Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125823

RESUMO

The effects of low-dose radiation exposure remain a controversial topic in radiation biology. This study compares early (0.5, 4, 24, 48, and 72 h) and late (5, 10, and 15 cell passages) post-irradiation changes in γH2AX, 53BP1, pATM, and p-p53 (Ser-15) foci, proliferation, autophagy, and senescence in primary fibroblasts exposed to 100 and 2000 mGy X-ray radiation. The results show that exposure to 100 mGy significantly increased γH2AX, 53BP1, and pATM foci only at 0.5 and 4 h post irradiation. There were no changes in p-p53 (Ser-15) foci, proliferation, autophagy, or senescence up to 15 passages post irradiation at the low dose.


Assuntos
Autofagia , Proliferação de Células , Senescência Celular , Reparo do DNA , Fibroblastos , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Autofagia/efeitos da radiação , Senescência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Raios X/efeitos adversos , Proliferação de Células/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Histonas/metabolismo , Relação Dose-Resposta à Radiação , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Células Cultivadas , Dano ao DNA/efeitos da radiação
2.
BMC Cancer ; 24(1): 814, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977944

RESUMO

BACKGROUND: Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS: RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS: SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS: In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.


Assuntos
Apoptose , Proliferação de Células , Rabdomiossarcoma , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Rabdomiossarcoma/radioterapia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Radiação Ionizante , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Terapia Combinada
3.
J Photochem Photobiol B ; 258: 112991, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033547

RESUMO

INTRODUCTION: Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Ischemic heart disease is one of the most harmful conditions to cellular structure and function. After reperfusion treatment, a spectrum of adverse effects becomes evident, encompassing altered cell viability, heightened oxidative stress, activated autophagy, and increased apoptosis. Photobiomodulation (PBM) has been utilized in experimental models of cardiac hypoxia to enhance mitochondrial response and ameliorate biochemical changes in injured tissue. However, the effects of PBM on cultured cardiomyocytes subjected to hypoxia/reoxygenation are not yet well established. METHOD: H9C2 cardiomyocytes were exposed to hypoxia with concentrations of 300 µM CoCl2 for 24 h, followed by 16 h of reoxygenation through incubation in a normoxic medium. Treatment was conducted using GaAIAs Laser (850 nm) after hypoxia at an intensity of 1 J/cm2. Cells were divided into three groups: Group CT (cells maintained under normoxic conditions), Group HR (cells maintained in hypoxia and reoxygenation conditions without treatment), Group HR + PBM (cells maintained in hypoxia and reoxygenation conditions that underwent PBM treatment). Cell viability was analyzed using MTT, and protein expression was assessed by western blot. One-way ANOVA with the Tukey post hoc test was used for data analysis. Differences were significant when p < 0.05. RESULTS: PBM at an intensity of 1 J/cm2 mitigated the alterations in cell survival caused by hypoxia/reoxygenation. Additionally, it significantly increased the expression of proteins Nrf2, HSP70, mTOR, LC3II, LC3II/I, and Caspase-9, while reducing the expression of PGC-1α, SOD2, xanthine oxidase, Beclin-1, LC3I, and Bax. CONCLUSION: PBM at intensities of 1 J/cm2 reverses the changes related to oxidative stress, mitochondrial biogenesis, autophagy, and apoptosis caused by hypoxia and reoxygenation in a culture of cardiomyocytes.


Assuntos
Apoptose , Autofagia , Hipóxia Celular , Sobrevivência Celular , Miócitos Cardíacos , Estresse Oxidativo , Miócitos Cardíacos/efeitos da radiação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Sobrevivência Celular/efeitos da radiação , Animais , Ratos , Linhagem Celular , Hipóxia Celular/efeitos da radiação , Autofagia/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Apoptose/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Oxigênio/metabolismo , Cobalto/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
4.
BMC Cardiovasc Disord ; 24(1): 323, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918713

RESUMO

BACKGROUND: Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS: 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS: The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION: In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.


Assuntos
Apoptose , Autofagia , Dexmedetomidina , Miócitos Cardíacos , Lesões Experimentais por Radiação , Animais , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos da radiação , Miócitos Cardíacos/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Dexmedetomidina/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Reguladoras de Apoptose/metabolismo
5.
J Cell Mol Med ; 28(12): e18482, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899556

RESUMO

Hypoxia poses a significant challenge to the effectiveness of radiotherapy in head and neck squamous cell carcinoma (HNSCC) patients, and it is imperative to discover novel approaches to overcome this. In this study, we investigated the underlying mechanisms contributing to x-ray radioresistance in HPV-negative HNSCC cells under mild hypoxic conditions (1% oxygen) and explored the potential for autophagy modulation as a promising therapeutic strategy. Our findings show that HNSCC cells exposed to mild hypoxic conditions exhibit increased radioresistance, which is largely mediated by the hypoxia-inducible factor (HIF) pathway. We demonstrate that siRNA knockdown of HIF-1α and HIF-1ß leads to increased radiosensitivity in HNSCC cells under hypoxia. Hypoxia-induced radioresistance was not attributed to differences in DNA double strand break repair kinetics, as these remain largely unchanged under normoxic and hypoxic conditions. Rather, we identify autophagy as a critical protective mechanism in HNSCC cells following irradiation under mild hypoxia conditions. Targeting key autophagy genes, such as BECLIN1 and BNIP3/3L, using siRNA sensitizes these cells to irradiation. Whilst autophagy's role in hypoxic radioresistance remains controversial, this study highlights the importance of autophagy modulation as a potential therapeutic approach to enhance the effectiveness of radiotherapy in HNSCC.


Assuntos
Autofagia , Hipóxia Celular , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Autofagia/efeitos da radiação , Autofagia/genética , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Reparo do DNA/efeitos da radiação , Reparo do DNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Raios X , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteínas Supressoras de Tumor
6.
Phytomedicine ; 132: 155508, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901286

RESUMO

BACKGROUND: Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE: Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS: A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS: The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION: This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.


Assuntos
Autofagia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Envelhecimento da Pele , Raios Ultravioleta , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Humanos , Raios Ultravioleta/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Serina-Treonina Quinases TOR/metabolismo
7.
J Photochem Photobiol B ; 257: 112948, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833786

RESUMO

Autophagy participates in the regulation of ferroptosis. Among numerous autophagy-related genes (ATGs), ATG5 plays a pivotal role in ferroptosis. However, how ATG5-mediated ferroptosis functions in UVB-induced skin inflammation is still unclear. In this study, we unveil that the core ferroptosis inhibitor GPX4 is significantly decreased in human skin tissue exposed to sunlight. We report that ATG5 deletion in mouse keratinocytes strongly protects against UVB-induced keratinocyte ferroptosis and skin inflammation. Mechanistically, ATG5 promotes the autophagy-dependent degradation of GPX4 in UVB-exposed keratinocytes, which leads to UVB-induced keratinocyte ferroptosis. Furthermore, we find that IFN-γ secreted by ferroptotic keratinocytes facilitates the M1 polarization of macrophages, which results in the exacerbation of UVB-induced skin inflammation. Together, our data indicate that ATG5 exacerbates UVB-induced keratinocyte ferroptosis in the epidermis, which subsequently gives rise to the secretion of IFN-γ and M1 polarization. Our study provides novel evidence that targeting ATG5 may serve as a potential therapeutic strategy for the amelioration of UVB-caused skin damage.


Assuntos
Proteína 5 Relacionada à Autofagia , Ferroptose , Interferon gama , Queratinócitos , Macrófagos , Raios Ultravioleta , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/citologia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Animais , Camundongos , Interferon gama/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Macrófagos/citologia , Humanos , Pele/efeitos da radiação , Pele/metabolismo , Pele/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Autofagia/efeitos da radiação , Inflamação/metabolismo , Inflamação/patologia
8.
Biogerontology ; 25(4): 649-664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38592565

RESUMO

Skin photoaging is mostly caused by ultraviolet A (UVA), although active medications to effectively counteract UVA-induced photoaging have not yet been created. Resveratrol, a naturally occurring polyphenol found in the skin of grapes, has been shown to have various biological functions such as anti-inflammatory and antioxidant characteristics. However, the role of resveratrol in UVA-induced photoaging has not been clarified. We investigated the mechanism of action of resveratrol by UVA irradiation of human skin fibroblasts (HSF) and innovatively modified a mouse model of photoaging. The results demonstrated that resveratrol promoted AMP-activated protein kinase (AMPK) phosphorylation to activate autophagy, reduce reactive oxygen species (ROS) production, inhibit apoptosis, and restore normal cell cycle to alleviate UVA-induced photoaging. In addition, subcutaneous injection of resveratrol not only improved the symptoms of roughness, erythema, and increased wrinkles in the skin of UVA photodamaged mice, but also alleviated epidermal hyperkeratosis and hyperpigmentation, reduced inflammatory responses, and inhibited collagen fiber degradation. In conclusion, our studies proved that resveratrol can treat UVA-induced photoaging and elucidated the possible molecular mechanisms involved, providing a new therapeutic strategy for future anti-aging.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Fibroblastos , Resveratrol , Envelhecimento da Pele , Pele , Raios Ultravioleta , Resveratrol/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Animais , Raios Ultravioleta/efeitos adversos , Humanos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Estilbenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação
9.
J Radiat Res ; 65(3): 291-302, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588586

RESUMO

This study was aimed to investigate the effect of hydrogen-rich solution (HRS) on acute radiation pneumonitis (ARP) in rats. The ARP model was induced by X-ray irradiation. Histopathological changes were assessed using HE and Masson stains. Inflammatory cytokines were detected by ELISA. Immunohistochemistry and flow cytometry were performed to quantify macrophage (CD68) levels and the M2/M1 ratio. Western blot analysis, RT-qPCR, ELISA and flow cytometry were used to evaluate mitochondrial oxidative stress injury indicators. Immunofluorescence double staining was performed to colocalize CD68/LC3B and p-AMPK-α/CD68. The relative expression of proteins associated with autophagy activation and the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin/Unc-51-like kinase 1 (AMPK/mTOR/ULK1) signaling pathway were detected by western blotting. ARP decreased body weight, increased the lung coefficient, collagen deposition and macrophage infiltration and promoted M1 polarization in rats. After HRS treatment, pathological damage was alleviated, and M1 polarization was inhibited. Furthermore, HRS treatment reversed the ARP-induced high levels of mitochondrial oxidative stress injury and autophagy inhibition. Importantly, the phosphorylation of AMPK-α was inhibited, the phosphorylation of mTOR and ULK1 was activated in ARP rats and this effect was reversed by HRS treatment. HRS inhibited M1 polarization and alleviated oxidative stress to activate autophagy in ARP rats by regulating the AMPK/mTOR/ULK1 signaling pathway.


Assuntos
Autofagia , Hidrogênio , Macrófagos , Estresse Oxidativo , Pneumonite por Radiação , Ratos Sprague-Dawley , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Pneumonite por Radiação/tratamento farmacológico , Pneumonite por Radiação/patologia , Pneumonite por Radiação/metabolismo , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Doença Aguda
10.
J Cancer Res Ther ; 20(2): 695-705, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687942

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are intimately involved in cancer radiochemotherapy resistance. However, the mechanism by which macrophages affect radiosensitivity through autophagy remains unclear. The purpose of our study was to investigate how activating autophagy in type-II macrophages (M2) by using rapamycin (RAP) would affect the radiosensitivity of colorectal cancer (CRC) xenografts. MATERIALS AND METHODS: A nude mouse CRC model was established by injecting LoVo CRC cells. After tumor formation, supernatant from M2 cells (autophagy-unactivated), autophagy-activated M2 cells, or autophagy-downregulated M2 cells was injected peritumorally. All tumor-bearing mice were irradiated with 8-Gy X-rays twice, and the radiosensitivity of CRC xenografts was analyzed in each group. RESULTS: The mass, volume, and microvessel density (MVD) of tumors in the autophagy-unactivated M2 group significantly increased; however, supernatant from M2 cells that were autophagy-activated by rapamycin significantly decreased tumor weight, volume, and MVD compared with negative control. Combining bafilomycin A1 (BAF-A1) with RAP treatment restored the ability of the M2 supernatant to increase tumor mass, volume, and MVD. Immunohistochemical and Western blot results showed that compared with the negative control group, supernatant from M2 cells that were not activated by autophagy downregulated the expression of Livin and Survivin in tumor tissues; activation of M2 autophagy further downregulated the protein levels. CONCLUSIONS: Therefore, autophagy-activated M2 supernatant can downregulate the expression of the antiapoptotic genes Livin and Survivin in CRC xenografts, improving the radiosensitivity of CRC by inducing apoptosis in combination with radiotherapy and inhibiting the growth of transplanted tumors.


Assuntos
Autofagia , Neoplasias Colorretais , Camundongos Nus , Tolerância a Radiação , Sirolimo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/metabolismo , Camundongos , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Humanos , Tolerância a Radiação/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos da radiação , Survivina/metabolismo , Survivina/genética , Camundongos Endogâmicos BALB C , Masculino
11.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677261

RESUMO

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Assuntos
Autofagia , Lisossomos , Fármacos Fotossensibilizantes , Humanos , Células HT29 , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inibidores , Luz , Porfirinas/farmacologia , Porfirinas/química , Catepsina D/metabolismo , Catepsina B/metabolismo
12.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499149

RESUMO

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Assuntos
Autofagia , Inflamassomos , Queratinócitos , Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Raios Ultravioleta , Humanos , Autofagia/efeitos da radiação , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Inflamassomos/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Raios Ultravioleta/efeitos adversos , Células Cultivadas
13.
Electromagn Biol Med ; 43(1-2): 61-70, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38347683

RESUMO

Osteoporotic osteoarthritis (OPOA) is a specific phenotype of OA with high incidence and severe cartilage damage. This study aimed to explore the protective efficacy of PEMF on the progression of OPOA and observed the effects of PEMF on PPARγ, autophagy- and apoptosis-related proteins in OPOA rats. Rats were randomly divided into three groups: control group, OPOA group, and PEMF group (n = 6). One week after surgery, the rats in PEMF group were subjected to PEMF (3.82 mT, 8 Hz, 40 min/day and 5 day/week) for 12 weeks. Results showed that PEMF retarded cartilage degeneration and bone loss, as evidenced by pathological staining image, decreased MMP-13 expression and increased bone mineral density. PEMF inhibited the serum levels of inflammatory cytokines, and the expressions of caspase-3 and caspase-8, while upregulated the expression of PPARγ. Moreover, PEMF significantly improved the autophagy disorders, represented by decrease expressions of Beclin-1, P62, and LC3B. The research demonstrates that PEMF can effectively prevent cartilage and subchondral bone destruction in OPOA rats. The potential mechanism may be related to upregulation of PPARγ, inhibition of chondrocyte apoptosis and inflammation, and improvement of autophagy disorder. PEMF therapy thus shows promising application prospects in the treatment of postmenopausal OA.


Osteoporotic osteoarthritis (OPOA) is a very common combination disease, that characterized by chronic pain, swollen joints and susceptibility to fractures. It is particularly common in postmenopausal women. At present, drug therapy is the main treatment method, but the adverse reactions are serious and can not stop the progression of the disease. PEMF is a safe physical therapy that has been shown to increase bone density, reduce pain, and improve joints mobility. In this study, we aimed to explore the protective effect and potential mechanism of PEMF on OPOA. We found that PEMF significantly inhibited the inflammatory response, ameliorated the damaged cartilage and subchondral bone in OPOA rats, that maybe related to the regulation of chondrocyte autophagy and apoptosis. This study provided a new vision for PEMF' treatment on OPOA and has positive significance for the clinical promotion of PEMF.


Assuntos
Apoptose , Autofagia , Modelos Animais de Doenças , Osteoartrite , PPAR gama , Ratos Sprague-Dawley , Animais , Autofagia/efeitos da radiação , PPAR gama/metabolismo , Apoptose/efeitos da radiação , Ratos , Osteoartrite/terapia , Osteoartrite/patologia , Osteoartrite/metabolismo , Feminino , Magnetoterapia , Osteoporose/terapia , Osteoporose/metabolismo , Osteoporose/patologia
14.
J Obstet Gynaecol ; 43(1): 2171281, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36757356

RESUMO

This study was carried out to determine the effect of autophagy modulation in radiation treatment of cervical cancer cells. HeLa and CaSki cells were irradiated with γ-rays (2 Gy/min) after treatment with an autophagy inducer (rapamycin) and inhibitor (3-MA). Expression of LC3 and cell death in two cell preparations were examined. In addition, expression of Caspase-3 and PARP were examined after radiation alone and with autophagy inhibitor treatment. A notable increment of LC3 expression was detected after radiation in both cell lines. Cell viability was observed to decrease in 3-MA-treated cells compared to radiation alone, and even further in rapamycin-treated cells. Apoptosis was confirmed to occur later than autophagy in radiation treatment, and inhibition of autophagy derived a decrease in apoptosis. In conclusion, radiation-induced autophagy may be regulated by modulators, and autophagy augmentation yields an increase in cervical cancer cell death under radiation.Impact statementWhat is already known on this subject? Autophagy is known to contribute both to tumour cell survival and death against radiation therapy. The effect of induction or inhibition of radiation-induced autophagy on cervical cancer cell death is not clear.What the results of this study add? Cell viability was observed to decrease in 3-MA-treated cells compared to radiation alone, and even further in rapamycin-treated cells. Apoptosis occurred later than autophagy in radiation treatment, and inhibition of autophagy derived a decrease in apoptosis.What the implications are of these findings for clinical practice and/or further research? Our results suggest that radiation-induced autophagy may be regulated by modulators, and autophagy augmentation yields an increase in cervical cancer cell death under radiation.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Linhagem Celular Tumoral , Apoptose , Autofagia/fisiologia , Autofagia/efeitos da radiação , Sirolimo/farmacologia
15.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054843

RESUMO

Despite advances in the development of tumor treatments, mortality from cancer continues to increase. Nanotechnology is expected to provide an innovative anti-cancer therapy, to combat challenges such as multidrug resistance and tumor recurrence. Nevertheless, tumors can greatly rely on autophagy as an alternative source for metabolites, and which desensitizes cancer cells to therapeutic stress, hindering the success of any current treatment paradigm. Autophagy is a conserved process by which cells turn over their own constituents to maintain cellular homeostasis. The multistep autophagic pathway provides potentially druggable targets to inhibit pro-survival autophagy under various therapeutic stimuli. In this review, we focus on autophagy inhibition based on functional nanoplatforms, which may be a potential strategy to increase therapeutic sensitivity in combinational cancer therapies, including chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy.


Assuntos
Autofagia , Neoplasias/terapia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Terapia Combinada , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Humanos , Nanopartículas
16.
Mol Cancer Ther ; 21(1): 79-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725193

RESUMO

Despite aggressive treatments, pancreatic ductal adenocarcinoma (PDAC) remains an intractable disease, largely because it is refractory to therapeutic interventions. To overcome its nutrient-poor microenvironment, PDAC heavily relies on autophagy for metabolic needs to promote tumor growth and survival. Here, we explore autophagy inhibition as a method to enhance the effects of radiotherapy on PDAC tumors. Hydroxychloroquine is an autophagy inhibitor at the focus of many PDAC clinical trials, including in combination with radiotherapy. However, its acid-labile properties likely reduce its intratumoral efficacy. Here, we demonstrate that EAD1, a synthesized analogue of HCQ, is a more effective therapeutic for sensitizing PDAC tumors of various KRAS mutations to radiotherapy. Specifically, in vitro models show that EAD1 is an effective inhibitor of autophagic flux in PDAC cells, accompanied by a potent inhibition of proliferation. When combined with radiotherapy, EAD1 is consistently superior to HCQ not only as a single agent, but also in radiosensitizing PDAC cells, and perhaps most importantly, in decreasing the self-renewal capacity of PDAC cancer stem cells (PCSC). The more pronounced sensitizing effects of autophagy inhibitors on pancreatic stem over differentiated cells points to a new understanding that PCSCs may be more dependent on autophagy to counter the effects of radiation toxicity, a potential mechanism explaining the resistance of PCSCs to radiotherapy. Finally, in vivo subcutaneous tumor models demonstrate that combination of radiotherapy and EAD1 is the most successful at controlling tumor growth. The models also confirmed a similar toxicity profile between EAD1 and Hydroxychloroquine.


Assuntos
Autofagia/genética , Autofagia/efeitos da radiação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Radiossensibilizantes/uso terapêutico , Animais , Humanos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Radiossensibilizantes/farmacologia , Análise de Sobrevida , Neoplasias Pancreáticas
17.
Lab Invest ; 102(3): 298-311, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773069

RESUMO

Pancreatic cancer (PC) is highly resistant to chemo and radiotherapy. Radiation-induced fibrosis (RIF) is a major cause of clinical concern for various malignancies, including PC. In this study, we aimed to evaluate the radiosensitizing and anti-RIF potential of fluvastatin in PC. Short-term viability and clonogenic survival assays were used to evaluate the radiosensitizing potential of fluvastatin in multiple human and murine PC cell lines. The expression of different proteins was analyzed to understand the mechanisms of fluvastatin-mediated radiosensitization of PC cells and its anti-RIF effects in both mouse and human pancreatic stellate cells (PSCs). Finally, these effects of fluvastatin and/or radiation were assessed in an immune-competent syngeneic murine model of PC. Fluvastatin radiosensitized multiple PC cell lines, as well as radioresistant cell lines in vitro, by inhibiting radiation-induced DNA damage repair response. Nonmalignant cells, such as PSCs and NIH3T3 cells, were less sensitive to fluvastatin-mediated radiosensitization than PC cells. Interestingly, fluvastatin suppressed radiation and/or TGF-ß-induced activation of PSCs, as well as the fibrogenic properties of these cells in vitro. Fluvastatin considerably augmented the antitumor effect of external radiation therapy and also suppressed intra-tumor RIF in vivo. These findings suggested that along with radiation, fluvastatin co-treatment may be a potential therapeutic approach against PC.


Assuntos
Fluvastatina/farmacologia , Neoplasias Pancreáticas/patologia , Tolerância a Radiação/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/efeitos da radiação , Fibrose/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/radioterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Peixe-Zebra/embriologia
18.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944078

RESUMO

Population aging is occurring rapidly worldwide, challenging the global economy and healthcare services. Brain aging is a significant contributor to various age-related neurological and neuropsychological disorders, including Alzheimer's disease and Parkinson's disease. Several extrinsic factors, such as exposure to ionizing radiation, can accelerate senescence. Multiple human and animal studies have reported that exposure to ionizing radiation can have varied effects on organ aging and lead to the prolongation or shortening of life span depending on the radiation dose or dose rate. This paper reviews the effects of radiation on the aging of different types of brain cells, including neurons, microglia, astrocytes, and cerebral endothelial cells. Further, the relevant molecular mechanisms are discussed. Overall, this review highlights how radiation-induced senescence in different cell types may lead to brain aging, which could result in the development of various neurological and neuropsychological disorders. Therefore, treatment targeting radiation-induced oxidative stress and neuroinflammation may prevent radiation-induced brain aging and the neurological and neuropsychological disorders it may cause.


Assuntos
Encéfalo/patologia , Senescência Celular/efeitos da radiação , Radiação Ionizante , Animais , Autofagia/efeitos da radiação , Humanos , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos da radiação
19.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639063

RESUMO

Autophagy is involved in the degradation of melanosomes and the determination of skin color. TLR4 and tumor necrosis factor (TNF) signaling upregulates NF-kB expression, which is involved in the upregulation of mTOR. The activation of mTOR by UV-B exposure results in decreased autophagy, whereas radiofrequency (RF) irradiation decreases TLR4 and TNF receptor (TNFR) expression. We evaluated whether RF decreased skin pigmentation by restoring autophagy by decreasing the expression of TLR4 or TNFR/NF-κB/mTOR in the UV-B-irradiated animal model. UV-B radiation induced the expressions of TNFR, TLR, and NF-κB in the skin, which were all decreased by RF irradiation. RF irradiation also decreased phosphorylated mTOR expression and upregulated autophagy initiation factors such as FIP200, ULK1, ULK2, ATG13, and ATG101 in the UV-B-irradiated skin. Beclin 1 expression and the expression ratio of LC3-I to LC3-II were increased by UV-B/RF irradiation. Furthermore, melanin-containing autophagosomes increased with RF irradiation. Fontana-Masson staining showed that the amount of melanin deposition in the skin was decreased by RF irradiation. This study showed that RF irradiation decreased skin pigmentation by restoring melanosomal autophagy, and that the possible signal pathways which modulate autophagy could be TLR4, TNFR, NF-κB, and mTOR.


Assuntos
Autofagia/efeitos da radiação , Melaninas/biossíntese , Melanossomas/metabolismo , Ondas de Rádio , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Biomarcadores , Células Cultivadas , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Imuno-Histoquímica , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Pigmentação da Pele/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
20.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575973

RESUMO

Radiation damages many cellular components and disrupts cellular functions, and was previously reported to impair locomotion in the model organism Caenorhabditis elegans. However, the response to even higher doses is not clear. First, to investigate the effects of high-dose radiation on the locomotion of C. elegans, we investigated the dose range that reduces whole-body locomotion or leads to death. Irradiation was performed in the range of 0-6 kGy. In the crawling analysis, motility decreased after irradiation in a dose-dependent manner. Exposure to 6 kGy of radiation affected crawling on agar immediately and caused the complete loss of motility. Both γ-rays and carbon-ion beams significantly reduced crawling motility at 3 kGy. Next, swimming in buffer was measured as a motility index to assess the response over time after irradiation and motility similarly decreased. However, swimming partially recovered 6 h after irradiation with 3 kGy of γ-rays. To examine the possibility of a recovery mechanism, in situ GFP reporter assay of the autophagy-related gene lgg-1 was performed. The fluorescence intensity was stronger in the anterior half of the body 7 h after irradiation with 3 kGy of γ-rays. GFP::LGG-1 induction was observed in the pharynx, neurons along the body, and the intestine. Furthermore, worms were exposed to region-specific radiation with carbon-ion microbeams and the trajectory of crawling was measured by image processing. Motility was lower after anterior-half body irradiation than after posterior-half body irradiation. This further supported that the anterior half of the body is important in the locomotory response to radiation.


Assuntos
Autofagia/efeitos da radiação , Locomoção/efeitos da radiação , Doses de Radiação , Animais , Autofagia/fisiologia , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos , Humanos , Locomoção/fisiologia , Irradiação Corporal Total/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...