Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 23290, 2024 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375441

RESUMO

Stem nematode (Ditylenchus destructor Thorne) is considered one of the most economically devastating species affecting sweet potato production. Biocontrol offers a sustainable strategy for nematode control. This study conducted a pot experiment to evaluate the biocontrol efficacy of Paecilomyces lilacinus CS-Z and Bacillus pumilus Y-26 against the stem nematode, as well as to examine their influence on the bacterial communities in the sweet potato rhizosphere. The findings indicated that B.pumilus Y-26 and P.lilacinus CS-Z exhibited respective suppression rates of 82.9% and 85.1% against the stem nematode, while also stimulating sweet potato plant growth. Both high-throughput sequencing and Biolog analysis revealed distinct impacts of the treatments on the bacterial communities. At the phylum level, B.pumilus Y-26 enhanced the abundance of Actinobacteria but reduced the abundance of Cyanobacteria, with P.lilacinus CS-Z exhibiting similar effects. Additionally, the treatment with B.pumilus Y-26 resulted in increased abundances of Crossiella, Gaiella, Bacillus, and Streptomyces at the genus level, while the treatment with P.lilacinus CS-Z showed increased abundances of Crossiella and Streptomyces. In contrast, the abundance of Pseudarthrobacter was reduced in the treatment with B.pumilus Y-26. Conversely, the application of the nematicide fosthiazate exhibited minor influence on the bacterial community. The findings indicated that the application of P.lilacinus CS-Z and B.pumilus Y-26 led to an increase in the relative abundances of beneficial microorganisms, including Gaiella, Bacillus, and Streptomyces, in the rhizosphere soil. In conclusion, P.lilacinus CS-Z and B.pumilus Y-26 demonstrated their potential as environmentally friendly biocontrol agents for managing stem nematode disease of sweet potato.


Assuntos
Bacillus pumilus , Ipomoea batatas , Paecilomyces , Rizosfera , Microbiologia do Solo , Ipomoea batatas/microbiologia , Ipomoea batatas/parasitologia , Animais , Bacillus pumilus/fisiologia , Paecilomyces/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nematoides/microbiologia , Nematoides/fisiologia , Bactérias/genética , Bactérias/classificação , Caules de Planta/microbiologia , Caules de Planta/parasitologia , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico , Hypocreales
2.
Poult Sci ; 103(11): 104115, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39303323

RESUMO

The widespread use of antibiotics causes the development of antibiotic-resistant bacterial strains, which have a severe impact on poultry productivity and human health. As a result, research is continuing to develop safe natural antibiotic alternatives. In the current study, Bacillus pumilus SA388 was isolated from the chicken feces and confirmed to be a probiotic. The selected strain was tested for its antimutagenic and antioxidant capabilities before being employed as a probiotic food supplement and antibiotic alternative. The effect of B. pumilus SA388 impact on broiler chickens' growth performance, gut microbiome, blood biochemical markers, immunological response, and meat quality was also studied. B. pumilus SA388 showed significant bactericidal activity against Streptococcus pyogenes, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Klebsiella pneumonia. A total of 200 chickens were used in the present study, divided equally among four experimental groups (ten birds per group with 5 replicates): group 1 (control, G1) received a basal diet without B. pumilus SA388, group 2 (G2) received a basal diet supplemented with 0.4 mg/kg of B. pumilus SA388, group 3 (G3) received a basal diet supplemented with 0.8 mg/kg of B. pumilus SA388, and group 4 (G4) received a basal diet supplemented with 1.6 mg/kg of B. pumilus SA388. Over 35 d, the B. pumilus SA388-supplemented groups outperformed the G1 in terms of body weight gain, performance index, and feed conversion ratio, with a preference for the G4 treatment. The levels of alanine aminotransferase (ALT), aspartate transaminase (AST), low-density lipoprotein (LDL), and total cholesterol decreased significantly (P < 0.05) with increasing B. pumilus SA388 dosages compared to the control G1 group. Dietary supplementation of B. pumilus SA388 at 1.6 mg/kg (G4) significantly (P < 0.05) resulted in improved lipid profile, immunological response, thyroid function, and gut microbiota compared to the control group (G1). Compared to the broilers in the control treatment (G1), the addition of B. pumilus SA388 to broilers in G4 significantly (P < 0.05) enhanced juiciness, tenderness, aroma, and taste. Adding B. pumilus SA388 to chicken feed at different doses significantly (P < 0.05) decreased average feed intake while increasing economic and relative efficiency measures. In conclusion, B. pumilus SA388 has been proven to be an effective antibiotic and nutritional supplement.


Assuntos
Ração Animal , Bacillus pumilus , Galinhas , Dieta , Microbioma Gastrointestinal , Carne , Probióticos , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Galinhas/fisiologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Carne/análise , Ceco/microbiologia , Análise Química do Sangue/veterinária , Suplementos Nutricionais/análise , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Masculino , Distribuição Aleatória
3.
Fish Shellfish Immunol ; 153: 109846, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168291

RESUMO

Probiotic Bacillus pumilus SE5, heat-inactivated (HSE5) or active (ASE5), were supplemented to high soybean meal (HSM) (36 %) diet at whole term (0-56 days) and middle term (29-56 days) to investigate the preventing and repairing effects of B. pumilus SE5 in ameliorating the adverse effects of HSM in Epinephelus coioides. The results suggested that the HSM significantly decreased the weight gain rate (WGR), specific growth rate (SGR), and increased the feed conversion rate (FCR) at day 56 (P < 0.05), while HSE5 and ASE5 promoted the growth performance. The HSE5 and ASE5 showed preventive and reparative functions on the antioxidant capacity and serum immunity, with significantly increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) activities, and reduced malondialdehyde (MDA) level, and increased acid phosphatase (ACP), alkaline phosphatase (AKP), immunoglobulin M (IgM) and complement 3 (C3). The HSM impaired the intestinal health (destroyed the intestinal structure, significantly increased the contents of serum D-lactic acid and diamine oxidase, and reduced the expressions of claudin-3 and occludin), while HSE5 and ASE5 improved them at whole term and middle term. The HSM impaired the intestinal microbiota and reduced its diversity, and the HSE5 or ASE5 improved the intestinal microbiota (especially at whole term). HSE5 and ASE5 improved the intestinal mRNA expressions of anti-inflammatory genes (il-10 and tgf-ß1) and reduced the expressions of pro-inflammatory genes (il-1ß, il-8, il-12), and promoted the expressions of humoral immune factor-related genes (cd4, igm, mhcII-α) and antimicrobial peptide genes (ß-defensin, epinecidin-1 and hepcidin-1), and decreased the expressions of NF-κB/MAPK signaling pathway-related genes (ikk-α, nf-κb, erk-1), and improved the expressions of MAPK signaling pathway-related gene p38-α (P < 0.05). In conclusion, the heat-inactivated and active B. pumilus SE5 effectively prevented and repaired the suppressive effects of soybean meal in E. coioides, which underscored the potential of B. pumilus SE5 as a nutritional intervention agent in HSM diet in aquaculture.


Assuntos
Ração Animal , Bacillus pumilus , Bass , Dieta , Glycine max , Probióticos , Animais , Bass/imunologia , Ração Animal/análise , Dieta/veterinária , Probióticos/administração & dosagem , Probióticos/farmacologia , Bacillus pumilus/imunologia , Bacillus pumilus/química , Glycine max/química , Temperatura Alta/efeitos adversos , Imunidade Inata , Distribuição Aleatória , Microbioma Gastrointestinal/efeitos dos fármacos
5.
Microbiol Spectr ; 12(10): e0003724, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39162547

RESUMO

Bacillus pumilus exhibits substantial economic significance, with its metabolism, adaptability, and ecological functions regulated by its bacteriophages. Here, we isolated and characterized a novel temperate phage vB_BpuM-ZY1 from B. pumilus derived from mangrove sediments by mitomycin C induction. Phage vB_BpuM-ZY1 is a typical myophage, which has an icosahedral head with a diameter of 43.34 ± 2.14 nm and a long contractible tail with a length of 238.58 ± 5.18 nm. Genomic analysis indicated that vB_BpuM-ZY1 encodes genes for lysogeny control, and its life cycle may be intricately regulated by multiple mechanisms. vB_BpuM-ZY1 was predicted to employ P2-like 5'-extended-cos packaging strategy. In addition, genome-wide phylogenetic tree and proteome tree analyses indicated that vB_BpuM-ZY1 belongs to the Peduoviridae family but forms a separate branch at a deeper taxonomic level. Particularly, the comparative genomic analysis showed that vB_BpuM-ZY1 has less than 70% intergenomic similarities with its most similar phages. Thus, we propose that vB_BpuM-ZY1 is a novel Bacillus phage belonging to a new genus under the Peduoviridae family. The protein-sharing network analysis identified 44 vB_BpuM-ZY1-related phages. Interestingly, these evolutionarily related myophages infect a broad range of hosts across different phyla, which may be explained by the high structural variations of the host recognition domain in their central spike proteins. Collectively, our study will contribute to our understanding of Bacillus phage diversity and Bacillus-phage interactions, as well as provide essential knowledge for the industrial application of B. pumilus. IMPORTANCE: Although recent metagenomics research has obtained a wealth of phage genetic information, much of it is considered "dark matter" because of the lack of similarity with known sequences in the database. Therefore, the isolation and characterization of novel phages will help to interpret the vast unknown viral metagenome data and improve our understanding of phage diversity and phage-host interactions. Bacillus pumilus shows high economic relevance due to its wide applications in biotechnology, industry, biopharma, and environmental sectors. Since phages influence the abundance, metabolism, evolution, fitness, and ecological functions of bacteria through complex interactions, the significance of isolation and characterization of novel phages infecting B. pumilus is apparent. In this study, we isolated and characterized a B. pumilus phage belonging to a novel viral genus, which provides essential knowledge for phage biology as well as the industrial application of B. pumilus.


Assuntos
Fagos Bacilares , Bacillus pumilus , Genoma Viral , Genômica , Filogenia , Fagos Bacilares/genética , Fagos Bacilares/classificação , Fagos Bacilares/isolamento & purificação , Fagos Bacilares/fisiologia , Bacillus pumilus/virologia , Bacillus pumilus/genética , Lisogenia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/virologia , Bacillus/virologia , Bacillus/genética , Bacillus/classificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
PeerJ ; 12: e17364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035159

RESUMO

Due to the emergence of drug-resistant microorganisms, the search for broad-spectrum antimicrobial compounds has become extremely crucial. Natural sources like plants and soils have been explored for diverse metabolites with antimicrobial properties. This study aimed to identify microorganisms from agricultural soils exhibiting antimicrobial effects against known human pathogens, and to highlight the chemical space of the responsible compounds through the computational metabolomics-based bioprospecting approach. Herein, bacteria were extracted from soil samples and their antimicrobial potential was measured via the agar well diffusion method. Methanolic extracts from the active bacteria were analyzed using the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) technique, and the subsequent data was further analyzed through molecular networking approach which aided in identification of potential anti-microbial compounds. Furthermore, 16S rRNA gene sequencing enabled identification of the active bacterial isolates, where isolate 1 and 2 were identified as strains of Bacillus pumilus, whilst isolate 3 was found to be Bacillus subtilis. Interestingly, isolate 3 (Bacillus subtilis) displayed wide-ranging antimicrobial activity against the tested human pathogens. Molecular networking revealed the presence of Diketopiperazine compounds such as cyclo (D-Pro-D-Leu), cyclo (L-Tyr-L-Pro), cyclo (L-Pro-D-Phe), and cyclo (L-Pro-L-Val), alongside Surfactin C, Surfactin B, Pumilacidin E, and Isarrin D in the Bacillus strains as the main anti-microbial compounds. The application of the molecular networking approach represents an innovation in the field of bio-guided bioprospection of microorganisms and has proved to be an effective and feasible towards unearthing potent antimicrobial compounds. Additionally, the (computational metabolomics-based) approach accelerates the discovery of bioactive compounds and isolation of strains which offer a promising avenue for discovering new clinical antimicrobials. Finally, soil microbial flora could serve an alternative source of anti-microbial compounds which can assist in the fight against emergence of multi-drug resistance bacterial pathogens.


Assuntos
Bioprospecção , Microbiologia do Solo , Bioprospecção/métodos , Espectrometria de Massas/métodos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , RNA Ribossômico 16S/genética , Humanos , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cromatografia Líquida/métodos , Bacillus pumilus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química
7.
Bioprocess Biosyst Eng ; 47(9): 1547-1554, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38904716

RESUMO

This study investigated the effect of pH on poly-γ-L-diaminobutanoic acid (γ-PAB) production by Bacillus pumilus in batch fermentation. In the natural fermentation where pH was not controlled, pH decreased from initial 7.0 to 3.0 in 18 h and γ-PAB production was 428.6 mg/L. In the pH-controlled fermentation, B. pumilus tended to proliferation at higher pH, while γ-PAB synthesis was favorable at lower pH, in which the optimal pH for γ-PAB production was 4.2, and γ-PAB yield reached 2284.5 mg/L. Adopting a pH shock strategy which lasted 9 h in the pre-fermentation phase, biomass (OD600) and γ-PAB yield of B. pumilus were obtained as 61.3 and 2794.6 mg/L, respectively, which were 10.8% and 22.4% higher than those in batch fermentation without pH shock. Subsequent fermentation of repeated pH shocks showed that a further higher productivity could be achieved, in which the final OD600 reached 65.1, and γ-PAB production reached as high as 3482.3 mg/L, which were increased by 6.2% and 17.1% compared with those in single pH shock, respectively. This study demonstrated that B. pumilus can synthesize more γ-PAB at suboptimal pH and provided a novel approach to regulate γ-PAB synthesis.


Assuntos
Bacillus pumilus , Concentração de Íons de Hidrogênio , Bacillus pumilus/metabolismo , Aminobutiratos/metabolismo , Fermentação
8.
Mol Biol (Mosk) ; 58(1): 178-186, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38943590

RESUMO

Production of extracellular membrane vesicles plays an important role in communication in bacterial populations and in bacteria-host interactions. Vesicles as carriers of various regulatory and signaling molecules may be potentially used as disease biomarkers and promising therapeutic agents, including vaccine preparations. The composition of membrane vesicles has been deciphered for a limited number of Gram-negative and Gram-positive bacteria. In this work, for the first time, extracellular membrane vesicles of a streptomycin-resistant strain Bacillus pumilus 3-19, a producer of extracellular guanyl-preferring ribonuclease binase, are isolated, visualized, and characterized by their genome and proteome composition. It has been established that there is no genetic material in the vesicles and the spectrum of the proteins differs depending on the phosphate content in the culture medium of the strain. Vesicles from a phosphate-deficient medium carry 49 unique proteins in comparison with 101 from a medium with the high phosphate content. The two types of vesicles had 140 mutual proteins. Flagellar proteins, RNase J, which is the main enzyme of RNA degradosomes, phosphatases, peptidases, iron transporters, signal peptides, were identified in vesicles. Antibiotic resistance proteins and amyloid-like proteins whose genes are present in B. pumilus 3-19 cells are absent. Phosphate deficiency-induced binase was found only in vesicles from a phosphate-deficient medium.


Assuntos
Bacillus pumilus , Proteínas de Bactérias , Vesículas Extracelulares , Proteoma , Bacillus pumilus/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/enzimologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteoma/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ribonucleases/metabolismo , Ribonucleases/genética , Fosfatos/metabolismo , Farmacorresistência Bacteriana/genética , Endorribonucleases
9.
J Hazard Mater ; 474: 134779, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850935

RESUMO

Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.


Assuntos
Bacillus pumilus , Compostos Benzidrílicos , Biodegradação Ambiental , Disruptores Endócrinos , Lacase , Fenóis , Compostos Benzidrílicos/metabolismo , Lacase/metabolismo , Lacase/genética , Fenóis/metabolismo , Bacillus pumilus/enzimologia , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Disruptores Endócrinos/metabolismo , Concentração de Íons de Hidrogênio , Saccharomycetales/metabolismo , Saccharomycetales/genética
10.
Open Vet J ; 14(1): 144-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633157

RESUMO

Background: A commercially significant species in the aquaculture sector globally, particularly in Egypt, is Litopenaeus vannamei. Aim: The experiment's objective was to ascertain how Sanolife PRO-F impacted the growth, water quality, immunological response, and intestinal morphometry of L. vannamei. Methods: In the current investigation, which lasted 12 weeks, Sanolife PRO-F was administered to shrimp post-larvae at diet doses of 0 (control), 1 (group one), 2 (group two), and 3 (group three) g/kg diet, respectively. Each experimental group had three repetitions. Results: In the current study, shrimp fed on probiotic-treated diets showed a considerable improvement in growth performance measures and survival rate, and the nonspecific immune response was also enhanced. Shrimp fed probiotic diets had longer and more intestinal villi overall. Shrimp fed on the G2 and G3 diets showed no appreciable differences in growth or intestinal morphology. With the G2 and G3 diet, the water had lower concentrations of nitrite and ammonia. Conclusion: The study's findings indicate that Sanolife PRO-F treatment at 2-3 g/kg feed promotes the growth of shrimp, immunological response, gut health and function, and water quality.


Assuntos
Bacillus licheniformis , Bacillus pumilus , Penaeidae , Probióticos , Animais , Bacillus subtilis , Qualidade da Água , Imunidade Inata , Penaeidae/fisiologia , Probióticos/farmacologia
11.
Braz J Microbiol ; 55(2): 1507-1519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468117

RESUMO

Bioremediation of surfactants in water bodies holds significant ecological importance as they are contaminants of emerging concern posing substantial threats to the aquatic environment. Microbes exhibiting special ability in terms of bioremediation of contaminants have always been reported to thrive in extraordinary environmental conditions that can be extreme in terms of temperature, lack of nutrients, and salinity. Therefore, in the present investigation, a total of 46 bacterial isolates were isolated from the Indian sector of the Southern Ocean and screened for degradation of sodium dodecyl sulphate (SDS). Further, two Gram-positive psychrotolerant bacterial strains, ASOI-01 and ASOI-02 were identified with significant SDS degradation potential. These isolates were further studied for growth optimization under different environmental conditions. The strains were characterized as Staphylococcus saprophyticus and Bacillus pumilus based on morphological, biochemical, and molecular (16S RNA gene) characteristics. The study reports 88.9% and 93.4% degradation of SDS at a concentration of 100 mgL-1, at 20 °C, and pH 7 by S. saprophyticus ASOI-01 and B. pumilus ASOI-02, respectively. The experiments were also conducted in wastewater samples where a slight reduction in degradation efficiency was observed with strains ASOI-01 and ASOI-02 exhibiting 76.83 and 64.93% degradation of SDS respectively. This study infers that these bacteria can be used for the bioremediation of anionic surfactants from water bodies and establishes the potential of extremophilic microbes for the utilization of sustainable wastewater management.


Assuntos
Bacillus pumilus , Biodegradação Ambiental , Água do Mar , Dodecilsulfato de Sódio , Staphylococcus saprophyticus , Dodecilsulfato de Sódio/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Bacillus pumilus/isolamento & purificação , Bacillus pumilus/classificação , Staphylococcus saprophyticus/genética , Staphylococcus saprophyticus/isolamento & purificação , Staphylococcus saprophyticus/metabolismo , Staphylococcus saprophyticus/classificação , Água do Mar/microbiologia , Tensoativos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/metabolismo , Águas Residuárias/microbiologia
12.
J Microencapsul ; 41(3): 170-189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469757

RESUMO

The study aimed to develop a solid biofertilizer using Bacillus pumilus, focusing on auxin production to enhance plant drought tolerance. Methods involved immobilising B. pumilus in alginate-starch beads, focusing on microbial concentration, biopolymer types, and environmental conditions. The optimal formulation showed a diameter of 3.58 mm ± 0.18, a uniform size distribution after 15 h of drying at 30 °C, a stable bacterial concentration (1.99 × 109 CFU g-1 ± 1.03 × 109 over 180 days at room temperature), a high auxin production (748.8 µg g-1 ± 10.3 of IAA in 7 days), and a water retention capacity of 37% ± 4.07. In conclusion, this new formulation of alginate + starch + L-tryptophan + B. pumilus has the potential for use in crops due to its compelling water retention, high viability in storage at room temperature, and high auxin production, which provides commercial advantages.


Assuntos
Bacillus pumilus , Ácidos Indolacéticos , Microesferas , Alginatos , Amido , Água
13.
Plant Cell Physiol ; 65(5): 748-761, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38372612

RESUMO

Bacillus pumilus TUAT1 acts as plant growth-promoting rhizobacteria for various plants like rice and Arabidopsis. Under stress conditions, B. pumilus TUAT1 forms spores with a thick peptidoglycan (PGN) cell wall. Previous research showed that spores were significantly more effective than vegetative cells in enhancing plant growth. In Arabidopsis, lysin motif proteins, LYM1, LYM3 and CERK1, are required for recognizing bacterial PGNs to mediate immunity. Here, we examined the involvement of PGN receptor proteins in the plant growth promotion (PGP) effects of B. pumilus TUAT1 using Arabidopsis mutants defective in PGN receptors. Root growth of wild-type (WT), cerk1-1, lym1-1 and lym1-2 mutant plants was significantly increased by TUAT1 inoculation, but this was not the case for lym3-1 and lym3-2 mutant plants. RNA-seq analysis revealed that the expression of a number of defense-related genes was upregulated in lym3 mutant plants. These results suggested that B. pumilus TUAT1 may act to reduce the defense response, which is dependent on a functional LYM3. The expression of the defense-responsive gene, WRKY29, was significantly induced by the elicitor flg-22, in both WT and lym3 mutant plants, while this induction was significantly reduced by treatment with B. pumilus TUAT1 and PGNs in WT, but not in lym3 mutant plants. These findings suggest that the PGNs of B. pumilus TUAT1 may be recognized by the LYM3 receptor protein, suppressing the defense response, which results in plant growth promotion in a trade-off between defense and growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bacillus pumilus , Regulação da Expressão Gênica de Plantas , Peptidoglicano , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Peptidoglicano/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Bacillus pumilus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Mutação , Imunidade Vegetal
14.
Environ Sci Pollut Res Int ; 31(7): 10609-10620, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198091

RESUMO

In this study, the addition of γ-aminobutyric acid (GABA), Bacillus pumilus, or both, was found to enhance rice growth and yield while significantly decreasing arsenic (As) accumulation in Oryza sativa rice tissues. GABA emerged as a regulator of iron (Fe) homeostasis, acting as a signaling modulator that influenced phytosiderophore secretions in the plant. Meanwhile, B. pumilus directly increased Fe levels through siderophore production, promoting the development of Fe-rich rice plants. Subsequently, Fe competed with As uptake at the root surface, leading to decreased As levels and translocation to the grains. Furthermore, the addition of GABA and B. pumilus optimized rice indole-3 acetic acid (IAA) contents, thereby adjusting cell metabolite balance under As stress. This adjustment results in low malondialdehyde (MDA) contents in the leaves and roots during the early and late vegetative phases, effectively reducing oxidative stress. When added to As-contaminated soil, GABA and B. pumilus effectively maintained endogenous GABA levels and exhibited low ROS generation, similar to normal soil. Concurrently, GABA and B. pumilus significantly downregulated the activity of OsLsi1, OsLsi2, and OsABCC1 in roots, reducing As uptake through roots, shoots, and grains, respectively. These findings suggest that GABA and B. pumilus additions impede As translocation through grains, ultimately enhancing rice productivity under As stress.


Assuntos
Arsênio , Bacillus pumilus , Oryza , Poluentes do Solo , Arsênio/análise , Raízes de Plantas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Solo , Poluentes do Solo/análise
15.
J Proteomics ; 292: 105047, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-37981008

RESUMO

The wide distribution of laccases in nature makes them involved in different biological processes. However, little information is known about how laccase participates in the defense machinery of bacteria against oxidative stress. The present study aimed to elucidate the oxidative stress response mechanism of Bacillus pumilus ZB1 and the functional role of bacterial laccase in stress defense. The oxidative stress caused by methyl methanesulfonate (MMS) significantly induced laccase activity and its transcript level. The morphological analysis revealed that the defense of B. pumilus ZB1 against oxidative stress was activated. Based on the proteomic study, 114 differentially expressed proteins (DEPs) were up-regulated and 79 DEPs were down-regulated. In COG analysis, 66.40% DEPs were classified into the category "Metabolism". We confirmed that laccase was up-regulated in response to MMS stress and its functional annotation was related to "Secondary metabolites biosynthesis, transport and catabolism". Based on protein-protein interaction prediction, two up-regulated DEPs (YcnJ and GabP) showed interaction with laccase and contributed to the formation of laccase stability and adaptability. The overexpressed laccase might improve the antioxidative property of B. pumilus ZB1. These findings provide an insight and the guidelines for better exploitation of bioremediation using bacterial laccase. SIGNIFICANCE: Bacillus pumilus is a gram-positive bacterium that has the potential for many applications, such as bioremediation. The expression of bacterial laccase is significantly influenced by oxidative stress, while the underlying mechanism of laccase overexpression in bacteria has not been fully studied. Elucidation of the biological process may benefit the bioremediation using bacteria in the future. In this study, the differentially expressed proteins were analyzed using a TMT-labeling proteomic approach when B. pumilus was treated with methyl methanesulfonate (MMS). Reactive oxygen species induced by MMS activated the secondary metabolites biosynthesis, transport, and catabolism in B. pumilus, including laccase overexpression. Moreover, the simultaneously up-regulated YcnJ and GabP may benefit the synthesis and the stability of laccase, then improve the antioxidative property of B. pumilus against environmental stress. Our findings advance the understanding of the adaptive mechanism of B. pumilus to environmental conditions.


Assuntos
Bacillus pumilus , Bacillus pumilus/metabolismo , Lacase/metabolismo , Proteômica , Metanossulfonato de Metila/metabolismo , Proteínas de Bactérias/metabolismo , Estresse Oxidativo
16.
Probiotics Antimicrob Proteins ; 16(2): 531-540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995549

RESUMO

The yak has a unique physiological structure suited to life in anoxic and cold environments at high altitudes. The aim of this study was to isolate Bacillus species with good probiotic properties from yak feces. A series of tests were performed on the isolated Bacillus: 16S rRNA identification, antibacterial activity, tolerance to gastroenteric fluid, hydrophobicity, auto-aggregation, antibiotic sensitivity, growth performance, antioxidants, and immune indexes. A safe and harmless Bacillus pumilus DX24 strain with good survival rate, hydrophobicity, auto-aggregation, and antibacterial activity was identified in the yak feces. Feeding mice with Bacillus pumilus DX24 increased their daily weight gain, jejunal villus length, villi/Crypt ratio, blood IgG levels, and jejunum sIgA levels. This study confirmed the probiotic effects of Bacillus pumilus isolated from yak feces and provides the theoretical basis for the clinical application and development of new feed additives.


Assuntos
Bacillus pumilus , Bacillus , Probióticos , Bovinos , Animais , Camundongos , Bacillus pumilus/genética , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia
17.
Bioresour Technol ; 394: 130240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160849

RESUMO

Nitrate accumulation is an important issue that affects animal health and causes eutrophication. This study combined biodegradable polymers with degrading bacteria to lead to high denitrification efficiency. The results showed polycaprolactone had the highest degradation and carbon release rate (0.214 mg/g∙d) and nitrogen removal was greatest when the Bacillus pumilus and Halomonas venusta ratio was 1:2. When the hydraulic retention time was extended to 12 h, the nitrate removal rate for H. venusta with B. pumilus and polycaprolactone increased by 48 %. Furthermore, the group with B. pumilus contained more Proteobacteria (77.34 %) and denitrifying functional enzymes than the group without B. pumilus. These findings indicated B.pumilus can enhance the degradation of biodegradable polymers especially polycaprolactone to improve the denitrification of the aerobic denitrification bacteria H.venusta when treating maricultural wastewater.


Assuntos
Bacillus pumilus , Desnitrificação , Bacillus pumilus/metabolismo , Nitratos , Polímeros , Reatores Biológicos/microbiologia , Carbono/metabolismo , Nitrogênio
18.
Biotechnol Appl Biochem ; 70(6): 2052-2068, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37731306

RESUMO

Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Bacillus pumilus , Neoplasias Pulmonares , Humanos , Cianetos/farmacologia , Cianetos/uso terapêutico , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/tratamento farmacológico , Apoptose , Antineoplásicos/farmacologia , Proliferação de Células , Neoplasias Pulmonares/metabolismo
19.
Microb Cell Fact ; 22(1): 152, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573310

RESUMO

BACKGROUND: Despite being necessary, copper is a toxic heavy metal that, at high concentrations, harms the life system. The parameters that affect the bioreduction and biosorption of copper are highly copper-resistant bacteria. RESULTS: In this work, the ability of the bacterial biomass, isolated from black shale, Wadi Nakheil, Red Sea, Egypt, for Cu2+ attachment, was investigated. Two Cu2+ resistance Bacillus species were isolated; Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871. The most tolerant bacterial isolate to Cu2+ was B. pumilus. Different factors on Cu2+ biosorption were analyzed to estimate the maximum conditions for Cu biosorption. The qmax for Cu2+ by B. pumilus and B. subtilis determined from the Langmuir adsorption isotherm was 11.876 and 19.88 mg. g-1, respectively. According to r2, the biosorption equilibrium isotherms close-fitting with Langmuir and Freundlich model isotherm. Temkin isotherm fitted better to the equilibrium data of B. pumilus and B. subtilis adsorption. Additionally, the Dubinin-Radushkevich (D-R) isotherm suggested that adsorption mechanism of Cu2+ is predominately physisorption. CONCLUSION: Therefore, the present work indicated that the biomass of two bacterial strains is an effective adsorbent for Cu2+ removal from aqueous solutions.


Assuntos
Bacillus pumilus , Cobre , Bacillus subtilis/genética , Egito , Oceano Índico , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Biomassa
20.
Microb Cell Fact ; 22(1): 163, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635205

RESUMO

BACKGROUND: Global transcription machinery engineering (gTME) is an effective approach employed in strain engineering to rewire gene expression and reshape cellular metabolic fluxes at the transcriptional level. RESULTS: In this study, we utilized gTME to engineer the positive transcription factor, DegU, in the regulation network of major alkaline protease, AprE, in Bacillus pumilus. To validate its functionality when incorporated into the chromosome, we performed several experiments. First, three negative transcription factors, SinR, Hpr, and AbrB, were deleted to promote AprE synthesis. Second, several hyper-active DegU mutants, designated as DegU(hy), were selected using the fluorescence colorimetric method with the host of the Bacillus subtilis ΔdegSU mutant. Third, we integrated a screened degU(L113F) sequence into the chromosome of the Δhpr mutant of B. pumilus SCU11 to replace the original degU gene using a CRISPR/Cas9 system. Finally, based on transcriptomic and molecular dynamic analysis, we interpreted the possible mechanism of high-yielding and found that the strain produced alkaline proteases 2.7 times higher than that of the control strain (B. pumilus SCU11) in LB medium. CONCLUSION: Our findings serve as a proof-of-concept that tuning the global regulator is feasible and crucial for improving the production performance of B. pumilus. Additionally, our study established a paradigm for gene function research in strains that are difficult to handle.


Assuntos
Bacillus pumilus , Peptídeo Hidrolases , Peptídeo Hidrolases/genética , Fatores de Transcrição/genética , Bacillus pumilus/genética , Regulação da Expressão Gênica , Bacillus subtilis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...