Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
1.
PLoS One ; 19(9): e0308881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39259755

RESUMO

Supernumerary B chromosomes contribute to intraspecific karyotypic variation. B chromosomes have been detected in more than 2000 organisms; they possess unique and diverse features, including non-Mendelian inheritance. Here, we report one or more B chromosomes in the gynodioecious plant Atractylodes lancea. Among 54 A. lancea lines, 0-2 B chromosomes were detected in both hermaphroditic and female plants, with the B chromosomes appearing as DAPI-bright regions within the nuclei. Genomic in situ hybridization revealed that the B chromosomes had no conserved A chromosome DNA sequences, confirmed by fluorescence in situ hybridization probed with independently dissected B chromosomes. In male meiosis, the B chromosome did not pair with an A chromosome and was therefore eliminated; accordingly, only 20.1% and 18.6% of these univalent B chromosomes remained at the end of meiosis for the 1B lines of KY17-148 and KY17-118, respectively. However, we also found that B chromosomes were transmitted from male parents in 40.8%-44.2% and 47.2% of the next generation; although these transmission rates from male parents were not essentially different from Mendelian inheritance (0.5), the transmission of gametes carrying B chromosomes increased through fertilization or seed development. B chromosomes were transmitted from three of four 1B female parents to 64.3%-92.6% of the next generation, suggesting B chromosome accumulation. We propose that the B chromosome of A. lancea has a specific sequence and persists via non-Mendelian inheritance from female parents. Overall, A. lancea, with its unique characteristics, is a promising model for understanding the structure, evolution, and mechanism of non-Mendelian inheritance of B chromosomes.


Assuntos
Atractylodes , Cromossomos de Plantas , Hibridização in Situ Fluorescente , Meiose , Cromossomos de Plantas/genética , Atractylodes/genética , Meiose/genética
2.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4427-4436, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307779

RESUMO

The volatile components of Atractylodis Rhizoma have obvious pharmacological effects and are considered to be the main dry components of Atractylodis Rhizoma. The differences of different processed products of Atractylodis Rhizoma were analyzed from the perspective of volatile oil changes to explain the reasons for dryness reduction and efficacy increase of Atractylodis Rhizoma after processing. HS-GC-MS technology was used to obtain the volatile components of raw Atractylodis Rhizoma, bran-fried Atractylodis Rhizoma, roasted Atractylodis Rhizoma, and rice-water processed Atractylodis Rhizoma under four different processes, and then SIMCA software was used to analyze the volatile oil components of Atractylodis Rhizoma and its different processed products. A total of 87 volatile components were identified in the HS-GC-MS results. A total of 76 volatile components were identified in raw products; 79 volatile components were identified in bran-fried Atractylodis Rhizoma; 70 volatile components were identified in Zhangbang rice-water processed Atractylodis Rhizoma; 81 volatile components were identified in roasted Atractylodis Rhizoma; 78 volatile components were identified in Hunan rice-water processed Atractylodis Rhizoma; 73 volatile components were identified in Jilin rice-water processed Atractylodis Rhizoma, and 77 volatile components were identified in Shanghai rice-water processed Atractylodis Rhizoma. Through multivariate statistical analysis, it was found that there were significant differences between the processed products of Atractylodis Rhizoma. Then, a total of 28 significant differential components between the symbiotic products and the six processed products were established by the OPLS-DA model. Among them, 11 volatile components that generally increased significantly after processing were α-pinene, phellandrene,(1S)-(+)-3-carene, o-isopropyltoluene, D-limonene, α-ocimene, α-isoterpinene, silphiperfol-5-ene,silphinene, γ-alkenyl, and germacrene B, which may be related to their synergistic effect. Five volatile components that generally decreased significantly after processing were ß-elemene, 1-methyl-4-(6-methylhept-5-en-2-yl) cyclohexa-1, 3-diene, ß-selinene,ß-sesquiphellandrene, and atractylon, which may be related to their dryness.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis , Rizoma , Atractylodes/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Rizoma/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Óleos Voláteis/química , Óleos Voláteis/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-39244957

RESUMO

BACKGROUND: The Atractylodes chinensis (DC.) Koidz (A. chinensis) Chinese herb possesses numerous therapeutic properties and is extensively utilized in the pharmaceutical industry. Its quality is closely associated with the harvest periods. However, the optimal quality and harvest periods of A. chinensis remain elusive. METHODS: The bioactive compounds of perennial A. chinensis were detected by ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap/MS) metabolomics, and differentially abundant compounds were selected by multivariate statistical analysis. Then, variations in the content of differential compounds in samples harvested at different periods were analyzed, while correlation analysis was carried out on the differential compounds to determine the suitable harvest period for distinct components. RESULTS: A total of 61 bioactive compounds were detected in all samples, grouped into 9 known classes. The results revealed that the chemical compositions of A. chinensis at different harvest periods were significantly different. The volatile oil content in the four-year-old and five-year-old samples was relatively high, at 31.92 mg/g and 32.42 mg/g, respectively. There were also significant differences in the content of the six active ingredients, for example, the five-year-old sample had the highest content of atractylodin (4.38 mg/g). Indeed, the harvest period was correlated with the abundance of most bioactive compounds. Specifically, quinquennial samples were significantly negatively correlated with the abundance of organic acids and aliphatics while moderately positively correlated with the abundance of other classes of bioactive compounds. CONCLUSIONS: According to the results, the ideal harvest time for atractylenolide Ⅲ was 3 years. Regarding organic acids, the optimal harvest time was around 2-3 years. Taken together, these results offer valuable insights to producers for optimizing the harvest period for A. chinensis.


Assuntos
Atractylodes , Atractylodes/química , Cromatografia Líquida de Alta Pressão/métodos , Análise Multivariada , Sesquiterpenos/análise , Lactonas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Óleos Voláteis/análise , Óleos Voláteis/química , Espectrometria de Massas/métodos , Metabolômica/métodos
4.
Aging (Albany NY) ; 16(16): 12008-12028, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39177661

RESUMO

Atractylodes lancea which was listed in "Shennong's Materia Medica" and could be used to treat gastrointestinal-associated diseases. However, its roles, core and active ingredients, and mechanisms in treatment of colorectal cancer (CRC) were still unknown. Therefore, network pharmacology and experimental validation were used to clarify the effects, core active ingredients and molecular mechanisms of Atractylodes lancea. We found that Atractylodes lancea has 28 effective active components and 213 potential targets. Seventy-three genes which demonstrate interaction between the Atractylodes lancea and CRC were confirmed. Enrichment analysis showed that 2033 GO biological process items and 144 KEGG pathways. Survival and molecular docking analysis revealed that luteolin as the core component interacted with these genes (Matrix metalloproteinase 3 (MMP3), Matrix metalloproteinase 9 (MMP9), Tissue inhibitor of metalloproteinases 1 (TIMP1), Vascular endothelial growth factor A (VEGFA)) with the lowest binding energy, and these genes were involved in building a prognostic model for CRC. Cellular phenotyping experiments showed that luteolin could inhibit the proliferation and migration of CRC cells and downregulate the expression of MMP3, MMP9, TIMP1, VEGFA probably by Phosphoinositide 3-kinase/ serine/threonine kinase Akt (PI3K/AKT) pathway. To conclude, Atractylodes lancea could inhibit proliferation and migration of CRC cells through its core active ingredient (luteolin) to suppress the expression of MMP3, MMP9, TIMP1, VEGFA probably by PI3K/AKT pathway.


Assuntos
Atractylodes , Neoplasias Colorretais , Luteolina , Simulação de Acoplamento Molecular , Farmacologia em Rede , Atractylodes/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Luteolina/farmacologia , Proliferação de Células/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Movimento Celular/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Transdução de Sinais/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
5.
Chin J Nat Med ; 22(8): 756-768, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39197965

RESUMO

Atractylodis Rhizoma, a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases, undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions. However, a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking. This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma, including raw Atractylodis Rhizoma (SCZ), bran-fried Atractylodis Rhizoma (FCZ), deep-fried Atractylodis Rhizoma (JCZ), and rice water-processed Atractylodis Rhizoma (MCZ). It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Rizoma , Atractylodes/química , Rizoma/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Gastroenteropatias/tratamento farmacológico , Animais , Medicina Tradicional Chinesa
6.
Int Immunopharmacol ; 141: 113014, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39191120

RESUMO

Non-alcoholic fatty liver disease (NAFLD) not only could cause abnormal lipid metabolism in the liver, but also could cause liver inflammation. Previous studies have shown that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could alleviate animal liver inflammatory damage and alleviate NAFLD in mice caused by high-fat diet(HFD), but regulation of liver inflammation caused by NAFLD has rarely been reported. In this study, an animal model of non-alcoholic fatty liver inflammation in the liver of mice was established to explore the protective effect of PAMK on the liver of mice. The results showed that PAMK could alleviate the abnormal increase of body weight and liver weight of mice caused by HFD, alleviate the abnormal liver structure of mice, reduce the level of oxidative stress and cytokine secretion in the liver of mice, and downregulate the mRNA expression of TLR4, MyD88, NF-κB and protein expression of P-IκB, P-NF-κB-P65, TLR4, MyD88, NF-κB in the liver. These results indicate that PAMK could alleviate hepatocyte fatty degeneration and damage, oxidative stress and inflammatory response of the liver caused by NAFLD in mice.


Assuntos
Atractylodes , Dieta Hiperlipídica , Fígado , Fator 88 de Diferenciação Mieloide , NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Polissacarídeos , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Atractylodes/química , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Camundongos , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
7.
Phytochemistry ; 227: 114232, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39097216

RESUMO

A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 µg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 µM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.


Assuntos
Antibacterianos , Anti-Inflamatórios , Atractylodes , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Atractylodes/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Simulação de Acoplamento Molecular , Animais , Relação Estrutura-Atividade , Camundongos , Relação Dose-Resposta a Droga , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Bioensaio , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos
8.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999021

RESUMO

Cancer represents one of the most significant health challenges currently facing humanity, and plant-derived antitumour drugs represent a prominent class of anticancer medications in clinical practice. Isovaleryl sucrose esters, which are natural constituents, have been identified as having potential antitumour effects. However, the mechanism of action remains unclear. In this study, 12 isovaleryl sucrose ester components, including five new (1-5) and seven known compounds (6-12), were isolated from the roots of Atractylodes japonica. The structures of the compounds were elucidated using 1D and 2D-NMR spectroscopy, complemented by HR-ESI-MS mass spectrometry. The cytotoxic activities of all the compounds against human colon cancer cells (HCT-116) and human lung adenocarcinoma cells (A549) were also evaluated using the CCK8 assay. The results demonstrated that compounds 2, 4, and 6 were moderately inhibitory to HCT-116 cells, with IC50 values of 7.49 ± 0.48, 9.03 ± 0.21, and 13.49 ± 1.45 µM, respectively. Compounds 1 and 6 were moderately inhibitory to A549, with IC50 values of 8.36 ± 0.77 and 7.10 ± 0.52 µM, respectively. Molecular docking revealed that compounds 1-9 exhibited a stronger affinity for FGFR3 and BRAF, with binding energies below -7 kcal/mol. Compound 2 exhibited the lowest binding energy of -10.63 kcal/mol to FGFR3. We screened the compounds with lower binding energies, and the protein-ligand complexes already obtained after molecular docking were subjected to exhaustive molecular dynamics simulation experiments, which simulated the dynamic behaviour of the molecules in close proximity to the actual biological environment, thus providing a deeper understanding of their functions and interaction mechanisms. The present study provides a reference for the development and use of iso-valeryl sucrose esters in the antitumour field.


Assuntos
Atractylodes , Ésteres , Simulação de Acoplamento Molecular , Sacarose , Humanos , Sacarose/química , Sacarose/análogos & derivados , Sacarose/farmacologia , Ésteres/química , Ésteres/farmacologia , Atractylodes/química , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Células HCT116 , Linhagem Celular Tumoral , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células A549 , Simulação de Dinâmica Molecular , Proliferação de Células/efeitos dos fármacos
9.
Medicine (Baltimore) ; 103(27): e38699, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968529

RESUMO

Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoartrite do Joelho , Atractylodes/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/genética , Farmacologia em Rede/métodos , Humanos , Mapas de Interação de Proteínas , Astrágalo/química , Medicina Tradicional Chinesa/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Astragalus propinquus
10.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3144-3151, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041074

RESUMO

Atractylodes lancea is a perennial herb of the Asteraceae family and is one of the well-known traditional Chinese medicine(TCM). Several studies have documented polyene alkyne and sesquiterpenoid compounds as the main bioactive compounds of A. lancea, especially atractylodin, atractylon, ß-eudesmol, and hinesol in its rhizomes, which possess anti-virus, anti-inflammation, hypoglycemic, anti-hypoxia, liver protection, and diuresis activities. In parallel with the recent advancements in biotechnology, important achievements have been made in the study of biological characteristics and propagation technology of A. lancea. This study reviews the research progress on morphological features, cytogenetics, ecological planting, effective ingredients, and tissue culture techniques of A. lancea from the biology perspective, so as to provide a theoretical basis for reasonable development of A. lancea resources.


Assuntos
Atractylodes , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Animais , Humanos
11.
J Med Food ; 27(8): 797-806, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38919153

RESUMO

Mold contamination poses a significant challenge in the processing and storage of Chinese herbal medicines (CHM), leading to quality degradation and reduced efficacy. To address this issue, we propose a rapid and accurate detection method for molds in CHM, with a specific focus on Atractylodes macrocephala, using electronic nose (e-nose) technology. The proposed method introduces an eccentric temporal convolutional network (ETCN) model, which effectively captures temporal and spatial information from the e-nose data, enabling efficient and precise mold detection in CHM. In our approach, we employ the stochastic resonance (SR) technique to eliminate noise from the raw e-nose data. By comprehensively analyzing data from eight sensors, the SR-enhanced ETCN (SR-ETCN) method achieves an impressive accuracy of 94.3%, outperforming seven other comparative models that use only the response time of 7.0 seconds before the rise phase. The experimental results showcase the ETCN model's accuracy and efficiency, providing a reliable solution for mold detection in Chinese herbal medicine. This study contributes significantly to expediting the assessment of herbal medicine quality, thereby helping to ensure the safety and efficacy of traditional medicinal practices.


Assuntos
Atractylodes , Aprendizado Profundo , Contaminação de Medicamentos , Medicamentos de Ervas Chinesas , Fungos , Contaminação de Medicamentos/prevenção & controle , Fungos/efeitos dos fármacos , Atractylodes/química , Nariz Eletrônico
12.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882048

RESUMO

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Assuntos
Antineoplásicos Fitogênicos , Atractylodes , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Farmacologia em Rede , Fator de Transcrição STAT3 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Atractylodes/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Simulação de Acoplamento Molecular , Astrágalo/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Medicina Tradicional Chinesa , Ensaios de Seleção de Medicamentos Antitumorais
13.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38872428

RESUMO

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Assuntos
Atractylodes , Mucosa Gástrica , Indometacina , Inflamassomos , Lactonas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Sesquiterpenos , Úlcera Gástrica , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Indometacina/efeitos adversos , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Ratos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Lactonas/farmacologia , Lactonas/química , Inflamassomos/metabolismo , Inflamassomos/genética , Inflamassomos/efeitos dos fármacos , Masculino , Atractylodes/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Caspase 1/genética , Caspase 1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Interleucina-18/genética , Interleucina-18/metabolismo
14.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856763

RESUMO

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Assuntos
Atractylodes , Endófitos , Perfilação da Expressão Gênica , Doenças das Plantas , Raízes de Plantas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiologia , Atractylodes/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/metabolismo , Endófitos/classificação , Endófitos/fisiologia , Endófitos/isolamento & purificação , Transcriptoma , Fusarium/genética , Fusarium/fisiologia , China , RNA Ribossômico 16S/genética
15.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892616

RESUMO

(1) Background: Irritable bowel syndrome (IBS) is a common disease in the gastrointestinal (GI) tract. Atractylodes macrocephala Koidz (AMK) is known as one of the traditional medicines that shows a good efficacy in the GI tract. (2) Methods: We investigated the effect of AMK in a network pharmacology and zymosan-induced IBS animal model. In addition, we performed electrophysiological experiments to confirm the regulatory mechanisms related to IBS. (3) Results: Various characteristics of AMK were investigated using TCMSP data and various analysis systems. AMK restored the macroscopic changes and weight to normal. Colonic mucosa and inflammatory factors were reduced. These effects were similar to those of amitriptyline and sulfasalazine. In addition, transient receptor potential (TRP) V1, voltage-gated Na+ (NaV) 1.5, and NaV1.7 channels were inhibited. (4) Conclusion: These results suggest that AMK may be a promising therapeutic candidate for IBS management through the regulation of ion channels.


Assuntos
Atractylodes , Modelos Animais de Doenças , Síndrome do Intestino Irritável , Canais de Cátion TRPV , Zimosan , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/induzido quimicamente , Canais de Cátion TRPV/metabolismo , Camundongos , Atractylodes/química , Masculino , Extratos Vegetais/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
16.
Cell Biochem Biophys ; 82(2): 1409-1419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722472

RESUMO

The activation, injury, and dysfunction of endothelial cells are considered to be the initial key events in the development of atherosclerosis. Di (2-ethylhexyl) phthalate (DEHP), a prevalent organic pollutant, can cause damage to multiple organs. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) is a bioactive compound extracted from A. macrocephala Koidz with various biological activities. This study investigates the protective effects of PAMK on porcine aortic valve endothelial cells (PAVEC) damaged by DEHP. PAVECs treated with DEHP alone or with PAMK showed reduced cell apoptosis and death in PAMK-pretreated cells. PAMK up-regulated Bcl-2 expression and down-regulated Bax protein, suppressing apoptosis. Flow cytometry analysis demonstrated that PAMK protected PAVECs from DEHP-induced damage. These findings suggest that PAMK inhibits cell apoptosis and protects against DEHP damage in endothelial cells.


Assuntos
Valva Aórtica , Apoptose , Atractylodes , Dietilexilftalato , Células Endoteliais , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2 , Animais , Dietilexilftalato/toxicidade , Atractylodes/química , Apoptose/efeitos dos fármacos , Suínos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Polissacarídeos/farmacologia , Polissacarídeos/química , Células Cultivadas , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química
17.
Phytomedicine ; 130: 155739, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797027

RESUMO

BACKGROUND: Atractylodes macrocephala Koidz. (Baizhu in Chinese, BZ) is a typical traditional edible-medicinal herb used for thousands of years. Known as "the spleen-reinforcing medicine", it is often used clinically to treat reduced digestive function, abdominal distension, and diarrhoea, which are all caused by spleen deficiency. Among BZ's processing products, honey bran-fried BZ (HBBZ) is the only processed product recorded in BZ in the 2020 Chinese Pharmacopoeia (ChP). There are differences in effectiveness, traditional application, and clinical indications between them. PURPOSE: This review reviewed BZ and its main product HBBZ from botany, ethnopharmacology, chemical composition, pharmacological effectiveness, and safety. The changes in chemical composition and pharmacological effectiveness of BZ induced by the processing of traditional Chinese medicine were emphatically described. METHODS: Keywords related to Atractylodes macrocephala Koidz., honey bran frying, essential oil, lactones, polysaccharide and combinations to include published studies of BZ and HBBZ from 2004-2023 were searched in the following databases: Pubmed, Chengdu University of TCM Library, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang database. All studies, published in English or Chinese, were included. However, in the process of chemical composition collection, we reviewed all available literature on the chemical composition of BZ and HBBZ. CONCLUSION: Honey bran frying processing methods will affect BZ's chemical composition and pharmacological effectiveness. The types and contents of chemical components in the HBBZ showed some changes compared with those in BZ. For example, the content of volatile oil decreased and the content of lactones increased after stir-fried bran. In addition, new ingredients such as phenylacetaldehyde, 2-acetyl pyrrole, 6- (1,1-dimethylethyl) -3,4-dihydro-1 (2H) -naphthalone and 5-hydroxymethylfurfural appeared. Both BZ and HBBZ have a variety of pharmacological effectiveness. After stir-fried with honey bran, the "Zao Xing" is reduced, and the efficacy of tonify spleen is strengthened, which is more suitable for patients with weak spleen and stomach.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Mel , Medicina Tradicional Chinesa , Atractylodes/química , Mel/análise , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Humanos , Lactonas/farmacologia , Lactonas/análise , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Animais
18.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2434-2440, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812152

RESUMO

The quality control of Chinese medicinal decoction pieces is one of the key tasks in the traditional Chinese medicine industry. In this study, multi-source information fusion was employed to fuse the data from near-infrared spectroscopy, electronic tongues, and other tests and establish an overall quality consistency evaluation method for Atractylodis Macrocephalae Rhizoma, which provided methodological support for the overall quality evaluation of Atractylodis Macrocephalae Rhizoma. The near-infrared spectroscopy information was measured in both static and dynamic states for 23 batches of Atractylodis Macrocephalae Rhizoma samples from different sources, and the electronic tongue sensory information, moisture content, and leachate content were measured. The overall quality of Atractylodis Macrocephalae Rhizoma was evaluated by multi-source information fusion. The results showed that the near-infrared spectroscopy information of 16122103, 801000509, 801000352, 701003656, HX21L01, and 160956 was different from that of other batches of Atractylodis Macrocephalae Rhizoma powder in the static state, and 701003298, 16122103, 701003656, 701003107, 801000229, and 18090404 were the different batches in the dynamic state. The moisture content showed no significant difference between batches. The leachate content in the batch 801000509 was different from that in other batches. The electronic tongue sensory information of 150721004, 151237, 160703004, HX21M01, HX21K04, HX21K01, and 601003516 was different from that of other batches. Furthermore, data layer fusion was employed to analyze the overall quality of Atractylodis Macrocephalae Rhizoma. Four batches, 150721004, HX21M01, HX21K04, and HX21K01, showed the parameters exceeding the 95% control limits and differed from the other samples in terms of the overall quality. This study integrated the information of moisture, near-infrared spectroscopy, and other sources to evaluate the quality consistency among 23 batches of Atractylodis Macrocephalae Rhizoma samples, which provides a reference for the quality consistency evaluation of Chinese medicinal decoction pieces.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Controle de Qualidade , Rizoma , Espectroscopia de Luz Próxima ao Infravermelho , Rizoma/química , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/normas , Espectroscopia de Luz Próxima ao Infravermelho/métodos
19.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812229

RESUMO

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Assuntos
Atractylodes , Lactonas , Folhas de Planta , Sesquiterpenos , Atractylodes/genética , Atractylodes/química , Atractylodes/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/química , Sesquiterpenos/metabolismo , Sesquiterpenos/análise , Lactonas/metabolismo , Lactonas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Furanos/metabolismo , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica de Plantas , Rizoma/genética , Rizoma/química , Rizoma/metabolismo , Sesquiterpenos de Eudesmano
20.
Int J Biol Macromol ; 271(Pt 2): 132467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763249

RESUMO

ß-Elemene, an important component of the volatile oil of Atractylodis macrocephala, has been widely utilized as an antitumor drug for over 20 years. However, the germacrene A synthase (GAS) genes responsible for the biosynthesis of ß-elemene in A. macrocephala were previously unidentified. In this study, two new AmGASs were identified from the A. macrocephala transcriptome, demonstrating their capability to convert farnesyl pyrophosphate into germacrene A, which subsequently synthesizes ß-elemene through Cope rearrangement. Additionally, two highly catalytic AmGAS1 mutations, I307A and E392A, resulted in a 2.23-fold and 1.57-fold increase in ß-elemene synthesis, respectively. Furthermore, precursor supply and fed-batch strategies were employed to enhance the precursor supply, resulting in ß-elemene yields of 7.3 mg/L and 33.3 mg/L, respectively. These findings identify a promising candidate GAS for ß-elemene biosynthesis and lay the foundation for further functional studies on terpene synthases in A. macrocephala.


Assuntos
Sesquiterpenos de Germacrano , Sesquiterpenos , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Sesquiterpenos de Germacrano/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Atractylodes/metabolismo , Atractylodes/química , Atractylodes/genética , Vias Biossintéticas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...