Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.022
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 307, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162916

RESUMO

Antimicrobial resistance poses a significant threat to humanity, and the development of new antibiotics is urgently needed. Our research has focused on thiopeptide antibiotics such as micrococcin P2 (MP2) and derivatives thereof as new anti-infective agents. Thiopeptides are sulfur-rich, structurally complex substances that exhibit potent activity against Gram-positive pathogens and Mycobacteria species, including clinically resistant strains. The clinical development of thiopeptides has been hampered by the lack of efficient synthetic platforms to conduct detailed structure-activity relationship studies of these natural products. The present contribution touches upon efficient synthetic routes to MP2 that laid the groundwork for clinical translation. The medicinal chemistry campaign on MP2 has been guided by computational molecular dynamic simulations and parallel investigations to improve drug-like properties, such as enhancing the aqueous solubility and optimizing antibacterial activity. Such endeavors have enabled identification of promising lead compounds, AJ-037 and AJ-206, against Mycobacterium avium complex (MAC). Extensive in vitro studies revealed that these compounds exert potent activity against MAC species, a subspecies of non-tuberculous mycobacteria (NTM) that proliferate inside macrophages. Two additional pre-clinical candidates have been identified: AJ-024, for the treatment of Clostridioides difficile infections, and AJ-147, for methicillin-resistant Staphylococcus aureus impetigo. Both compounds compare quite favorably with current first-line treatments. In particular, the ability of AJ-147 to downregulate pro-inflammatory cytokines adds a valuable dimension to its clinical use. In light of above, these new thiopeptide derivatives are well-poised for further clinical development.


Assuntos
Antibacterianos , Bacteriocinas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/farmacologia , Bacteriocinas/química , Humanos , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Peptídeos/farmacologia , Peptídeos/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Clostridioides difficile/efeitos dos fármacos
2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39104214

RESUMO

Streptococcus intermedius secretes the human-specific cytolysin intermedilysin (ILY), a crucial factor in the pathogenicity of this bacterium. Previously, we reported that a lactose phosphotransferase repressor (LacR) represses ily expression, and that its mutation increases ILY production. Interestingly, UNS40, a strain isolated from a liver abscess, produces high levels of ILY despite the absence of mutations in the lacR promoter and coding regions. Our results showed that a G > A mutation at the -90th position from the transcription start point in the UNS40 ily promoter region increased hemolytic activity and decreased the binding ability to LacR. To elucidate the regions involved in the repression of ily expression, we generated mutant strains, in which point or deletion mutations were introduced into the ily promoter region, and then compared their hemolytic activity. Among the point mutations, -120 C > A and -90 G > A and their flanking mutations increased hemolytic activity. These results indicated that these mutations may increase the virulence of S. intermedius.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Streptococcus intermedius , Streptococcus intermedius/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Bacteriocinas/genética , Bacteriocinas/metabolismo , Mutagênese , Hemólise , Mutação , Virulência/genética , Mutação Puntual
3.
J Agric Food Chem ; 72(32): 18089-18099, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102436

RESUMO

Due to the reports describing virulent and multidrug resistant enterococci, their use has become a topic of controversy despite most of them being safe and commonly used in traditionally fermented foods worldwide. We have characterized Enterococcus lactis SF68, a probiotic strain approved by the European Food Safety Authority (EFSA) for use in food and feed, and find that it has a remarkable potential in food fermentations. Genome analysis revealed the potential of SF68 to metabolize a multitude of carbohydrates, including lactose and sucrose, which was substantiated experimentally. Bacteriocin biosynthesis clusters were identified and SF68 was found to display a strong inhibitory effect against Listeria monocytogenes. Fermentation-wise, E. lactis SF68 was remarkably like Lactococcus lactis and displayed a clear mixed-acid shift on slowly fermented sugars. SF68 could produce the butter aroma compounds, acetoin and diacetyl, the production of which was enhanced under aerated conditions in a strain deficient in lactate dehydrogenase activity. Overall, E. lactis SF68 was found to be versatile, with a broad carbohydrate utilization capacity, a capacity for producing bacteriocins, and an ability to grow at elevated temperatures. This is key to eliminating pathogenic and spoilage microorganisms that are frequently associated with fermented foods.


Assuntos
Bacteriocinas , Enterococcus , Fermentação , Alimentos Fermentados , Listeria monocytogenes , Probióticos , Enterococcus/metabolismo , Enterococcus/genética , Probióticos/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Bacteriocinas/metabolismo , Bacteriocinas/genética , Microbiologia de Alimentos , Inocuidade dos Alimentos
4.
World J Microbiol Biotechnol ; 40(9): 287, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090427

RESUMO

Bacteriocins are antimicrobial peptides produced by bacteria to prevent the growth of pathogens. Combining bacteriocins with metal nanoparticles, like silver nanoparticles (AgNPs), has developed into a viable strategy to get over bacteriocin limitations. In this study, bacteriocin BacZY05 was extracted from Bacillus subtilis ZY05 and purified using various techniques. The resulting purified bacteriocin was then combined with silver nanoparticles to form bacteriocin silver nanoconjugates (BacZY05-AgNPs). The physicochemical properties of the BacZY05-AgNPs were characterized using various analytical techniques. The mean diameter of the synthesized AgNPs was approximately 20-60 nm with an oval or spherical shape. The antimicrobial activity of the BacZY05-AgNPs was evaluated against several indicator strains by their zone of inhibition (ZOI), using the agar well diffusion method. Compared to bacteriocin (ZOI- 13 to 20 mm) and AgNPs (ZOI- 10-22 mm) alone, the antibacterial activity data demonstrated a 1.3-1.5-fold increase in the activity of bacteriocin-nanoconjugates (ZOI- 22 to 26 mm). For Staphylococcus aureus MTCC3103 and Klebsiella pneumoniae MTCC109, BacZY05-capped AgNPs exhibited the lowest minimum inhibitory concentration (MIC), measuring 10.93 µg/mL. For Salmonella typhi NCIM2501, the MIC was 28.75 µg/mL. The highest MIC value was 57.5 µg/mL for Escherichia coli DH5α and Vibrio cholerae MTCC3909. With BacZY05-capped AgNPs, the lowest minimum bactericidal concentration (MBC) of 28.75 µg/mL was observed for Staphylococcus aureus MTCC31003. In the cases of Salmonella typhi NCIM2501 and Klebsiella pneumoniae MTCC109 concentration was 57.5 µg/mL. Vibrio cholerae MTCC3909 and Escherichia coli DH5α had the highest MBC values at 115 µg/mL.


Assuntos
Antibacterianos , Bacillus subtilis , Bacteriocinas , Klebsiella pneumoniae , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Nanoconjugados , Prata , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Bacteriocinas/farmacologia , Bacteriocinas/química , Bacteriocinas/biossíntese , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Nanoconjugados/química , Bacillus subtilis/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
5.
Gut Microbes ; 16(1): 2387139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39106231

RESUMO

Bacteriocins are broad or narrow-spectrum antimicrobial compounds that have received significant scientific attention due to their potential to treat infections caused by antibiotic-resistant pathogenic bacteria. The genome of Bifidobacterium pseudocatenulatum MM0196, an antimicrobial-producing, fecal isolate from a healthy pregnant woman, was shown to contain a gene cluster predicted to encode Pseudocin 196, a novel lantibiotic, in addition to proteins involved in its processing, transport and immunity. Following antimicrobial assessment against various indicator strains, protease-sensitive Pseudocin 196 was purified to homogeneity from cell-free supernatant. MALDI TOF mass spectrometry confirmed that the purified antimicrobial compound corresponds to a molecular mass of 2679 Da, which is consistent with that deduced from its genetic origin. Pseudocin 196 is classified as a lantibiotic based on its similarity to lacticin 481, a lanthionine ring-containing lantibiotic produced by Lactococcus lactis. Pseudocin 196, the first reported bacteriocin produced by a B. pseudocatenulatum species of human origin, was shown to inhibit clinically relevant pathogens, such as Clostridium spp. and Streptococcus spp. thereby highlighting the potential application of this strain as a probiotic to treat and prevent bacterial infections.


Assuntos
Antibacterianos , Bacteriocinas , Bifidobacterium , Bacteriocinas/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bifidobacterium/genética , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/metabolismo , Feminino , Clostridium/genética , Clostridium/efeitos dos fármacos , Clostridium/metabolismo , Fezes/microbiologia , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Streptococcus/metabolismo , Gravidez , Família Multigênica , Testes de Sensibilidade Microbiana , Genoma Bacteriano , Probióticos/farmacologia
6.
Nat Commun ; 15(1): 7057, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152109

RESUMO

Due to envelope differences between Gram-positive and Gram-negative bacteria, engineering precision bactericidal contractile nanomachines requires atomic-level understanding of their structures; however, only those killing Gram-negative bacteria are currently known. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with target envelope differences. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.


Assuntos
Antibacterianos , Bacteriocinas , Clostridioides difficile , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Bactérias Gram-Positivas/efeitos dos fármacos , Peptidoglicano/metabolismo , Peptidoglicano/química , Cristalografia por Raios X
7.
World J Microbiol Biotechnol ; 40(10): 290, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102120

RESUMO

Strain Lactiplantibacillus plantarum D1 with bacteriocin producing ability was found in the intestine of Gambusia affinis. The bacteriocin was found to have high inhibitory activity against multiple Streptococcus species and several other Gram-positive and Gram-negative bacteria. Bacteriocin was purified from culture supernatant by ion-exchange chromatography, Sep-Pak C18 cartridge, and reverse-phase high-performance liquid chromatography (RP-HPLC). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectral analysis determined that purified bacteriocin has a molecular mass of 2,731 Da. A partial N-terminal sequence KRKKHKXQIYNNGM was obtained from the Edman analysis. The N-terminal sequence was employed to search against a translation of the draft genome of strain D1. The translated full amino acid sequence of the mature peptide is as follows: NH2- KRKKHKCQIYNNGMPTGQYRWC, which has a molecular weight of 2738 Da. A BLAST search revealed that this bacteriocin was most similar to bactofencin A but differed from it with three amino acid residues. No identical peptide or protein has been previously reported, and this peptide, termed bactofencin YH, was therefore considered to be a new bacteriocin produced by Lactiplantibacillus plantarum D1.


Assuntos
Sequência de Aminoácidos , Antibacterianos , Bacteriocinas , Peso Molecular , Streptococcus , Bacteriocinas/farmacologia , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Bacteriocinas/metabolismo , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Testes de Sensibilidade Microbiana , Animais , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos
8.
Nat Commun ; 15(1): 6332, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068147

RESUMO

Bacteriocins are antimicrobial peptides that are naturally produced by many bacteria. They hold great potential in the fight against antibiotic resistant bacteria, including ESKAPE pathogens. Engineered live biotherapeutic products (eLBPs) that secrete bacteriocins can be created to deliver targeted bacteriocin production. Here we develop a modular bacteriocin secretion platform that can be used to express and secrete multiple bacteriocins from non-pathogenic Escherichia coli host strains. As a proof of concept we create Enterocin A (EntA) and Enterocin B (EntB) secreting strains that show strong antimicrobial activity against Enterococcus faecalis and Enterococcus faecium in vitro, and characterise this activity in both solid culture and liquid co-culture. We then develop a Lotka-Volterra model that can be used to capture the interactions of these competitor strains. We show that simultaneous exposure to EntA and EntB can delay Enterococcus growth. Our system has the potential to be used as an eLBP to secrete additional bacteriocins for the targeted killing of pathogenic bacteria.


Assuntos
Antibacterianos , Bacteriocinas , Enterococcus faecalis , Enterococcus faecium , Escherichia coli , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Bacteriocinas/biossíntese , Enterococcus faecalis/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecium/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Técnicas de Cocultura
9.
Biomolecules ; 14(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062544

RESUMO

Cancer poses a severe threat to human health. Although conventional chemotherapy remains a cornerstone of cancer treatment, its significant side effects and the growing issue of drug resistance necessitate the urgent search for more efficient and less toxic anticancer drugs. In recent years, bacteriocins, antimicrobial peptides of microbial origin, have garnered significant attention due to their targeted antitumor activity. This unique activity is mainly attributed to their cationic and amphiphilic nature, which enables bacteriocins to specifically kill tumor cells without harming normal cells. When involving non-membrane-disrupting mechanisms, such as apoptosis induction, cell cycle blockade, and metastasis inhibition, the core mechanism of action is achieved by disrupting cell membranes, which endows bacteriocins with low drug resistance and high selectivity. However, the susceptibility of bacteriocins to hydrolysis and hemolysis in vivo limits their clinical application. To overcome these challenges, structural optimization of bacteriocins or their combination with nanotechnology is proposed for future development. This review aims to study the mechanism of action and current research status of bacteriocins as anticancer treatments, thus providing new insights for their clinical development and application.


Assuntos
Antineoplásicos , Bacteriocinas , Neoplasias , Bacteriocinas/uso terapêutico , Bacteriocinas/farmacologia , Bacteriocinas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Apoptose/efeitos dos fármacos
10.
Postepy Biochem ; 70(2): 266-278, 2024 07 01.
Artigo em Polonês | MEDLINE | ID: mdl-39083475

RESUMO

Bacteriocins are peptides or proteins produced by bacteria to kill or inhibit the growth of other bacteria inhabiting the same ecological niche. The growing interest in bacteriocins reflects their potential use in food preservation and treatment of infections caused by antibiotic-resistant pathogenic bacteria, among other applications. The number of published studies on the identification of new bacteriocin-producing strains is constantly increasing. At the same time, there is a noticeable lack of research describing the mechanisms of action of most newly identified bacteriocins, as well as the mechanisms leading to the development of resistance to these bacteriocins and cross-resistance to antibiotics. Detailed understanding of these issues will allow to develop guidelines ensuring the most effective, safe and long-term use of bacteriocins without the risk of resistance development. This work describes the main assumptions of the doctoral dissertation of Aleksandra Tymoszewska, which objectives were to characterize the mechanisms of action and of resistance to class II bacteriocins of Gram-positive bacteria. Using the model bacterium Lactococcus lactis, two groups of bacteriocins were examined: (i) garvicins Q, A, B and C, and BacSJ; and (ii) aureocin A53 (AurA53)- and enterocin L50 (EntL50)-like bacteriocins. Bacteriocins of group (i) have been shown to recognize susceptible cells and form pores in the cell membrane using a specific receptor, the mannose-specific phosphotransferase system (Man-PTS), and sensitive bacteria have been shown to acquire resistance to the these bacteriocins by modifying the structure of Man-PTS. On the other hand, the acquisition of resistance to group (ii) membrane-targeting and receptor-independent bacteriocins occurs through changes in the structure of the bacterial cell wall and membrane, which are induced by changes in the expression of proteins involved in lipid metabolism or components of the YsaCB-KinG-LlrG regulatory system. The results shed new light on previous views on the mechanisms of action of bacteriocins and open up opportunities for their further study.


Assuntos
Bacteriocinas , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Lactococcus lactis/metabolismo
11.
Arch Microbiol ; 206(7): 336, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954047

RESUMO

Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.


Assuntos
Bacteriocinas , Parede Celular , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Parede Celular/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Ligação Proteica
12.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000321

RESUMO

In the postantibiotic era, the pathogenicity and resistance of pathogens have increased, leading to an increase in intestinal inflammatory disease. Bacterial infections remain the leading cause of animal mortality. With increasing resistance to antibiotics, there has been a significant decrease in resistance to both inflammation and disease in animals, thus decreasing production efficiency and increasing production costs. These side effects have serious consequences and have detracted from the development of China's pig industry. Microcin C7 (McC7) demonstrates potent antibacterial activity against a broad spectrum of pathogens, stable physicochemical properties, and low toxicity, reducing the likelihood of resistance development. Thus, McC7 has received increasing attention as a potential clinical antibacterial and immunomodulatory agent. McC7 has the potential to serve as a new generation of antibiotic substitutes; however, its commercial applications in the livestock and poultry industry have been limited. In this review, we summarize and discuss the biosynthesis, biochemical properties, structural characteristics, mechanism of action, and immune strategies of McC7. We also describe the ability of McC7 to improve intestinal health. Our aim in this study was to provide a theoretical basis for the application of McC7 as a new feed additive or new veterinary drug in the livestock and poultry breeding industry, thus providing a new strategy for alleviating resistance through feed and mitigating drug resistance. Furthermore, this review provides insight into the new functions and anti-infection mechanisms of bacteriocin peptides and proposes crucial ideas for the research, product development, and application of bacteriocin peptides in different fields, such as the food and medical industries.


Assuntos
Antibacterianos , Bacteriocinas , Bacteriocinas/farmacologia , Bacteriocinas/química , Bacteriocinas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Animais , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/uso terapêutico , Suínos , Humanos
13.
Appl Environ Microbiol ; 90(8): e0084524, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39078127

RESUMO

Campylobacter jejuni (C. jejuni) is one of the most common causes of foodborne infections worldwide and a major contributor to diarrheal diseases. This study aimed to explore the ability of commensal gut bacteria to control C. jejuni infection. Bacterial strains from the intestinal mucosa of broilers were screened in vitro against C. jejuni ATCC BAA1153. The cell-free supernatant (CFS) of Ligilactobacillus salivarius UO.C249 showed potent dose-dependent antimicrobial activity against the pathogen, likely due to the presence of bacteriocin-like moieties, as confirmed by protease treatment. Genome and exoproteome analyses revealed the presence of known bacteriocins, including Abp118. The genome of Lg. salivarius UO.C249 harbors a 1.8-Mb chromosome and a 203-kb megaplasmid. The strain was susceptible to several antibiotics and had a high survival rate in the simulated chicken gastrointestinal tract (GIT). Post-protease treatment revealed residual inhibitory activity, suggesting alternative antimicrobial mechanisms. Short-chain fatty acid (SCFA) quantification confirmed non-inhibitory levels of acetic (24.4 ± 1.2 mM), isovaleric (34 ± 1.0 µM), and butyric (32 ± 2.5 µM) acids. Interestingly, extracellular vesicles (EVs) isolated from the CFS of Lg. salivarius UO.C249 were found to inhibit C. jejuni ATCC BAA-1153. Proteome profiling of these EVs revealed the presence of unique proteins distinct from bacteriocins identified in CFS. The majority of the identified proteins in EVs are located in the membrane and play roles in transmembrane transport and peptidoglycan degradation, peptidase, proteolysis, and hydrolysis. These findings suggest that although bacteriocins are a primary antimicrobial mechanism, EV production also contributes to the inhibitory activity of Lg. salivarius UO.C249 against C. jejuni. IMPORTANCE: Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and a global public health concern. The increasing antibiotic resistance and lack of effective alternatives in livestock production pose serious challenges for controlling C. jejuni infections. Therefore, alternative strategies are needed to control this pathogen, especially in the poultry industry where it is prevalent and can be transmitted to humans through contaminated food products. In this study, Ligilactobacillus salivarius UO.C249 isolated from broiler intestinal mucosa inhibited C. jejuni and exhibited important probiotic features. Beyond bacteriocins, Lg. salivarius UO.C249 secretes antimicrobial extracellular vesicles (EVs) with a unique protein set distinct from bacteriocins that are involved in transmembrane transport and peptidoglycan degradation. Our findings suggest that beyond bacteriocins, EV production is also a distinct inhibitory signaling mechanism used by Lg. salivarius UO.C249 to control C. jejuni. These findings hold promise for the application of probiotic EVs for pathogen control.


Assuntos
Bacteriocinas , Campylobacter jejuni , Galinhas , Vesículas Extracelulares , Ligilactobacillus salivarius , Probióticos , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Bacteriocinas/genética , Probióticos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Animais , Galinhas/microbiologia , Ligilactobacillus salivarius/fisiologia , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/prevenção & controle
14.
Biotechnol Adv ; 75: 108415, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39033836

RESUMO

Glycosylated bacteriocins, known as glycocins, were first discovered in 2011. These bioactive peptides are produced by bacteria to gain survival advantages. They exhibit diverse types of glycans and demonstrate varied antimicrobial activity. Currently, there are 13 experimentally known glycocins, with over 250 identified in silico across different bacterial phyla. Notably, glycocins are recognized for their glycan-mediated antimicrobial activity, proving effective against drug-resistant and foodborne pathogens. Many glycocins contain rare S-linked glycans. Glycosyltransferases (GTs), responsible for transferring sugar to glycocins and involved in glycocin biosynthesis, often cluster together in the producer's genome. This clustering makes them valuable for custom glycoengineering with diverse substrate specificities. Heterologous expression of glycocins has paved the way for the establishment of microbial factories for glycopeptide and glycoconjugate production across various industries. In this review, we emphasize the primary roles of fully and partially characterized glycocins and their glycosylating enzymes. Additionally, we explore how specific glycan structures facilitate these functions in antibacterial activities. Furthermore, we discuss newer approaches and increasing efforts aimed at exploiting bacterial glycobiology for the development of food preservatives and as replacements or complements to traditional antibiotics, particularly in the face of antibiotic-resistant pathogenic bacteria.


Assuntos
Glicosiltransferases , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Glicosilação , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/genética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/química
15.
Int J Biol Macromol ; 277(Pt 1): 133916, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39033897

RESUMO

Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.


Assuntos
Bacteriocinas , Escherichia coli , Bacteriocinas/genética , Bacteriocinas/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica
16.
Int J Biol Macromol ; 274(Pt 1): 133047, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857722

RESUMO

Bacterial cellulose (BC) has been found extensive applications in diverse domains for its exceptional attributes. However, the lack of antibacterial properties hampers its utilization in food and biomedical sectors. Leucocin, a bacteriocin belonging to class IIa, is synthesized by Leuconostoc that demonstrates potent efficacy against the foodborne pathogen, Listeria monocytogenes. In the current study, co-culturing strategy involving Kosakonia oryzendophytica FY-07 and Leuconostoc carnosum 4010 was used to confer anti-listerial activity to BC, which resulted in the generation of leucocin-containing BC (BC-L). The physical characteristics of BC-L, as determined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were similar to the physical characteristics of BC. Notably, the experimental results of disc diffusion and growth curve indicated that the BC-L film exhibited a potent inhibitory effect against L. monocytogenes. Scanning electron microscopy (SEM) showed that BC-L exerts its bactericidal activity by forming pores on the bacterial cell wall. Despite the BC-L antibacterial mechanism, which involves pore formation, the mammalian cell viability remained unaffected by the BC-L film. The measurement results of zeta potential indicated that the properties of BC changed after being loaded with leucocin. Based on these findings, the anti-listerial BC-L generated through this co-culture system holds promise as a novel effective antimicrobial agent for applications in meat product preservation and packaging.


Assuntos
Antibacterianos , Celulose , Listeria monocytogenes , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Celulose/química , Celulose/farmacologia , Celulose/biossíntese , Técnicas de Cocultura , Testes de Sensibilidade Microbiana , Leuconostoc/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/química
17.
Appl Environ Microbiol ; 90(7): e0030024, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38832774

RESUMO

Staphylococcus aureus is a common bacterium on the skin and in the nose that sometimes causes severe illness. Bacteriocins, antimicrobial peptides, or proteins produced by bacteria are candidates for the treatment of S. aureus infection. In this study, we found that a clinical Staphylococcus epidermidis strain, KSE112, produced the lantibiotic Pep5, which showed anti-S. aureus activity. The complete nucleotide sequence of the Pep5-encoding plasmid was determined. Several S. aureus two-component regulatory systems (TCSs) are known to be involved in bacteriocin susceptibility. Therefore, susceptibility tests were performed using TCS-inactivated S. aureus mutants to determine which TCS is responsible for Pep5 susceptibility; the ΔgraRS mutant exhibited increased susceptibility to Pep5, while the ΔsrrAB mutant exhibited decreased susceptibility. GraRS is known to regulate dltABCD and mprF in concert with vraFG, and Pep5 susceptibility was significantly increased in the ΔdltABCD, ΔmprF, and ΔvraFG mutants. Regarding the ΔsrrAB mutant, cross-resistance to aminoglycosides was observed. As aminoglycoside activity is known to be affected by aerobic respiration, we focused on qoxABCD and cydAB, which are quinol oxidase genes that are necessary for aerobic respiration and have downregulated the expression in the ΔsrrAB mutant. We constructed ΔqoxABCD and ΔcydAB mutants and found that qoxABCD inactivation decreased susceptibility to Pep5 and aminoglycosides. These results indicate that reduced aerobic respiration due to the reduced qoxABCD expression in the ΔsrrAB mutant decreased Pep5 activity.IMPORTANCEThe emergence of drug-resistant bacteria, including MRSA, is a severe health problem worldwide. Thus, the development of novel antimicrobial agents, including bacteriocins, is needed. In this report, we found a Pep5-producing strain with anti-S. aureus activity. We determined the complete sequence of the Pep5-encoding plasmid for the first time. However, in S. aureus, GraRS and its effectors conferred decreased susceptibility to Pep5. We also revealed that another TCS, SrrAB, affects susceptibility Pep5 and other lantibiotics by controlling aerobic respiration. In our study, we investigated the efficacy of Pep5 against S. aureus and other Gram-positive bacteria and revealed that respiratory constancy regulated by TCS is required for the antimicrobial activity of nisin, nukacin, and Pep5. These findings provide important information for the clinical application of bacteriocins and suggest that they have different properties among similar pore-forming lantibiotics.


Assuntos
Antibacterianos , Proteínas de Bactérias , Bacteriocinas , Staphylococcus aureus , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Bacteriocinas/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Humanos , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras
18.
Int J Biol Macromol ; 274(Pt 1): 133290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908631

RESUMO

MccY is a novel, structurally stable microcin with antibacterial activity against Enterobacteriaceae. However, the bioavailability of orally administrated MccY is unknown. This study evaluated the effects of MccY as a antimicrobial on pre-digestion in vitro and its intake, digestion and gut metabolism in vivo. The result of pre-digestion results that MccY maintained its biological activity and was resistant to decomposition. The study established a safe threshold of 4.46-9.92 mg/kg for the MccY dosage-body weight relationship in BALB/c mice. Mice fed with MccY demonstrated improved body weight and intestinal barrier function, accompanied with increased IgM immunogenicity and decreased levels of TNF-α, IL-6, and IL-10 in the intestine. MccY significantly facilitates the growth and activity of probiotics including Lactobacillus, Prevotella, and Bacteroides, and leading to the production of SCFAs and MCFAs during bacterial interactions. Furthermore, MccY effectively protects against the inflammatory response caused by Salmonella Typhimurium infection and effectively clears the Salmonella bacteria from the gut. In conclusion, MccY is seen as a promising new therapeutic target drug for enhancing the intestinal microbe-barrier axis and preventing enteritis.


Assuntos
Bacteriocinas , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Probióticos , Animais , Probióticos/farmacologia , Camundongos , Bacteriocinas/farmacologia , Bacteriocinas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Infecções por Salmonella/tratamento farmacológico , Intestinos/microbiologia , Intestinos/efeitos dos fármacos
19.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925659

RESUMO

AIMS: This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS: Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS: It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.


Assuntos
Bacteriocinas , Queijo , Enterococcus faecium , Microbiologia de Alimentos , Lactococcus , Listeria monocytogenes , Queijo/microbiologia , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/metabolismo , Lactococcus/genética , Lactococcus/isolamento & purificação , Bacteriocinas/farmacologia , Brasil , Listeria monocytogenes/genética , Listeria monocytogenes/efeitos dos fármacos , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia
20.
BMC Genomics ; 25(1): 575, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849728

RESUMO

BACKGROUND: Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS: The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS: Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.


Assuntos
Bacteriocinas , Genoma Bacteriano , Staphylococcus , Staphylococcus/genética , Staphylococcus/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Fermentação , Genômica/métodos , Metabolismo Secundário/genética , Carne/microbiologia , Família Multigênica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...