RESUMO
The development of autoimmune diseases (ADs) is thought to be caused by a dysfunction of the intrinsic ability of our immune system for "self-nonself" discrimination. Following the breakdown of "self-tolerance," an orchestrated immune cascade develops, involving B- and T-lymphocytes and autoantibodies that target self-antigens. An imbalance of the regulatory immune network and a suitable genetic background, along with external (infectious and environmental) triggers, are all important contributors to the outbreak of clinical autoimmunity. Immunotherapies for ADs can be classified into treatments that are given continuously (chronic treatments) and therapies that are applied only once or intermittently, aiming to induce partial or complete reconstitution of the immune system [immune reconstitution therapies (IRTs)]. The principle underlying IRTs is based on the depletion of mature immune cells and the rebuilding of the immune system. During this process of immune reconstitution, a substantial change in the lymphocyte repertoire occurs, which may explain the impressive and long-term beneficial effects of IRTs, including the possibility of induction of tolerance to self-antigens. Hematopoietic (or bone marrow) stem cell transplantation (HSCT or BMT) represents the prototype-and the most radical type-of IRT therapy. The rationale for HSCT or BMT for the treatment of severe ADs is based on convincing proof in preclinical studies, utilizing various animal models of autoimmunity. More than 30 years' worth of pioneering experiments in various models of ADs have shown that HSCT can lead to substantial improvement or even cure of the autoimmune syndromes and induction of long-term tolerance to autoantigens. The success of treatment depends on how completely the autoantigen-reactive lymphocytes and memory cells are eradicated by the conditioning chemotherapy, which is administered in a single dose before the transplantation. The most successful conditioning methods in animal models of ADs are total body irradiation (TBI) and high-dose cyclophosphamide (CY). These preclinical studies, summarized in this review, have provided important data about the therapeutic potential of HSCT in human ADs and the associated mechanisms of action and have contributed to the formulation of guidelines for clinical applications of autologous or allogeneic HSCT/BMT in refractory autoimmunity.
Assuntos
Doenças Autoimunes , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Transplante de Células-Tronco Hematopoéticas/métodos , Doenças Autoimunes/terapia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Autoimunidade/fisiologiaRESUMO
OBJECTIVE: To compare the ovarian reserve of women of reproductive age with and without thyroid autoimmunity (TAI). METHODS: We performed a retrospective analysis of medical records from an assisted reproduction clinic from February 2017 to December 2021. Women aged between18 and 47 years with data on antithyroperoxidase and antithyroglobulin (anti-Tg) antibodies and assessment of ovarian reserve by anti-müllerian hormone (AMH) and antral follicle count (AFC) were included. Among the 188 participants included, 63 were diagnosed with TAI, and 125 had both antibodies negative. AMH and AFC were compared between groups. Subanalysis based on age, types of antibodies, and thyroid function markers were performed. In addition, bivariate analysis and regression models were used. RESULTS: Overall, there was no difference in the median levels of AMH or AFC between the two groups. However, in the subgroup analysis by age, we observed a trend towards lower median levels of AMH in women over 39 years with TAI (0.9 ng/mL vs. 1.5 ng/mL, p=0.08). In a subanalysis according to antibodies, we found a significantly lower median AFC in the group with anti-Tg than in the group without this antibody (8.0 follicles vs. 11.5 follicles, p=0.036). We also found a significantly higher prevalence of anti-Tg in patients with low ovarian reserve compared to those with normal reserve (60.7% vs. 39.3%, p=0.038). CONCLUSIONS: The ovarian reserve of women with TAI appears to be insidiously compromised over the years, with a decreased ovarian reserve in women with anti-Tg.
Assuntos
Hormônio Antimülleriano , Autoimunidade , Reserva Ovariana , Humanos , Feminino , Reserva Ovariana/fisiologia , Adulto , Estudos Retrospectivos , Hormônio Antimülleriano/sangue , Autoimunidade/fisiologia , Pessoa de Meia-Idade , Adulto Jovem , Autoanticorpos/sangue , Adolescente , Glândula Tireoide/imunologia , Folículo OvarianoRESUMO
BACKGROUND: Few studies have examined the effect of concomitant autoimmune diseases on multiple sclerosis (MS) disability worsening. We set out to examine whether concomitant Crohn's Disease (CD), Ulcerative Colitis (UC), or Type 1 Diabetes (T1D) affect MS disability worsening in a nationwide cohort of MS patients as defined by reaching expanded disability scale status (EDSS) scores 3.0, 4.0 and 6.0. METHODS: Patients with MS onset between January 2004 and January 2019 were identified from the Swedish MS registry and the Swedish National Patient Register. Kaplan-Meier analysis was used to estimate the median time to reach sustained disability milestones. Adjusted Cox proportional hazard regression models were used to calculate the risk of reaching disability milestones among persons with and without CD, UC, or T1D. RESULTS: Out of 8972 persons with MS, 88 (1.0 %) had T1D, 47 (0.8 %) had UC, and 78 (0.9 %) had CD. There was a significantly higher risk of disability progression, for persons with MS and T1D for reaching EDSS 6.0, hazard ratio (HR) = 2.21 (95 % confidence interval (CI) = 1.48 -3.31) and persons with MS and comorbid CD for reaching EDSS 3.0, HR = 2.30 (95 %CI = 1.74-3.04) and 4.0, HR = 1.59 (95 %CI = 1.09-2.32), and persons with MS and comorbid UC for reaching EDSS 3.0 HR = 1.57 (95 %CI = 1.15-2.14). As defined by Charlson's comorbidity index, the co-existence of other co-morbidities conferred a significant increase in the risk of reaching all endpoints, with HR ranging from 1.23 to 1.62. CONCLUSION: Comorbidity is associated with a significantly increased risk of reaching disability end-points, and T1D, CD, and UC increase the risk further. Thus, there appears to be a need for increased vigilance of comorbidites in persons with MS in order to optimise the long-term outcome of MS.
Assuntos
Comorbidade , Diabetes Mellitus Tipo 1 , Progressão da Doença , Esclerose Múltipla , Sistema de Registros , Humanos , Feminino , Masculino , Adulto , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/complicações , Suécia/epidemiologia , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/complicações , Doença de Crohn/complicações , Doença de Crohn/epidemiologia , Colite Ulcerativa/epidemiologia , Colite Ulcerativa/complicações , Colite Ulcerativa/fisiopatologia , Autoimunidade/fisiologiaAssuntos
Autoimunidade , Fertilização in vitro , Síndrome do Ovário Policístico , Injeções de Esperma Intracitoplásmicas , Glândula Tireoide , Humanos , Feminino , Adulto , Fertilização in vitro/métodos , Autoimunidade/fisiologia , Síndrome do Ovário Policístico/imunologia , Glândula Tireoide/imunologia , GravidezRESUMO
Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.
Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Autoimunidade/fisiologia , Ilhotas Pancreáticas/metabolismo , Predisposição Genética para DoençaRESUMO
The clinical onset of type 1 diabetes (namely stage 3 type 1 diabetes [T1D]) is preceded by a relatively prolonged pre-symptomatic phase featured by islet autoimmunity [1] with (Stage 2 T1D) or without (Stage 1 T1D) dysglycaemia. While islet autoimmunity is the hallmark of the underlying autoimmune process, very little evidence is available for the metabolic changes that accompany the loss of functional beta cell mass. Indeed, a steep decline of C-peptide - a surrogate marker of beta cell function - is measurable only ~6 months before the onset of Stage 3 T1D [2]. Disease modifier drugs have, there-fore, a very limited window of intervention because we lack of effective methods to track beta cell function over time and to identify early changes of insulin secretion that precedes dysglycaemia [3, 4] and clinically symptomatic diabetes. Herein, we will revise current approaches to longitudinally track beta cell function over time before the onset of Stage 3 T1D, which might be suitable for monitoring the risk for diabetes progression as well as the effectiveness of disease modifier treatments.
Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Autoimunidade/fisiologia , Secreção de Insulina , Peptídeo C/metabolismoAssuntos
Doenças Autoimunes , Autoimunidade , Síndrome de Down , Humanos , Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Autoimunidade/imunologia , Autoimunidade/fisiologia , Síndrome de Down/complicações , Síndrome de Down/imunologia , Síndrome de Down/fisiopatologia , Sistema Imunitário/imunologia , Sistema Imunitário/fisiopatologiaRESUMO
Immune aging is a complex process rendering the host susceptible to cancer, infection, and insufficient tissue repair. Many autoimmune diseases preferentially occur during the second half of life, counterintuitive to the concept of excess adaptive immunity driving immune-mediated tissue damage. T cells are particularly susceptible to aging-imposed changes, as they are under extreme proliferative pressure to fulfill the demands of clonal expansion and of homeostatic T cell repopulation. T cells in older adults have a footprint of genetic and epigenetic changes, lack mitochondrial fitness, and fail to maintain proteostasis, diverging them from host protection to host injury. Here, we review recent progress in understanding how the human T-cell system ages and the evidence detailing how T cell aging contributes to autoimmune conditions. T cell aging is now recognized as a risk determinant in two prototypic autoimmune syndromes; rheumatoid arthritis and giant cell arteritis. The emerging concept adds susceptibility to autoimmune and autoinflammatory disease to the spectrum of aging-imposed adaptations and opens new opportunities for immunomodulatory therapy by restoring the functional intactness of aging T cells.
Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Idoso , Autoimunidade/fisiologia , Linfócitos T , Envelhecimento , Senescência Celular , Fatores de RiscoRESUMO
BACKGROUND: Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. METHODS: Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. RESULTS: Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. CONCLUSIONS: Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity.
Assuntos
Autoimunidade/fisiologia , Linfócitos B/metabolismo , Dopamina/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Receptores de Dopamina D3/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Células Cultivadas , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Dopamina/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/imunologiaRESUMO
Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T-cell apoptosis in vitro as well as in dimethyl fumarate-treated patients, but are key for the well-known immunomodulatory effects of dimethyl fumarate both in vitro and in an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis. Indeed, dimethyl fumarate immune-modulatory effects on T cells were completely abrogated by pharmacological interference of mitochondrial reactive oxygen species production. These data shed new light on dimethyl fumarate as bona fide immune-metabolic drug that targets the intracellular stress response in activated T cells, thereby restricting mitochondrial function and energetic capacity, providing novel insight into the role of oxidative stress in modulating cellular immune responses and T cell-mediated autoimmunity.
Assuntos
Antioxidantes/farmacologia , Autoimunidade/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Imunossupressores/farmacologia , Adulto , Animais , Antioxidantes/uso terapêutico , Autoimunidade/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Estudos de Coortes , Fumarato de Dimetilo/uso terapêutico , Feminino , Humanos , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Adulto JovemRESUMO
COVID-19 clinical presentation differs considerably between individuals, ranging from asymptomatic, mild/moderate and severe disease which in some cases are fatal or result in long-term effects. Identifying immune mechanisms behind severe disease development informs screening strategies to predict who are at greater risk of developing life-threatening complications. However, to date clear prognostic indicators of individual risk of severe or long COVID remain elusive. Autoantibodies recognize a range of self-antigens and upon antigen recognition and binding, important processes involved in inflammation, pathogen defence and coagulation are modified. Recent studies report a significantly higher prevalence of autoantibodies that target immunomodulatory proteins including cytokines, chemokines, complement components, and cell surface proteins in COVID-19 patients experiencing severe disease compared to those who experience mild or asymptomatic infections. Here we discuss the diverse impacts of autoantibodies on immune processes and associations with severe COVID-19 disease.
Assuntos
Autoanticorpos/imunologia , Autoanticorpos/metabolismo , COVID-19/complicações , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Autoimunidade/fisiologia , COVID-19/metabolismo , Humanos , SARS-CoV-2/metabolismo , Síndrome de COVID-19 Pós-AgudaRESUMO
We review the current knowledge of pancreas pathology in type 1 diabetes. During the last two decades, dedicated efforts toward the recovery of pancreas from deceased patients with type 1 diabetes have promoted significant advances in the characterization of the pathological changes associated with this condition. The implementation of autoantibody screening among organ donors has also allowed examining pancreas pathology in the absence of clinical disease, but in the presence of serological markers of autoimmunity. The assessment of key features of pancreas pathology across various disease stages allows driving parallels with clinical disease stages. The main pathological abnormalities observed in the pancreas with type 1 diabetes are beta-cell loss and insulitis; more recently, hyperexpression of HLA class I and class II molecules have been reproduced and validated. Additionally, there are changes affecting extracellular matrix components, evidence of viral infections, inflammation, and ER stress, which could contribute to beta-cell dysfunction and the stimulation of apoptosis and autoimmunity. The increasing appreciation that beta-cell loss can be less severe at diagnosis than previously estimated, the coexistence of beta-cell dysfunction, and the persistence of key features of pancreas pathology for years after diagnosis impact the perception of the dynamics of this chronic process. The emerging information is helping the identification of novel therapeutic targets and has implications for the design of clinical trials.
Assuntos
Diabetes Mellitus Tipo 1/patologia , Endocrinologia/tendências , Pâncreas/patologia , Autoimunidade/fisiologia , Autopsia , Diabetes Mellitus Tipo 1/história , Diabetes Mellitus Tipo 1/imunologia , Progressão da Doença , Endocrinologia/história , História do Século XX , História do Século XXI , Humanos , Pâncreas/imunologiaRESUMO
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Assuntos
Autoimunidade/fisiologia , Resposta ao Choque Térmico/fisiologia , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/fisiopatologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Fatores Imunológicos/metabolismo , Frações Subcelulares/metabolismoRESUMO
We previously demonstrated that exposure of adult mice to environmental levels of cadmium (Cd) alters immune cell development and function with increases in anti-streptococcal antibody levels, as well as decreases in splenic natural regulatory T cells (nTreg) in the adult female offspring. Based on these data, we hypothesized that prenatal Cd exposure could predispose an individual to developing autoimmunity as adults. To test this hypothesis, the effects of prenatal Cd on the development of autoimmune diabetes and arthritis were investigated. Non-obese diabetic (NOD) mice were exposed to Cd in a manner identical to our previous studies, and the onset of diabetes was assessed in the offspring. Our results showed a similar time-to-onset and severity of disease to historical data, and there were no statistical differences between Cd-exposed and control offspring. Numerous other immune parameters were measured and none of these parameters showed biologically-relevant differences between Cd-exposed and control animals. To test whether prenatal Cd-exposure affected development of autoimmune arthritis, we used SKG mice. While the levels of arthritis were similar between Cd-exposed and control offspring of both sexes, the pathology of arthritis determined by micro-computed tomography (µCT) between Cd-exposed and control animals, showed some statistically different values, especially in the female offspring. However, the differences were small and thus, the biological significance of these changes is open to speculation. Overall, based on the results from two autoimmune models, we conclude that prenatal exposure to Cd did not lead to a measurable propensity to develop autoimmune disease later in life.
Assuntos
Autoimunidade/efeitos dos fármacos , Cádmio/toxicidade , Diabetes Mellitus Tipo 1/etiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Artrite/diagnóstico por imagem , Artrite/epidemiologia , Artrite/etiologia , Autoimunidade/fisiologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/epidemiologia , Feminino , Fêmur/diagnóstico por imagem , Incidência , Masculino , Camundongos Endogâmicos NOD , Gravidez , Baço/citologia , Microtomografia por Raio-XRESUMO
Myelin-specific CD4 T effector cells (Teffs), Th1 and Th17 cells, are encephalitogenic in experimental autoimmune encephalomyelitis (EAE), a well-defined murine model of multiple sclerosis (MS) and implicated in MS pathogenesis. Forkhead box O 1 (FoxO1) is a conserved effector molecule in PI3K/Akt signaling and critical in the differentiation of CD4 T cells into T helper subsets. However, it is unclear whether FoxO1 may be a target for redirecting CD4 T cell differentiation and benefit CNS autoimmunity. Using a selective FoxO1 inhibitor AS1842856, we show that inhibition of FoxO1 suppressed the differentiation and expansion of Th1 cells. The transdifferentiation of Th17 cells into encephalitogenic Th1-like cells was suppressed by FoxO1 inhibition upon reactivation of myelin-specific CD4 T cells from EAE mice. The transcriptional balance skewed from the Th1 transcription factor T-bet toward the Treg transcription factor Foxp3. Myelin-specific CD4 T cells treated with the FoxO1 inhibitor were less encephalitogenic in adoptive transfer EAE studies. Inhibition of FoxO1 in T cells from MS patients significantly suppressed the expansion of Th1 cells. Furthermore, FoxO1 inhibition with AS1842856 promoted the development of functional iTreg cells. The immune checkpoint programmed cell death protein-1 (PD-1)-induced Foxp3 expression in CD4 T cells was impaired by FoxO1 inhibition. These data illustrate an important role of FoxO1 signaling in CNS autoimmunity via regulating autoreactive Teff and Treg balance.
Assuntos
Autoimunidade/fisiologia , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Proteína Forkhead Box O1/imunologia , Esclerose Múltipla/imunologia , Adulto , Animais , Autoimunidade/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Proteína Forkhead Box O1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Quinolonas/farmacologiaRESUMO
Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.
Assuntos
Autoimunidade/fisiologia , Ilhotas Pancreáticas/enzimologia , Fagócitos/fisiologia , Linfócitos T/imunologia , c-Mer Tirosina Quinase/imunologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Antígenos/metabolismo , Antígenos CD11/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Ilhotas Pancreáticas/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/imunologia , Fagócitos/imunologia , Piperazinas/farmacologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismoRESUMO
Hyperserotonemia and brain-specific autoantibodies are detected in some autistic children. Nerve growth factor (NGF) stimulates the proliferation of B lymphocytes with production of antibodies and also increases mast cell serotonin release. This work was the first to investigate the relationship between plasma NGF and both hyperserotonemia and the frequency of serum anti-myelin basic protein (anti-MBP) auto-antibodies in 22 autistic children aged between 4 and 12 years and 22 healthy-matched controls. Levels of NGF, serotonin and anti-MBP were significantly higher in autistic children than healthy control children (P < 0.001). There was a significant positive correlation between NGF and serotonin levels in autistic patients (P < 0.01). In contrast, there was a non-significant correlation between NGF and anti-MBP levels (P > 0.05). In conclusions, serum NGF levels were elevated and significantly correlated to hyperserotonemia found in many autistic children.
Assuntos
Transtorno Autístico/sangue , Transtorno Autístico/epidemiologia , Autoanticorpos/sangue , Autoimunidade/fisiologia , Fator de Crescimento Neural/sangue , Serotonina/sangue , Transtorno Autístico/diagnóstico , Biomarcadores/sangue , Criança , Pré-Escolar , Estudos Transversais , Egito , Feminino , Seguimentos , Humanos , MasculinoRESUMO
Type 1 astrocytes (A1), which are highly proinflammatory and neurotoxic, are prevalent in multiple sclerosis (MS). In addition, in MS and its animal model, experimental autoimmune encephalomyelitis (EAE), immune cells must cross the blood-brain barrier (BBB) and infiltrate into the parenchyma of the central nervous system (CNS) in order to induce neurological deficits. We have previously reported that treatment of EAE with matrine (MAT), a quinazine alkaloid derived from Sophorae Flavescens, effectively inhibited CNS inflammation and promoted neuroregeneration. However, the impact of MAT treatment on astrocyte phenotype is not known. In the present study, we showed that MAT treatment inhibited the generation of neurotoxic A1 astrocytes and promoted neuroprotective A2 astrocytes in the CNS of EAE, most likely by inhibiting production of the A1-inducing cytokine cocktail. MAT also downregulated the expression of vascular endothelial growth factor-A (VEGF-A) and upregulated tight junction proteins Claudin 5 and Occludin, thus protecting the BBB from CNS inflammation-induced damage. Moreover, MAT treatment promotes the formation of astrocyte tight junctions at glia limitans, thereby limiting parenchymal invasion of the CNS by immune cells. Taken together, the inhibition of A1 astrogliogenesis, and the dual effects on the BBB and astrocytic glia limitans, may be the mechanisms whereby MAT significantly improves EAE clinical scores and neuroprotection.
Assuntos
Alcaloides/farmacologia , Astrócitos/efeitos dos fármacos , Autoimunidade/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fenótipo , Quinolizinas/farmacologia , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Autoimunidade/fisiologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Feminino , Cobaias , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , MatrinasRESUMO
Several studies have reported the association between thyroid autoimmunity (TAI) and in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) outcomes. However, the findings remain controversial. We performed a large-scale retrospective cohort study to verify the effect of the presence of thyroid antibodies on IVF/ICSI outcomes and fetal growth and to evaluate the association between the types and titers of thyroid antibodies and adverse IVF/ICSI outcomes. A total of 16481 patients with infertility were referred to the Reproductive Center of Peking University Third Hospital for their first IVF/ICSI treatment between January 2018 and June 2019.Patients who sought IVF/ICSI treatment due to tubal or male factors infertility and who achieved fresh embryo transfer were included in our study. Finally, 778 patients with thyroid antibody positivity were selected as the TAI group, and 778 age-matched patients were included in the control group. The number of oocytes retrieved and high-graded embryos and the rates of clinical pregnancy, miscarriage, live birth, and preterm delivery were compared between the TAI and control groups. In addition, subgroup analysis was performed to demonstrate whether different types and titers of thyroid antibodies had different effects on IVF/ICSI outcomes. After adjusting for thyroid function, anti-Müllerian hormone levels, basal follicle stimulating hormone levels, basal estradiol levels and antral follicle count, the number of oocytes retrieved in the TAI group was significantly lower than that in the control group. No significant differences were observed between the two groups in the rates of clinical pregnancy, miscarriage, preterm delivery, live birth, and birth weight in singletons; however, the birth weight in twin pregnancy was significantly lower in the TAI group than in the control group. Subgroup analysis showed no association between the types or titers of thyroid antibodies and adverse IVF/ICSI outcomes. In conclusion, the presence of TAI in patients with infertility did not impair embryo quality or affect pregnancy outcomes, including clinical pregnancy, miscarriage, preterm delivery, and live birth. However, it decreased the number of oocytes retrieved and birth weight in twin pregnancy.