms. NALL treatment had no significant effects on SARA, SCAFI-9HPT (9-hole peg test) nondominant, SCAFI-9HPT dominant, or SCAFI-8WMT (8 m walking time) (p > 0.05). Our patient's Physical Health score in Child self-report and Parent proxy-report did not significantly change in the treatment group compared to the placebo (p > 0.05). Furthermore, there were no significant changes in energy and macronutrient intake after NALL treatment. None of the volunteers reported serious or moderate side effects. CONCLUSIONS: To the best of our knowledge, this was the first placebo-controlled, randomized clinical trial exploring NALL's potential effects for treating AT. Despite improvements in some symptomss, NALL intervention failed to improve motor function significantly. However, patients' nausea and constipation were improved by NALL, which can be a relevant benefit clinically.


Assuntos
Ataxia Telangiectasia , Estudos Cross-Over , Leucina , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Feminino , Método Duplo-Cego , Masculino , Criança , Leucina/análogos & derivados , Leucina/uso terapêutico , Adolescente , Resultado do Tratamento , Pré-Escolar , Índice de Gravidade de Doença
11.
Neurosci Lett ; 828: 137764, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582325

RESUMO

BACKGROUND: Ataxia Telangiectasia (AT) is a genetic disorder characterized by compromised DNA repair, cerebellar degeneration, and immune dysfunction. Understanding the molecular mechanisms driving AT pathology is crucial for developing targeted therapies. METHODS: In this study, we conducted a comprehensive analysis to elucidate the molecular mechanisms underlying AT pathology. Using publicly available RNA-seq datasets comparing control and AT samples, we employed in silico transcriptomics to identify potential genes and pathways. We performed differential gene expression analysis with DESeq2 to reveal dysregulated genes associated with AT. Additionally, we constructed a Protein-Protein Interaction (PPI) network to explore the interactions between proteins implicated in AT. RESULTS: The network analysis identified hub genes, including TYROBP and PCP2, crucial in immune regulation and cerebellar function, respectively. Furthermore, pathway enrichment analysis unveiled dysregulated pathways linked to AT pathology, providing insights into disease progression. CONCLUSION: Our integrated approach offers a holistic understanding of the complex molecular landscape of AT and identifies potential targets for therapeutic intervention. By combining transcriptomic analysis with network-based methods, we provide valuable insights into the underlying mechanisms of AT pathogenesis.


Assuntos
Ataxia Telangiectasia , Doenças Cerebelares , Humanos , Doenças Neuroinflamatórias , Mapas de Interação de Proteínas , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos
12.
Cell Syst ; 15(4): 339-361.e8, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38593799

RESUMO

The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-ß expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.


Assuntos
Ataxia Telangiectasia , Infecções por Herpesviridae , Humanos , Fosforilação , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Citocinas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA
13.
Comput Methods Programs Biomed ; 250: 108163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626559

RESUMO

BACKGROUND: Metabolomics, the study of substrates and products of cellular metabolism, offers valuable insights into an organism's state under specific conditions and has the potential to revolutionise preventive healthcare and pharmaceutical research. However, analysing large metabolomics datasets remains challenging, with available methods relying on limited and incompletely annotated metabolic pathways. METHODS: This study, inspired by well-established methods in drug discovery, employs machine learning on metabolite fingerprints to explore the relationship of their structure with responses in experimental conditions beyond known pathways, shedding light on metabolic processes. It evaluates fingerprinting effectiveness in representing metabolites, addressing challenges like class imbalance, data sparsity, high dimensionality, duplicate structural encoding, and interpretable features. Feature importance analysis is then applied to reveal key chemical configurations affecting classification, identifying related metabolite groups. RESULTS: The approach is tested on two datasets: one on Ataxia Telangiectasia and another on endothelial cells under low oxygen. Machine learning on molecular fingerprints predicts metabolite responses effectively, and feature importance analysis aligns with known metabolic pathways, unveiling new affected metabolite groups for further study. CONCLUSION: In conclusion, the presented approach leverages the strengths of drug discovery to address critical issues in metabolomics research and aims to bridge the gap between these two disciplines. This work lays the foundation for future research in this direction, possibly exploring alternative structural encodings and machine learning models.


Assuntos
Aprendizado de Máquina , Metabolômica , Metabolômica/métodos , Humanos , Linhagem Celular , Ataxia Telangiectasia/metabolismo , Hipóxia Celular/fisiologia
14.
Life Sci ; 342: 122541, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428572

RESUMO

AIMS: Published work has shown that ataxia-telangiectasia mutated kinase (ATM) deficiency is associated with cardioprotective effects in Western-type diet (WD)-fed female mice. This study assessed the expression of proteins related to fatty acid oxidation (FAO) and oxidative stress in WD-fed male and female mouse hearts, and investigated if sex-specific cardioprotective effects in WD-fed female ATM-deficient mice are maintained following myocardial infarction (MI). MAIN METHODS: Wild-type (WT) and ATM-deficient (hKO) mice (both sexes) were placed on WD for 14 weeks. Myocardial tissue from a subset of mice was used for western blot analyses, while another subset of WD-fed mice underwent MI. Heart function was analyzed by echocardiography prior to and 1 day post-MI. KEY FINDINGS: CPT1B (mitochondrial FAO enzyme) expression was lower in male hKO-WD, while it was higher in female hKO-WD vs WT-WD. WD-mediated decrease in ACOX1 (peroxisomal FAO enzyme) expression was only observed in male WT-WD. PMP70 (transports fatty acyl-CoA across peroxisomal membrane) expression was lower in male hKO-WD vs WT-WD. Catalase (antioxidant enzyme) expression was higher, while Nox4 (pro-oxidant enzyme) expression was lower in female hKO-WD vs WT-WD. Heart function was better in female hKO-WD vs WT-WD. However, post-MI heart function was not significantly different among all MI groups. Post-MI, CPT1B and catalase expression was higher in male hKO-WD-MI vs WT-WD-MI, while Nox4 expression was higher in female hKO-WD-MI vs WT-WD-MI. SIGNIFICANCE: Increased mitochondrial FAO and decreased oxidative stress contribute towards ATM deficiency-mediated cardioprotective effects in WD-fed female mice which are abolished post-MI with increased Nox4 expression.


Assuntos
Ataxia Telangiectasia , Infarto do Miocárdio , Masculino , Feminino , Camundongos , Animais , Catalase/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Camundongos Knockout , Estresse Oxidativo , Ácidos Graxos/metabolismo , Dieta
15.
Mol Biol Rep ; 51(1): 474, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553623

RESUMO

BACKGROUND: VE-822 is a novel inhibitor of ATR, a key kinase involved in the DNA damage response pathway. The role of ATR inhibition in reversing drug resistance in various cancer types has been investigated. Therefore, this study investigated the effects of ATR inhibition by VE-822 on reversing 5-fluorouracil (5-FU) resistance in colorectal cancer cell line (Caco-2). METHODS: Caco-2 and 5-FU resistance Caco-2 (Caco-2/5-FU) cells were treated with 5-FU and VE-822, alone and in combination. Cell proliferation and viability were assessed by MTT assay and Trypan Blue staining. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) activities were measured by Rhodamine123 accumulation and uptake assay. The mRNA levels of P-gp, MRP-1, ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 1 (CHK1) were measured by qRT-PCR. Western blot was used to measure the protein levels of P-gp, MRP-1, γ-H2AX, ATR and CHK1 in cells. 8-Oxo-2'-deoxyguanosine (8-oxo-dG) levels were determined via ELISA. Apoptosis was evaluated by ELISA death assay, DAPI staining and lactate dehydrogenase (LDH) assay. RESULTS: The Caco-2/5-FU cells showed lower levels of 5-FU mediated proliferation inhibition in comparison to Caco-2 cells. VE-822 decreased the IC50 value of 5-FU on resistant cells. In addition, the expression levels and activity of P-gp and MRP-1 were significantly decreased in resistant cells treated with VE-822 (P < 0.05). The combination of 5-FU and VE-822 increased apoptosis in Caco-2/5-FU cells by downregulating CHK1 and ATR and upregulating γ-H2AX and 8-oxo-dG. CONCLUSION: The simultaneous treatment of resistant colorectal cancer cells with 5-FU and ATR inhibitor, VE-822, was demonstrated to be effective in reversing drug resistance and potentiating 5-FU mediated anticancer effects via targeting DNA damage.


Assuntos
Ataxia Telangiectasia , Neoplasias Colorretais , Isoxazóis , Pirazinas , Humanos , Linhagem Celular Tumoral , Células CACO-2 , 8-Hidroxi-2'-Desoxiguanosina , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fluoruracila/farmacologia , Dano ao DNA , Reparo do DNA , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
16.
Cell Rep ; 43(3): 113896, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442018

RESUMO

The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.


Assuntos
Ataxia Telangiectasia , Poli Adenosina Difosfato Ribose , Humanos , RNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA , Ataxia Telangiectasia/genética , Reparo do DNA , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo
17.
BMJ Case Rep ; 17(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453233

RESUMO

Ataxia telangiectasia (A-T) (OMIM 208900) is an autosomal recessive multisystem disorder characterised by progressive cerebellar ataxia, telangiectasias, immunodeficiency and a predisposition to malignancy. 'Variant' A-T has later onset of neurological symptoms and slower progression compared with the 'classic' form. A woman presented with short stature in late childhood. Karyotype revealed rearrangements involving chromosomes 7 and 14. A chromosomal breakage disorder gene panel demonstrated compound heterozygote mutations in her ATM gene including one mutation c.7271T>G with residual ATM function, confirming the diagnosis of variant A-T. Since diagnosis, she has developed progressive cerebellar ataxia and telangiectasias. Long-standing restrictive and aversive feeding behaviours presented challenges for her management and necessitated gastrostomy.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Degenerações Espinocerebelares , Feminino , Humanos , Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Mutação , Adolescente
18.
J Med Chem ; 67(4): 3090-3111, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306388

RESUMO

The inhibition of ataxia-telangiectasia mutated (ATM) has been shown to chemo- and radio-sensitize human glioma cells in vitro and therefore might provide an exciting new paradigm in the treatment of glioblastoma multiforme (GBM). The effective treatment of GBM will likely require a compound with the potential to efficiently cross the blood-brain barrier (BBB). Starting from clinical candidate AZD0156, 4, we investigated the imidazoquinolin-2-one scaffold with the goal of improving likely CNS exposure in humans. Strategies aimed at reducing hydrogen bonding, basicity, and flexibility of the molecule were explored alongside modulating lipophilicity. These studies identified compound 24 (AZD1390) as an exceptionally potent and selective inhibitor of ATM with a good preclinical pharmacokinetic profile. 24 showed an absence of human transporter efflux in MDCKII-MDR1-BCRP studies (efflux ratio <2), significant BBB penetrance in nonhuman primate PET studies (Kp,uu 0.33) and was deemed suitable for development as a clinical candidate to explore the radiosensitizing effects of ATM in intracranial malignancies.


Assuntos
Ataxia Telangiectasia , Glioblastoma , Piridinas , Quinolonas , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Ataxia Telangiectasia/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Glioblastoma/tratamento farmacológico
19.
Eur J Med Chem ; 267: 116167, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38308949

RESUMO

The Ataxia telangiectasia and RAD3-related (ATR) kinase is a key regulator of DNA replication stress responses and DNA-damage checkpoints. Several potent and selective ATR inhibitors are reported and four of them are currently in clinical trials in combination with radio- or chemotherapy. Based on the idea of degrading target proteins rather than inhibiting them, we designed, synthesized and biologically characterized a library of ATR-targeted proteolysis targeting chimera (PROTACs). Among the synthesized compounds, the lenalidomide-based PROTAC 42i was the most promising. In pancreatic and cervix cancer cells cancer cells, it reduced ATR to 40 % of the levels in untreated cells. 42i selectively degraded ATR through the proteasome, dependent on the E3 ubiquitin ligase component cereblon, and without affecting the associated kinases ATM and DNA-PKcs. 42i may be a promising candidate for further optimization and biological characterization in various cancer cells.


Assuntos
Ataxia Telangiectasia , Feminino , Humanos , Quimera de Direcionamento de Proteólise , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteólise , Dano ao DNA
20.
Redox Biol ; 70: 103059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316066

RESUMO

Reactive oxygen species (ROS) play a pivotal role in macrophage-mediated acute inflammation. However, the precise molecular mechanism by which ROS regulate macrophage polarization remains unclear. Here, we show that ROS function as signaling molecules that regulate M1 macrophage polarization through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (Chk2), vital effector kinases in the DNA damage response (DDR) signaling pathway. We further demonstrate that Chk2 phosphorylates PKM2 at the T95 and T195 sites, promoting glycolysis and facilitating macrophage M1 polarization. In addition, Chk2 activation increases the Chk2-dependent expression of p21, inducing cell cycle arrest for subsequent macrophage M1 polarization. Finally, Chk2-deficient mice infected with lipopolysaccharides (LPS) display a significant decrease in lung inflammation and M1 macrophage counts. Taken together, these results suggest that inhibiting the ROS-Chk2 axis can prevent the excessive inflammatory activation of macrophages, and this pathway can be targeted to develop a novel therapy for inflammation-associated diseases and expand our understanding of the pathophysiological functions of DDR in innate immunity.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fosforilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/genética , Ciclo Celular , Macrófagos/metabolismo , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...