Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.482
Filtrar
1.
Arch Microbiol ; 206(7): 336, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954047

RESUMO

Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.


Assuntos
Bacteriocinas , Parede Celular , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Parede Celular/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Ligação Proteica
2.
BMC Microbiol ; 24(1): 226, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937695

RESUMO

BACKGROUND: Bacterial antimicrobial resistance poses a severe threat to humanity, necessitating the urgent development of new antibiotics. Recent advances in genome sequencing offer new avenues for antibiotic discovery. Paenibacillus genomes encompass a considerable array of antibiotic biosynthetic gene clusters (BGCs), rendering these species as good candidates for genome-driven novel antibiotic exploration. Nevertheless, BGCs within Paenibacillus genomes have not been extensively studied. RESULTS: We conducted an analysis of 554 Paenibacillus genome sequences, sourced from the National Center for Biotechnology Information database, with a focused investigation involving 89 of these genomes via antiSMASH. Our analysis unearthed a total of 848 BGCs, of which 716 (84.4%) were classified as unknown. From the initial pool of 554 Paenibacillus strains, we selected 26 available in culture collections for an in-depth evaluation. Genomic scrutiny of these selected strains unveiled 255 BGCs, encoding non-ribosomal peptide synthetases, polyketide synthases, and bacteriocins, with 221 (86.7%) classified as unknown. Among these strains, 20 exhibited antimicrobial activity against the gram-positive bacterium Micrococcus luteus, yet only six strains displayed activity against the gram-negative bacterium Escherichia coli. We proceeded to focus on Paenibacillus brasilensis, which featured five new BGCs for further investigation. To facilitate detailed characterization, we constructed a mutant in which a single BGC encoding a novel antibiotic was activated while simultaneously inactivating multiple BGCs using a cytosine base editor (CBE). The novel antibiotic was found to be localized to the cell wall and demonstrated activity against both gram-positive bacteria and fungi. The chemical structure of the new antibiotic was elucidated on the basis of ESIMS, 1D and 2D NMR spectroscopic data. The novel compound, with a molecular weight of 926, was named bracidin. CONCLUSIONS: This study outcome highlights the potential of Paenibacillus species as valuable sources for novel antibiotics. In addition, CBE-mediated dereplication of antibiotics proved to be a rapid and efficient method for characterizing novel antibiotics from Paenibacillus species, suggesting that it will greatly accelerate the genome-based development of new antibiotics.


Assuntos
Antibacterianos , Genoma Bacteriano , Família Multigênica , Paenibacillus , Paenibacillus/genética , Paenibacillus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/biossíntese , Vias Biossintéticas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Descoberta de Drogas/métodos
3.
BMC Genomics ; 25(1): 571, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844835

RESUMO

BACKGROUND: The dramatic increase of antimicrobial resistance in the healthcare realm has become inexorably linked to the abuse of antibiotics over the years. Therefore, this study seeks to identify potential postbiotic metabolites derived from lactic acid bacteria such as Lactiplantibacillus plantarum that could exhibit antimicrobial properties against multi-drug resistant pathogens. RESULTS: In the present work, the genome sequence of Lactiplantibacillus plantarum PA21 consisting of three contigs was assembled to a size of 3,218,706 bp. Phylogenomic analysis and average nucleotide identity (ANI) revealed L. plantarum PA21 is closely related to genomes isolated from diverse niches such as dairy products, food, and animals. Genome mining through the BAGEL4 and antiSMASH database revealed four bacteriocins in a single cluster and four regions of biosynthetic gene clusters responsible for the production of bioactive compounds. The potential probiotic genes indirectly responsible for postbiotic metabolites production were also identified. Additionally, in vitro studies showed that the L. plantarum PA21 cell-free supernatant exhibited antimicrobial activity against all nine methicillin-resistant Staphylococcus aureus (MRSA) and three out of 13 Klebsiella pneumoniae clinical isolates tested. CONCLUSION: Results in this study demonstrates that L. plantarum PA21 postbiotic metabolites is a prolific source of antimicrobials against multi-drug resistant pathogens with potential antimicrobial properties.


Assuntos
Bacteriocinas , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina , Filogenia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Bacteriocinas/genética , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Família Multigênica , Genômica , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Probióticos , Testes de Sensibilidade Microbiana
4.
BMC Genomics ; 25(1): 575, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849728

RESUMO

BACKGROUND: Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS: The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS: Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.


Assuntos
Bacteriocinas , Genoma Bacteriano , Staphylococcus , Staphylococcus/genética , Staphylococcus/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Fermentação , Genômica/métodos , Metabolismo Secundário/genética , Carne/microbiologia , Família Multigênica , Filogenia
5.
Science ; 384(6701): eado0713, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870284

RESUMO

Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.


Assuntos
Bacteriocinas , Fagos de Pseudomonas , Pseudomonas , Proteínas da Cauda Viral , Antibiose , Membrana Externa Bacteriana/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Variação Genética , Genoma Bacteriano , Polissacarídeos Bacterianos/metabolismo , Pseudomonas/metabolismo , Pseudomonas/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/genética , Terapia por Fagos/métodos
6.
Appl Microbiol Biotechnol ; 108(1): 370, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861018

RESUMO

Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.


Assuntos
Bacillaceae , Genoma Bacteriano , Genômica , Bacillaceae/genética , Bacillaceae/metabolismo , Composição de Bases , Família Multigênica , Arecaceae/microbiologia , Desenvolvimento Vegetal , Sequenciamento Completo do Genoma , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/biossíntese , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Estresse Fisiológico
7.
Gut Microbes ; 16(1): 2369338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899682

RESUMO

Gut bacteria are known to produce bacteriocins to inhibit the growth of other bacteria. Consequently, bacteriocins have attracted increased attention as potential microbiome-editing tools. In this study we examine the inhibitory spectrum of 75 class II bacteriocins against 48 representative gut microbiota species. The bacteriocins were heterologously expressed in Escherichia coli and evaluated in vitro, ex vivo and in vivo. In vitro assays revealed 22 bacteriocins to inhibit at least one species and showed selective inhibition patterns against species implicated in certain disorders and diseases. Three bacteriocins were selected for ex vivo assessment on mouse feces. Based on 16S rRNA sequencing of the cultivated feces we showed that the two bacteriocins: Actifencin (#13) and Bacteroidetocin A (#22) selectively inhibited the growth of Lactobacillus and Bacteroides, respectively. The probiotic: E. coli Nissle 1917 was engineered to express these two bacteriocins in mice. However, the selective inhibitory patterns found in the in vitro and ex vivo experiments could not be observed in vivo. Our study describes a methodology for heterologous high throughput bacteriocin expression and screening and elucidates the inhibitory patterns of class II bacteriocins on the gut microbiota.


Assuntos
Antibacterianos , Bacteriocinas , Escherichia coli , Fezes , Microbioma Gastrointestinal , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Bacteriocinas/biossíntese , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/biossíntese , RNA Ribossômico 16S/genética , Lactobacillus/genética , Lactobacillus/metabolismo , Lactobacillus/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/classificação , Expressão Gênica
8.
Appl Environ Microbiol ; 90(6): e0016224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38775468

RESUMO

The emergence of drug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), has increased the need to discover novel antimicrobial agents that are effective against these species. Here, we describe the identification and purification of the mutacin BHT-B-like gene locus and bacteriocin peptide from Streptococcus ursoris, which is closely related to Streptococcus ratti; hence, we named this bacteriocin ursoricin. Ursoricin is a cationic, chromosome-encoded peptide that has potent antimicrobial effects against Gram-positive pathogens, including MRSA and VRE, with minimum inhibitory concentrations in the micromolar range. Ursoricin also inhibits the biofilm formation of high biofilm-forming S. aureus. Antibacterial activity was retained after treatment at 100°C for 60 min at a pH range of 3-9 and was partially reduced by treatment with proteinase K for 2 h (63% residual activity). The potent anti-MRSA, anti-VRE, and antibiofilm effects of ursoricin suggest that it is a possible candidate for the treatment of MRSA, VRE, and biofilm-associated infections. IMPORTANCE: The emergence of multidrug-resistant bacteria worldwide has posed a significant public health threat and economic burdens that make the identification and development of novel antimicrobial agents urgent. Bacteriocins are promising new agents that exhibit antibacterial activity against a wide range of human pathogens. In this study, we report that the bacteriocin produced by Streptococcus ursoris showed good antibacterial activity against a wide range of Staphylococcus aureus and enterococcus strains, particularly methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and high biofilm-forming S. aureus. Interestingly, this bacteriocin had a stronger effect on S. aureus than on Staphylococcus epidermidis, which is a major commensal bacterium in human skin; this result is important when considering the disturbance of bacterial flora, especially on the skin, mediated by the application of antibacterial agents.


Assuntos
Antibacterianos , Bacteriocinas , Biofilmes , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Streptococcus , Enterococos Resistentes à Vancomicina , Bacteriocinas/farmacologia , Bacteriocinas/genética , Antibacterianos/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Streptococcus/efeitos dos fármacos
9.
Appl Environ Microbiol ; 90(6): e0024424, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38780510

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase, and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, demonstrate complex formation between TclI, TclJ, and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core. IMPORTANCE: Thiopeptides are a family of antimicrobial peptides characterized for having sulfur-containing heterocycles and for being highly post-translationally modified. Numerous thiopeptides have been identified; almost all of which inhibit protein synthesis in gram-positive bacteria. These intrinsic antimicrobial properties make thiopeptides promising candidates for the development of new antibiotics. The thiopeptide micrococcin is synthesized by the ribosome and undergoes several post-translational modifications to acquire its bioactivity. In this study, we identify key interactions within the enzymatic complex that carries out cysteine to thiazole conversion in the biosynthesis of micrococcin.


Assuntos
Bacteriocinas , Cisteína , Tiazóis , Tiazóis/metabolismo , Cisteína/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Processamento de Proteína Pós-Traducional , Escherichia coli/genética , Escherichia coli/metabolismo
10.
Microbiol Spectr ; 12(7): e0374823, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38780256

RESUMO

The lasso peptide microcin J25 (MccJ25) possesses strong antibacterial properties and is considered a potential effective component of bacterial disease treatment drugs and safe food preservatives. Although MccJ25 can be heterologously expressed in Bacillus subtilis as we have previously reported, its regulation and accumulation are yet to be understood. Here, we investigated the expression level and stability of MccJ25 in B. subtilis strains with disruption in peptidase genes pepA, pepF, and pepT. Oligoendopeptidase F (PepF) was found to be involved in reduction of the production of MccJ25 by degradation of its precursor peptide. In the pepF mutant, the MccJ25 reached a concentration of 1.68 µM after a cultivation time exceeding 60 hours, while the wild-type strain exhibited a concentration of only 0.14 µM. Moreover, the production of MccJ25 in B. subtilis downregulated the genes associated with sporulation, and this may contribute to its accumulation. Finally, this study provides a strategy to improve the stability and production of MccJ25 in B. subtilis. IMPORTANCE: MccJ25 displays significant antibacterial activity, a well-defined mode of action, exceptional safety, and remarkable stability. Hence, it presents itself as a compelling candidate for an optimal antibacterial or anti-endotoxin medication. The successful establishment of exogenous production of MccJ25 in Bacillus subtilis provides a strategy for reducing its production cost and diversifying its utilization. In this study, we have provided evidence indicating that both peptidase PepF and sporulation are significant factors that limit the expression of MccJ25 in B. subtilis. The ΔpepF and ΔsigF mutants of B. subtilis express MccJ25 with higher production yield and enhanced stability. To sum up, this study developed several better engineered strains of B. subtilis, which greatly reduced the consumption of MccJ25 during the nutrient depletion stage of the host strain, improved its production, and elucidated factors that may be involved in reducing MccJ25 accumulation in B. subtilis.


Assuntos
Antibacterianos , Bacillus subtilis , Proteínas de Bactérias , Bacteriocinas , Esporos Bacterianos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/biossíntese , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Regulação Bacteriana da Expressão Gênica , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética
11.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38806244

RESUMO

Coagulase-negative Staphylococcus (CoNS) species inhibiting Staphylococcus aureus has been described in the skin of atopic dermatitis (AD) patients. This study evaluated whether Staphylococcus spp. from the skin and nares of AD and non-AD children produced antimicrobial substances (AMS). AMS production was screened by an overlay method and tested against NaOH, proteases and 30 indicator strains. Clonality was assessed by pulsed-field gel electrophoresis. Proteinaceous AMS-producers were investigated for autoimmunity by the overlay method and presence of bacteriocin genes by polymerase chain reaction. Two AMS-producers had their genome screened for AMS genes. A methicillin-resistant S. aureus (MRSA) produced proteinaceous AMS that inhibited 51.7% of the staphylococcal indicator strains, and it was active against 60% of the colonies selected from the AD child where it was isolated. On the other hand, 57 (8.8%) CoNS from the nares and skin of AD and non-AD children, most of them S. epidermidis (45.6%), reduced the growth of S. aureus and other CoNS species. Bacteriocin-related genes were detected in the genomes of AMS-producers. AMS production by CoNS inhibited S. aureus and other skin microbiota species from children with AD. Furthermore, an MRSA colonizing a child with AD produced AMS, reinforcing its contribution to dysbiosis and disease severity.


Assuntos
Coagulase , Dermatite Atópica , Staphylococcus aureus Resistente à Meticilina , Microbiota , Pele , Staphylococcus , Dermatite Atópica/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Pele/microbiologia , Criança , Coagulase/genética , Coagulase/metabolismo , Staphylococcus/genética , Bacteriocinas/genética , Antibacterianos/farmacologia , Pré-Escolar , Testes de Sensibilidade Microbiana
12.
Int J Biol Macromol ; 270(Pt 2): 132272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734334

RESUMO

Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, molecular simulation and activity validation. A total of 158 potential bacteriocins were innovatively mined from 117,552 representative genes based on metatranscriptomic information from the Shanxi aged vinegar microbiome using machine learning techniques and 12 microorganisms were identified to secrete bacteriocins at the genus level. Subsequently, employing AlphaFold2 structure prediction and molecular dynamics simulations, eight bacteriocins with high stability were further screened, and all of them were confirmed to have bacteriostatic activity by the Escherichia coli BL21 expression system. Then, gene_386319 (named LAB-3) and gene_403047 (named LAB-4) with the strongest antibacterial activities were purified by two-step methods and analyzed by mass spectrometry. The two bacteriocins have broad-spectrum antimicrobial activity with minimum inhibitory concentration values of 6.79 µg/mL-15.31 µg/mL against Staphylococcus aureus and Escherichia coli. Furthermore, molecular docking analysis indicated that LAB-3 and LAB-4 could interact with dihydrofolate reductase through hydrogen bonds, salt-bridge forces and hydrophobic forces. These findings suggested that the two bacteriocins could be considered as promising broad-spectrum antimicrobial agents.


Assuntos
Ácido Acético , Antibacterianos , Bacteriocinas , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Ácido Acético/química , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Bacteriocinas/genética , Antibacterianos/farmacologia , Antibacterianos/química , Microbiota , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Simulação de Dinâmica Molecular , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana
13.
Microbiologyopen ; 13(3): e1411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706434

RESUMO

Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.


Assuntos
Bacteriúria , Infecções por Escherichia coli , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Bacteriúria/microbiologia , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Bacteriocinas/farmacologia , Bacteriocinas/genética , Nefelometria e Turbidimetria , Bioensaio/métodos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Infecções Urinárias/microbiologia
14.
Genomics ; 116(3): 110855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703968

RESUMO

Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.


Assuntos
Clostridium butyricum , Genoma Bacteriano , Filogenia , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Sequenciamento Completo do Genoma , Bacteriocinas/genética , Bacteriocinas/biossíntese , Microbiologia Industrial , Toxinas Botulínicas/genética , Fatores de Virulência/genética
15.
Benef Microbes ; 15(2): 211-225, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38688481

RESUMO

Enterococcus faecium SF68 (SF68) is a well-known probiotic with a long history of safe use. Recent changes in the taxonomy of enterococci have shown that a novel species, Enterococcus lactis, is closely related with E. faecium and occurs together with other enterococci in a phylogenetically well-defined E. faecium species group. The close phylogenetic relationship between the species E. faecium and E. lactis prompted a closer investigation into the taxonomic status of E. faecium SF68. Using phylogenomics and ANI, the taxonomic analysis in this study showed that probiotic E. faecium SF68, when compared to other E. faecium and E. lactis type and reference strains, could be re-classified as belonging to the species E. lactis. Further investigations into the functional properties of SF68 showed that it is potentially capable of bacteriocin production, as a bacteriocin gene cluster encoding the leaderless bacteriocin EntK1 together with putative Lactococcus lactis bacteriocins LsbA, and LsbB-like putative immunity peptide (LmrB) were found located in an operon on plasmid pF9. However, bacteriocin expression was not studied. Competitive exclusion experiments in co-culture over 7 days at 37 °C showed that the probiotic SF68 could inhibit the growth of specific E. faecium and Listeria monocytogenes strains, while showing little or no inhibitory activity towards an entero-invasive Escherichia coli and a Salmonella Typhimurium strain, respectively. In cell culture experiments with colon carcinoma HT29 cells, the probiotic SF68 was also able to strain-specifically inhibit adhesion and/or invasion of enterococcal and L. monocytogenes strains, while such adhesion and invasion inhibition effects were less pronounced for E. coli and Salmonella strains. This study therefore provides novel data on the taxonomy and functional properties of SF68, which can be reclassified as Enterococcus lactis SF68, thereby enhancing the understanding of its probiotic nature.


Assuntos
Bacteriocinas , Enterococcus faecium , Filogenia , Probióticos , Enterococcus faecium/genética , Enterococcus faecium/classificação , Enterococcus faecium/fisiologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Humanos , Antibiose , Plasmídeos/genética , Família Multigênica , Células HT29
16.
Food Chem ; 447: 138962, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518614

RESUMO

A bacteriocin paracin wx3 was investigated as a candidate of natural preservative to control green pepper soft rot. Firstly, paracin wx3 was heterologously expressed in Pichia pastoris X33 with an improved yield of 0.537 g/L. Its size and amino acid sequence were confirmed by Tricine-SDS-PAGE and LC-MS/MS. Then, result of antibacterial activity showed that its MIC value against Pectobacterium carotovorum was 16 µg/mL. In vitro, paracin wx3 completely killed the pathogen at high concentrations ≥8 × MIC. In vivo, disease incidence of green pepper soft rot was decreased from 90% (control) to <2% (8 × MIC). Subsequently, results of action mode showed that paracin wx3 inhibited the growth of pathogen by pore-formation on cell membrane. Last, paracin wx3 treatment reduced losses of weight, firmness, total soluble solid, Vc of green pepper during storage. It also inhibited the production of soft rot volatile p-xylene, 1-butanol, 2-methyl-2-propanol, 3-hydroxybutan-2-one-D, 2-pentyl furan, butanal, etc.


Assuntos
Bacteriocinas , Capsicum , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Capsicum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/química , Doenças das Plantas/microbiologia
17.
Arch Microbiol ; 206(4): 143, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443732

RESUMO

The probiotic strain Bacillus licheniformis MCC2514 has been shown to produce a strong antibacterial peptide and the whole genome sequence of this strain is also reported in our previous study. The present study is focused on the genome level investigation of this peptide antibiotic and its characterization. Genome mining of the culture revealed the presence of three putative bacteriocin clusters, viz. lichenicidin, sonorensin and lasso peptide. Hence, the mode of action of the peptide was investigated by reporter assay, scanning electron microscopy, and Fourier Transform Infrared spectroscopy. Additionally, the peptide treated groups of Kocuria rhizophila showed a reduction in the fold expression for transcription-related genes. The gene expression studies, quantitative ß-galactosidase induction assay using the RNA stress reporter strain, yvgS along with the homology studies concluded that lasso peptide is responsible for the antibacterial activity of the peptide which acts as an inhibitor of RNA biosynthesis. Gene expression analysis showed a considerable increase in fold expression of lasso peptide genes at various fermentation hours. Also, the peptide was isolated, and its time-kill kinetics and minimum inhibitory concentration against the indicator pathogen K. rhizophila were examined. The peptide was also purified and the molecular weight was determined to be ~ 2 kDa. Our study suggests that this bacteriocin can function as an effective antibacterial agent in food products as well as in therapeutics as it contains lasso peptide, which inhibits the RNA biosynthesis.


Assuntos
Bacillus licheniformis , Bacteriocinas , Bacillus licheniformis/genética , Família Multigênica , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Peptídeos , RNA
18.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396696

RESUMO

The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.


Assuntos
Bacillus , Bacteriocinas , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/química , Cromatografia Líquida , Escherichia coli/metabolismo , Espectrometria de Massas em Tandem , Bacillus/metabolismo
19.
Sci Rep ; 14(1): 3319, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336830

RESUMO

The PsdRSAB and ApsRSAB detoxification modules, together with the antimicrobial peptides (AMPs)-resistance determinants Dlt system and MprF protein, play major roles in the response to AMPs in Lacticaseibacillus paracasei BL23. Sensitivity assays with a collection of mutants showed that the PsdAB ABC transporter and the Dlt system are the main subtilin resistance determinants. Quantification of the transcriptional response to subtilin indicate that this response is exclusively regulated by the two paralogous systems PsdRSAB and ApsRSAB. Remarkably, a cross-regulation of the derAB, mprF and dlt-operon genes-usually under control of ApsR-by PsdR in response to subtilin was unveiled. The high similarity of the predicted structures of both response regulators (RR), and of the RR-binding sites support this possibility, which we experimentally verified by protein-DNA binding studies. ApsR-P shows a preferential binding in the order PderA > Pdlt > PmprF > PpsdA. However, PsdR-P bound with similar apparent affinity constants to the four promoters. This supports the cross-regulation of derAB, mprF and the dlt-operon by PsdR. The possibility of cross-regulation at the level of RR-promoter interaction allows some regulatory overlap with two RRs controlling the expression of systems involved in maintenance of critical cell membrane functions in response to lantibiotics.


Assuntos
Bacteriocinas , Lacticaseibacillus paracasei , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Regiões Promotoras Genéticas , Óperon , Regulação Bacteriana da Expressão Gênica
20.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301890

RESUMO

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Assuntos
Bacteriocinas , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/toxicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Porinas/genética , Porinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...