Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.862
Filtrar
1.
PLoS Biol ; 22(7): e3002691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990827

RESUMO

The diversity of oligodendrocyte precursor cells (OPCs) is not well understood and is actively discussed in the field. A new study in PLOS Biology describes a novel marker for an OPC subpopulation that controls oligodendrogenesis and myelination.


Assuntos
Diferenciação Celular , Oligodendroglia , Oligodendroglia/fisiologia , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Animais , Humanos , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Biomarcadores/metabolismo
3.
Elife ; 122024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028036

RESUMO

Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.


Assuntos
Envelhecimento , Macaca mulatta , Memória de Curto Prazo , Bainha de Mielina , Córtex Pré-Frontal , Memória de Curto Prazo/fisiologia , Animais , Bainha de Mielina/fisiologia , Envelhecimento/fisiologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/fisiologia , Modelos Neurológicos , Doenças Desmielinizantes/fisiopatologia , Doenças Desmielinizantes/patologia , Potenciais de Ação/fisiologia , Córtex Pré-Frontal Dorsolateral
4.
Neuropeptides ; 106: 102438, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749170

RESUMO

Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Fenótipo , Células de Schwann , Células de Schwann/fisiologia , Animais , Regeneração Nervosa/fisiologia , Humanos , Traumatismos dos Nervos Periféricos/terapia , Recuperação de Função Fisiológica/fisiologia , Bainha de Mielina/fisiologia
5.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727956

RESUMO

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurotrofina 3 , Bulbo Olfatório , Remielinização , Animais , Ratos , Neurotrofina 3/metabolismo , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Remielinização/fisiologia , Bulbo Olfatório/citologia , Proliferação de Células , Medula Espinal/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Células Cultivadas , Movimento Celular , Cistos/patologia , Feminino , Cistos do Sistema Nervoso Central/cirurgia , Cistos do Sistema Nervoso Central/patologia
6.
Dev Psychobiol ; 66(5): e22486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38739111

RESUMO

Maternal deprivation, as a result of the artificial rearing (AR) paradigm, disturbs electrophysiological and histological characteristics of the peripheral sensory sural (SU) nerve of infant and adult male rats. Such changes are prevented by providing tactile or social stimulation during isolation. AR also affects the female rat's brain and behavior; however, it is unknown whether this early adverse experience also alters their SU nerve development or if tactile stimulation might prevent these possible developmental effects. To assess these possibilities, the electrophysiological and histological characteristics of the SU nerve from adult diestrus AR female rats that: (i) received no tactile stimulation (AR group), (ii) received tactile stimulation in the anogenital and body area (AR-Tactile group), or (iii) were mother reared (MR group) were determined. We found that the amplitude, but not the area, of the evoked compound action potential response in SU nerves of AR rats was lower than those of SU nerves of MR female rats. Tactile stimulation prevented these effects. Additionally, we found a reduction in the outer diameter and myelin thickness of axons, as well as a large proportion of axons with low myelin thickness in nerves of AR rats compared to the nerves of the MR and AR-Tactile groups of rats; however, tactile stimulation only partially prevented these effects. Our data indicate that maternal deprivation disturbs the development of sensory SU nerves in female rats, whereas tactile stimulation partially prevents the changes generated by AR. Considering that our previous studies have shown more severe effects of AR on male SU nerve development, we suggest that sex-associated factors may be involved in these processes.


Assuntos
Privação Materna , Nervo Sural , Tato , Animais , Feminino , Ratos , Nervo Sural/fisiologia , Tato/fisiologia , Estimulação Física , Ratos Wistar , Axônios/fisiologia , Potenciais de Ação/fisiologia , Bainha de Mielina/fisiologia
7.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38688722

RESUMO

Myelinated axons conduct action potentials, or spikes, in a saltatory manner. Inward current caused by a spike occurring at one node of Ranvier spreads axially to the next node, which regenerates the spike when depolarized enough for voltage-gated sodium channels to activate, and so on. The rate at which this process progresses dictates the velocity at which the spike is conducted and depends on several factors including axial resistivity and axon diameter that directly affect axial current. Here we show through computational simulations in modified double-cable axon models that conduction velocity also depends on extracellular factors whose effects can be explained by their indirect influence on axial current. Specifically, we show that a conventional double-cable model, with its outside layer connected to ground, transmits less axial current than a model whose outside layer is less absorptive. A more resistive barrier exists when an axon is packed tightly between other myelinated fibers, for example. We show that realistically resistive boundary conditions can significantly increase the velocity and energy efficiency of spike propagation, while also protecting against propagation failure. Certain factors like myelin thickness may be less important than typically thought if extracellular conditions are more resistive than normally considered. We also show how realistically resistive boundary conditions affect ephaptic interactions. Overall, these results highlight the unappreciated importance of extracellular conditions for axon function.


Assuntos
Potenciais de Ação , Axônios , Modelos Neurológicos , Fibras Nervosas Mielinizadas , Condução Nervosa , Potenciais de Ação/fisiologia , Axônios/fisiologia , Animais , Fibras Nervosas Mielinizadas/fisiologia , Condução Nervosa/fisiologia , Nós Neurofibrosos/fisiologia , Simulação por Computador , Humanos , Bainha de Mielina/fisiologia
8.
Curr Opin Neurobiol ; 86: 102877, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631077

RESUMO

Microglia are tissue-resident macrophages and professional phagocytes of the central nervous system (CNS). In development, microglia-mediated phagocytosis is important for sculpting the cellular architecture. This includes the engulfment of dead/dying cells, pruning extranumerary synapses and axons, and phagocytosing fragments of myelin sheaths. Intriguingly, these developmental phagocytic mechanisms by which microglia sculpt the CNS are now appreciated as important for eliminating synapses, myelin, and proteins during neurodegeneration. Here, we discuss parallels between neurodevelopment and neurodegeneration, which highlights how development is informing disease. We further discuss recent advances and challenges towards therapeutically targeting these phagocytic pathways and how we can leverage development to overcome these challenges.


Assuntos
Microglia , Fagocitose , Humanos , Microglia/fisiologia , Microglia/patologia , Animais , Fagocitose/fisiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/fisiopatologia , Bainha de Mielina/fisiologia , Sistema Nervoso Central/patologia
9.
Phys Rev E ; 109(3-1): 034401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632795

RESUMO

The diffusive ion current is insufficient to explain the fast saltatory conduction observed in myelinated axons and in pain-sensing C fibers in the human nervous system, where the stimulus signal exhibits a velocity two orders of magnitude greater than the upper limit of ion diffusion velocity, even when the diffusion is accelerated by myelin, as in the discrete cable model including the Hodgkin-Huxley mechanism. The agreement with observations has been achieved in a wave-type model of stimulus signal kinetics via synchronized ion local density oscillations propagating as a wave in axons periodically corrugated by myelin segments in myelinated axons, or by periodically distributed rafts with clusters of Na^{+} channels in C fibers. The resulting so-called plasmon-polariton model for saltatory conduction reveals also the specific role of myelin, which is different from what was previously thought. This can be important for identifying a new target for the future treatment of demyelination diseases.


Assuntos
Bainha de Mielina , Condução Nervosa , Humanos , Condução Nervosa/fisiologia , Bainha de Mielina/fisiologia , Axônios/metabolismo , Transporte de Íons , Simulação por Computador , Potenciais de Ação/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38503504

RESUMO

Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.


Assuntos
Diferenciação Celular , Bainha de Mielina , Oligodendroglia , Oligodendroglia/fisiologia , Oligodendroglia/citologia , Humanos , Animais , Bainha de Mielina/fisiologia , Bainha de Mielina/metabolismo , Transdução de Sinais , Sistema Nervoso Central/fisiologia , Axônios/fisiologia , Axônios/metabolismo
11.
Nat Neurosci ; 27(5): 846-861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539013

RESUMO

The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.


Assuntos
Oligodendroglia , Substância Branca , Animais , Oligodendroglia/fisiologia , Camundongos , Substância Branca/fisiologia , Doenças Desmielinizantes/patologia , Bainha de Mielina/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Transgênicos , Regeneração Nervosa/fisiologia , Feminino , Encéfalo/fisiologia , Encéfalo/citologia , Neurogênese/fisiologia
12.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427934

RESUMO

The brain is known to be plastic, i.e., capable of changing and reorganizing as it develops and accumulates experience. Recently, a novel form of brain plasticity was described which is activity-dependent myelination of nerve fibers. Since the speed of propagation of action potentials along axons depends significantly on their degree of myelination, this process leads to adaptive change of axonal delays depending on the neural activity. To understand the possible influence of the adaptive delays on the behavior of neural networks, we consider a simple setup, a neuronal oscillator with delayed feedback. We show that introducing the delay plasticity into this circuit can lead to the occurrence of slow oscillations which are impossible with a constant delay.


Assuntos
Bainha de Mielina , Neurônios , Bainha de Mielina/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Potenciais de Ação/fisiologia , Encéfalo/fisiologia
13.
Biol Res ; 57(1): 8, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475854

RESUMO

The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.


Assuntos
Bainha de Mielina , Neuroglia , Neuroglia/fisiologia , Bainha de Mielina/fisiologia , Células-Tronco , Medula Espinal , Encéfalo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38316552

RESUMO

The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Adulto , Criança , Humanos , Remielinização/fisiologia , Regeneração Nervosa/fisiologia , Bainha de Mielina/fisiologia , Sistema Nervoso Central , Mamíferos
15.
Nat Commun ; 15(1): 1790, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413580

RESUMO

Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time.


Assuntos
Axônios , Peixe-Zebra , Animais , Axônios/fisiologia , Bainha de Mielina/fisiologia , Sistema Nervoso Central , Neurônios
16.
Dev Cell ; 59(5): 627-644.e10, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38309265

RESUMO

Axons undergo striking changes in their content and distribution of cell adhesion molecules (CAMs) and ion channels during myelination that underlies the switch from continuous to saltatory conduction. These changes include the removal of a large cohort of uniformly distributed CAMs that mediate initial axon-Schwann cell interactions and their replacement by a subset of CAMs that mediate domain-specific interactions of myelinated fibers. Here, using rodent models, we examine the mechanisms and significance of this removal of axonal CAMs. We show that Schwann cells just prior to myelination locally activate clathrin-mediated endocytosis (CME) in axons, thereby driving clearance of a broad array of axonal CAMs. CAMs engineered to resist endocytosis are persistently expressed along the axon and delay both PNS and CNS myelination. Thus, glia non-autonomously activate CME in axons to downregulate axonal CAMs and presumptively axo-glial adhesion. This promotes the transition from ensheathment to myelination while simultaneously sculpting the formation of axonal domains.


Assuntos
Axônios , Roedores , Humanos , Animais , Axônios/metabolismo , Bainha de Mielina/fisiologia , Células de Schwann , Moléculas de Adesão Celular/metabolismo
17.
Nat Neurosci ; 27(2): 219-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216650

RESUMO

In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca2+ activity in OPCs predict where a subset of myelin sheaths forms in differentiated oligodendrocytes. Further analyses reveal that spontaneous synaptic release is integral to OPC Ca2+ activity, while evoked synaptic release contributes only in early development. Finally, disruption of the synaptic genes dlg4a/dlg4b, gphnb and nlgn3b impairs OPC differentiation and myelination. Together, we propose that neuron-OPC synapses are dynamically assembled and can predetermine myelination patterns through Ca2+ signaling.


Assuntos
Bainha de Mielina , Células Precursoras de Oligodendrócitos , Animais , Bainha de Mielina/fisiologia , Peixe-Zebra , Oligodendroglia/fisiologia , Neurônios/fisiologia , Diferenciação Celular/fisiologia
18.
Glia ; 72(4): 794-808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174817

RESUMO

Axons of globular bushy cells in the cochlear nucleus convey hyper-accurate signals to the superior olivary complex, the initial site of binaural processing via comparably thick axons and the calyx of the Held synapse. Bushy cell fibers involved in hyper-accurate binaural processing of low-frequency sounds are known to have an unusual internode length-to-axon caliber ratio (L/d) correlating with higher conduction velocity and superior temporal precision of action potentials. How the L/d-ratio develops and what determines this unusual myelination pattern is unclear. Here we describe a gradual developmental transition from very simple to complex, mature nodes of Ranvier on globular bushy cell axons during a 2-week period starting at postnatal day P6/7. The molecular composition of nodes matured successively along the axons from somata to synaptic terminals with morphologically and molecularly mature nodes appearing almost exclusively after hearing onset. Internodal distances are initially coherent with the canonical L/d-ratio of ~100. Several days after hearing onset, however, an over-proportional increase in axon caliber occurs in cells signaling low-frequency sounds which alters their L/d ratio to ~60. Hence, oligodendrocytes initially myelinating axons according to their transient axon caliber but a subsequent differential axon thickening after hearing onset results in the unusual myelination pattern.


Assuntos
Axônios , Neurônios , Potenciais de Ação/fisiologia , Axônios/fisiologia , Terminações Pré-Sinápticas , Oligodendroglia , Bainha de Mielina/fisiologia
19.
Nat Rev Immunol ; 24(1): 49-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37452201

RESUMO

Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos , Microglia/patologia , Bainha de Mielina/fisiologia , Doenças Neurodegenerativas/patologia , Sistema Nervoso Central/fisiologia , Macrófagos/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-38052500

RESUMO

Oligodendrocyte precursor cells (OPCs) are a central nervous system resident population of glia with a distinct molecular identity and an ever-increasing list of functions. OPCs generate oligodendrocytes throughout development and across the life span in most regions of the brain and spinal cord. This process involves a complex coordination of molecular checkpoints and biophysical cues from the environment that initiate the differentiation and integration of new oligodendrocytes that synthesize myelin sheaths on axons. Outside of their progenitor role, OPCs have been proposed to play other functions including the modulation of axonal and synaptic development and the participation in bidirectional signaling with neurons and other glia. Here, we review OPC identity and known functions and discuss recent findings implying other roles for these glial cells in brain physiology and pathology.


Assuntos
Células Precursoras de Oligodendrócitos , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Axônios/fisiologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...