Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Neuropathol Appl Neurobiol ; 50(4): e13005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119929

RESUMO

Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.


Assuntos
Proteínas de Ligação a DNA , Atrofia Muscular Espinal , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/genética
2.
Medicine (Baltimore) ; 103(31): e39076, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093767

RESUMO

RATIONALE: Both spinal muscular atrophy (SMA) and Phenylketonuria (PKU) are caused by biallelic pathogenic mutations. However, there has been no report on case who suffering from both diseases simultaneously. SMA mainly affects the motor function while PKU may have an impact on both the intelligence and motor function. But if only 1 disease is treated while neglecting the other, the treatment effect will be compromised. Here, for the first time, we report a case from China diagnosed with both these diseases and treated properly. PATIENT CONCERNS: A boy was admitted to the Children's Hospital Affiliated to Shandong University (Jinan, China) due to "limb weakness for 19 months" when he was 22 months old. Considering that the child's motor function development is delayed, we made a comprehensive examinations including inherited metabolic diseases and found a significantly increase of phenylalanine concentration in the blood which indicating PKU. Combined with his typical clinical manifestations of SMA, target capture sequencing followed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) technologies were used for genetic confirmation. DIAGNOSES: SMA and PKU was confirmed. INTERVENTIONS: The child was treated with risdiplam and low phenylalanine formula immediately when he was diagnosed with both SMA and PKU. OUTCOMES: The child showed remarkable improvement in motor function and significant decrease of blood phenylalanine concentration after treatment. LESSONS: To our knowledge, this is the first reported case of SMA combined with PKU. This case expands our understanding of diagnosis for synchronous SMA and PKU and highlights the importance of comprehensive examinations and the utilizing of various genetic testing methods to make an accurate diagnosis of genetic diseases, which may help avoiding the progressive damage caused by certain genetic disease with insidious clinical symptoms.


Assuntos
Atrofia Muscular Espinal , Fenilcetonúrias , Humanos , Fenilcetonúrias/genética , Fenilcetonúrias/complicações , Fenilcetonúrias/diagnóstico , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/complicações , Lactente , Testes Genéticos/métodos , Fenilalanina/sangue , Fenilalanina/genética
3.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125934

RESUMO

The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules.


Assuntos
Antioxidantes , Curcumina , Modelos Animais de Doenças , Atrofia Muscular Espinal , Fator 2 Relacionado a NF-E2 , Células-Tronco Neurais , Curcumina/farmacologia , Antioxidantes/farmacologia , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Células Cultivadas
4.
PLoS One ; 19(8): e0308179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088538

RESUMO

Spinal muscular atrophy (SMA) is an intractable neuromuscular disorder primarily caused by homozygous deletions in exon 7 of the SMN1 gene. Early diagnosis and prompt treatment of patients with SMA have a significant impact on prognosis, and several therapies have recently been developed. Current SMA screening tests require a significant turnaround time to identify patients with suspected SMA, due both to the interval between the birth of a newborn and the collection of blood for newborn mass screening and the difficulty in distinguishing between SMN1 and SMN2, a paralog gene that requires testing in specialized laboratories. The aim of this study was therefore to develop a novel SMA screening assay that can be rapidly performed in ordinary hospitals and clinics to overcome these issues. We designed over 100 combinations of forward and reverse primers with 3' ends targeting SMN1-specific sites around exon 7, and evaluated their specificity and amplification efficiency by quantitative PCR to identify the best primer pair. Furthermore, we performed a single-stranded tag hybridization assay after PCR. To evaluate the accuracy and practicality of the newly developed assay, we analyzed saliva specimens from five patients with SMA and two SMA carriers collected in an outpatient clinic and DNA specimens from three patients with SMA and four SMA carriers from a biobank, together with those from healthy individuals. DNA and raw saliva specimens from all patients with SMA demonstrated a biallelic loss of SMN1, whereas those from carriers and healthy individuals did not. The results of 50 independent experiments were consistent for all samples. The assay could be completed within one hour. This simple and convenient new screening tool has the potential to allow patients with SMA to receive disease-modifying therapies within a shorter timeframe.


Assuntos
Primers do DNA , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Humanos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Primers do DNA/genética , Sensibilidade e Especificidade , Hibridização de Ácido Nucleico/métodos , Recém-Nascido , Éxons/genética , Feminino , Masculino , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Triagem Neonatal/métodos
7.
Genes (Basel) ; 15(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39062637

RESUMO

In recent years, significant progress has been made in 5q Spinal Muscular Atrophy therapeutics, emphasizing the importance of early diagnosis and intervention for better clinical outcomes. Characterized by spinal cord motor neuron degeneration, 5q-SMA leads to muscle weakness, swallowing difficulties, respiratory insufficiency, and skeletal deformities. Recognizing the pre-symptomatic phases supported by screening and confirmatory genetic tests is crucial for early diagnosis. This work addresses key considerations in implementing 5q-SMA screening within the Brazilian National Newborn Screening Program and explores Brazil's unique challenges and opportunities, including genetic tests, time-to-patient referral to specialized centers, program follow-up, and treatment algorithms. We aim to guide healthcare professionals and policymakers, facilitating global discussions, including Latin American countries, and knowledge-sharing on this critical subject to improve the care for newborns identified with 5q SMA.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Brasil , Testes Genéticos/métodos , Diagnóstico Precoce , Assistência ao Paciente/métodos , Atrofias Musculares Espinais da Infância/diagnóstico , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/terapia
9.
Genes (Basel) ; 15(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39062735

RESUMO

During the expanded neonatal screening program conducted in 2023, we analyzed samples obtained from 1,227,130 out of 1,256,187 newborns in the Russian Federation in order to detect 5q spinal muscular atrophy (5q SMA). Within the 253-sample risk group formed based on the results of the first screening stage, 5 samples showed a discrepancy between the examination results obtained via various screening methods and quantitative MLPA (used as reference). The discrepancy between the results was caused by the presence of either a c.835-18C>T intronic variant or a c.842G>C p.(Arg281Thr) missense variant in the SMN1 gene, both of which are located in the region complementary to the sequences of annealing probes for ligation and real-time PCR. Three newborns had the c.835-18C>T variant in a compound heterozygous state with a deletion of exons 7-8 of the SMN1 gene, one newborn with two copies of the SMN1 gene had the same variant in a heterozygous state, and one newborn had both variants-c.835-18C>T and c.842G>C p.(Arg281Thr)-in a compound heterozygous state. Additional examination was carried out for these variants, involving segregation analysis in families, carriage analysis in population cohorts, and RNA analysis. Based on the obtained results, according to the ACMG criteria, the c.835-18C>T intronic variant should be classified as likely benign, and the c.842G>C p.(Arg281Thr) missense substitution as a variant of uncertain clinical significance. All five probands are under dynamic monitoring. No 5q SMA symptoms were detected in these newborns neonatally or during a 1-year follow-up period.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Proteína 1 de Sobrevivência do Neurônio Motor , Humanos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Recém-Nascido , Triagem Neonatal/métodos , Feminino , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Mutação de Sentido Incorreto , Heterozigoto , Éxons/genética , Federação Russa/epidemiologia
10.
Int J Biol Macromol ; 275(Pt 2): 133663, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969036

RESUMO

Spinal muscular atrophy (SMA) is a disease that results from mutations in the Survival of Motor Neuron (SMN) gene 1, leading to muscle atrophy due to motor neurons degeneration. SMN plays a crucial role in the assembly of spliceosomal small nuclear ribonucleoprotein complexes via binding to the arginine-glycine rich C-terminal tails of Sm proteins recognized by SMN Tudor domain. E134K Tudor mutation, cause of the more severe type I SMA, compromises the SMN-Sm interaction without a perturbation of the domain fold. By molecular dynamics simulations, we investigated the mechanism of Tudor-SmD1 interaction, and the effects on it of E134K mutation. It was observed that E134 is crucial to catch the positive dimethylated arginines (DMRs) of the SmD1 tail that, wrapping around the acidic Tudor surface, enters a central DMR into an aromatic cage. The flexible cage residue Y130 must be blocked from the wrapped tail to assure a stable binding. The charge inversion in E134K mutation causes the loss of a critical anchor point, disfavoring the tail wrapping and leaving Y130 free to swing, leading to DMR detachments and exposition of the C-terminal region of the tail. This could suggest new hypotheses regarding a possible autoimmune response by anti-Sm autoantibodies.


Assuntos
Atrofia Muscular Espinal , Mutação , Ligação Proteica , Proteína 1 de Sobrevivência do Neurônio Motor , Humanos , Simulação de Dinâmica Molecular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química
11.
Nat Commun ; 15(1): 6191, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048567

RESUMO

Defect in the SMN1 gene causes spinal muscular atrophy (SMA), which shows loss of motor neurons, muscle weakness and atrophy. While current treatment strategies, including small molecules or viral vectors, have shown promise in improving motor function and survival, achieving a definitive and long-term correction of SMA's endogenous mutations and phenotypes remains highly challenging. We have previously developed a CRISPR-Cas9 based homology-independent targeted integration (HITI) strategy, enabling unidirectional DNA knock-in in both dividing and non-dividing cells in vivo. In this study, we demonstrated its utility by correcting an SMA mutation in mice. When combined with Smn1 cDNA supplementation, it exhibited long-term therapeutic benefits in SMA mice. Our observations may provide new avenues for the long-term and efficient treatment of inherited diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Animais , Edição de Genes/métodos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Camundongos , Terapia Genética/métodos , Modelos Animais de Doenças , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Masculino , Feminino
12.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000416

RESUMO

5q-Spinal muscular atrophy (5q-SMA) is one of the most common neuromuscular diseases due to homozygous mutations in the SMN1 gene. This leads to a loss of function of the SMN1 gene, which in the end determines lower motor neuron degeneration. Since the generation of the first mouse models of SMA neuropathology, a complex degenerative involvement of the neuromuscular junction and peripheral axons of motor nerves, alongside lower motor neurons, has been described. The involvement of the neuromuscular junction in determining disease symptoms offers a possible parallel therapeutic target. This narrative review aims at providing an overview of the current knowledge about the pathogenesis and significance of neuromuscular junction dysfunction in SMA, circulating biomarkers, outcome measures and available or developing therapeutic approaches.


Assuntos
Neurônios Motores , Atrofia Muscular Espinal , Junção Neuromuscular , Proteína 1 de Sobrevivência do Neurônio Motor , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/metabolismo , Humanos , Animais , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Biomarcadores , Modelos Animais de Doenças , Mutação , Camundongos
15.
Proc Natl Acad Sci U S A ; 121(29): e2321408121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976730

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing neuromuscular disease caused by a polyglutamine (polyQ)-encoding CAG trinucleotide repeat expansion in the androgen receptor (AR) gene, leading to AR aggregation, lower motor neuron death, and muscle atrophy. AR is a ligand-activated transcription factor that regulates neuronal architecture and promotes axon regeneration; however, whether AR transcriptional functions contribute to disease pathogenesis is not fully understood. Using a differentiated PC12 cell model of SBMA, we identified dysfunction of polyQ-expanded AR in its regulation of neurite growth and maintenance. Specifically, we found that in the presence of androgens, polyQ-expanded AR inhibited neurite outgrowth, induced neurite retraction, and inhibited neurite regrowth. This dysfunction was independent of polyQ-expanded AR transcriptional activity at androgen response elements (ARE). We further showed that the formation of polyQ-expanded AR intranuclear inclusions promoted neurite retraction, which coincided with reduced expression of the neuronal differentiation marker ß-III-Tubulin. Finally, we revealed that cell death is not the primary outcome for cells undergoing neurite retraction; rather, these cells become senescent. Our findings reveal that mechanisms independent of AR canonical transcriptional activity underly neurite defects in a cell model of SBMA and identify senescence as a pathway implicated in this pathology. These findings suggest that in the absence of a role for AR canonical transcriptional activity in the SBMA pathologies described here, the development of SBMA therapeutics that preserve this activity may be desirable. This approach may be broadly applicable to other polyglutamine diseases such as Huntington's disease and spinocerebellar ataxias.


Assuntos
Neuritos , Receptores Androgênicos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Animais , Neuritos/metabolismo , Ratos , Células PC12 , Senescência Celular , Peptídeos/metabolismo , Humanos , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/patologia , Mutação , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia
16.
PLoS One ; 19(6): e0306329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941330

RESUMO

BACKGROUND: Many newborn screening programs worldwide have introduced screening for diseases using DNA extracted from dried blood spots (DBS). In Germany, DNA-based assays are currently used to screen for severe combined immunodeficiency (SCID), spinal muscular atrophy (SMA), and sickle cell disease (SCD). METHODS: This study analysed the impact of pre-analytic DNA carry-over in sample preparation on the outcome of DNA-based newborn screening for SCID and SMA and compared the efficacy of rapid extraction versus automated protocols. Additionally, the distribution of T cell receptor excision circles (TREC) on DBS cards, commonly used for routine newborn screening, was determined. RESULTS: Contaminations from the punching procedure were detected in the SCID and SMA assays in all experimental setups tested. However, a careful evaluation of a cut-off allowed for a clear separation of true positive polymerase chain reaction (PCR) amplifications. Our rapid in-house extraction protocol produced similar amounts compared to automated commercial systems. Therefore, it can be used for reliable DNA-based screening. Additionally, the amount of extracted DNA significantly differs depending on the location of punching within a DBS. CONCLUSIONS: Newborn screening for SMA and SCID can be performed reliably. It is crucial to ensure that affected newborns are not overlooked. Therefore a carefully consideration of potential contaminating factors and the definition of appropriate cut-offs to minimise the risk of false results are of special concern. It is also important to note that the location of punching plays a pivotal role, and therefore an exact quantification of TREC numbers per µl may not be reliable and should therefore be avoided.


Assuntos
DNA , Atrofia Muscular Espinal , Triagem Neonatal , Imunodeficiência Combinada Severa , Humanos , Triagem Neonatal/métodos , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , DNA/genética , DNA/sangue , DNA/análise , Teste em Amostras de Sangue Seco/métodos , Ensaios de Triagem em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos
17.
Gene Ther ; 31(7-8): 391-399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839888

RESUMO

Spinal muscular atrophy (SMA) is a motor neuron disease associated with progressive muscle weakness, ventilatory failure, and reduced survival. Onasemnogene abeparvovec is the first gene replacement therapy (GT) approved to treat this condition. An observational retrospective study was conducted to assess adverse events and efficacy of GT in SMA patients. Forty-one patients with SMA (58.5% females and 80.1% SMA type 1) were included. The mean age at GT dosing was 18 (±6.4) months. Thirty-six patients (87.8%) were under previous treatment with nusinersen, and 10 (24.4%) continued nusinersen after GT. Mean CHOP-INTEND increased 13 points after 6 months and this finding did not differ between groups according to nusinersen maintenance after GT (p = 0.949). Among SMA type 1 patients, 14 (46.6%) reached the ability to sit alone. Liver transaminases elevation at least two times higher than the upper limit of normal value occurred in 29 (70.7%) patients. Thrombocytopenia occurred in 13 (31.7%) patients, and one presented thrombotic microangiopathy. Older age (>2 years) was associated with more prolonged use of corticosteroids (p = 0.021). GT is effective in SMA patients, combined nusinersen after GT did not appear to add gain in motor function and older age is associated with prolonged corticosteroid use.


Assuntos
Terapia Genética , Oligonucleotídeos , Humanos , Feminino , Masculino , Terapia Genética/métodos , Estudos Retrospectivos , Oligonucleotídeos/uso terapêutico , Lactente , Brasil , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Resultado do Tratamento , Pré-Escolar , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/terapia , Produtos Biológicos/uso terapêutico , Proteínas Recombinantes de Fusão
18.
Artigo em Russo | MEDLINE | ID: mdl-38884441

RESUMO

Advances in the treatment of spinal muscular atrophy (SMA) have revolutionized the field. SMA is a rare autosomal recessive neurodegenerative motor neuron disease in which wide phenotypic variability has been described. The rate of increase in neurological deficit and the severity of the disease is mainly determined by the amount of functional SMN (Survival of Motor Neuron) protein. However, the clinical picture may differ significantly in patients carrying homozygous deletions of the SMN1 gene (Survival of Motor Neuron 1) and an identical number of copies of the SMN2 gene (Survival of Motor Neuron 2). A family clinical case of adult patients with spinal muscular atrophy 5q with a homozygous deletion of the SMN1 gene and the same number of copies of the SMN2 gene, having a different clinical picture of the disease, is presented, and the dynamics of the condition against the background of oral pathogenetic therapy is presented.


Assuntos
Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor , Humanos , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Masculino , Homozigoto , Deleção de Genes , Adulto , Feminino , Compostos Azo , Pirimidinas
19.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893532

RESUMO

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.


Assuntos
Peptídeos Penetradores de Células , Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Animais , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
20.
Eur J Paediatr Neurol ; 51: 73-78, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878702

RESUMO

Spinal muscular atrophy (SMA) is one of the most common genetic diseases and was, until recently, a leading genetic cause of infant mortality. Three disease-modifying treatments have dramatically changed the disease trajectories and outcome for severely affected infants (SMA type 1), especially when initiated in the presymptomatic phase. One of these treatments is the adeno-associated viral vector 9 (AAV9) based gene therapy onasemnogene abeparvovec (Zolgensma®), which is delivered systemically and has been approved by the European Medicine Agency for SMA patients with up to three copies of the SMN2 gene or with the clinical presentation of SMA type 1. While this broad indication provides flexibility in patient selection, it also raises concerns about the risk-benefit ratio for patients with limited or no evidence supporting treatment. In 2020, we convened a European neuromuscular expert working group to support the rational use of onasemnogene abeparvovec, employing a modified Delphi methodology. After three years, we have assembled a similar yet larger group of European experts who assessed the emerging evidence of onasemnogene abeparvovec's role in treating older and heavier SMA patients, integrating insights from recent clinical trials and real-world evidence. This effort resulted in 12 consensus statements, with strong consensus achieved on 9 and consensus on the remaining 3, reflecting the evolving role of onasemnogene abeparvovec in treating SMA.


Assuntos
Terapia Genética , Atrofia Muscular Espinal , Humanos , Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Europa (Continente) , Consenso , Produtos Biológicos/uso terapêutico , Atrofias Musculares Espinais da Infância/terapia , Atrofias Musculares Espinais da Infância/genética , Proteínas Recombinantes de Fusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...