Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.027
Filtrar
1.
Molecules ; 29(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39275099

RESUMO

Peptides are receiving significant attention in pharmaceutical sciences due to their applications as anti-inflammatory drugs; however, many aspects of their interactions and mechanisms at the molecular level are not well-known. This work explores the molecular structure of two peptides-(i) cysteine (Cys)-asparagine (Asn)-serine (Ser) (CNS) as a molecule in the gas phase and solvated in water in zwitterion form, and (ii) the crystal structure of the dipeptide serine-asparagine (SN), a reliable peptide indication whose experimental cell parameters are well known. A search was performed by means of atomistic calculations based on density functional theory (DFT). These calculations matched the experimental crystal structure of SN, validating the CNS results and useful for assignments of our experimental spectroscopic IR bands. Our calculations also explore the intercalation of CNS into the interlayer space of montmorillonite (MNT). Our quantum mechanical calculations show that the conformations of these peptides change significantly during intercalation into the confined interlayer space of MNT. This intercalation is energetically favorable, indicating that this process can be a useful preparation for therapeutic anti-inflammatory applications and showing high stability and controlled release processes.


Assuntos
Anti-Inflamatórios , Bentonita , Cisteína , Teoria da Densidade Funcional , Serina , Bentonita/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cisteína/química , Serina/química , Asparagina/química , Modelos Moleculares , Peptídeos/química , Substâncias Intercalantes/química
2.
Proc Natl Acad Sci U S A ; 121(37): e2320482121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226349

RESUMO

Oral delivery of proteins faces challenges due to the harsh conditions of the gastrointestinal (GI) tract, including gastric acid and intestinal enzyme degradation. Permeation enhancers are limited in their ability to deliver proteins with high molecular weight and can potentially cause toxicity by opening tight junctions. To overcome these challenges, we propose the use of montmorillonite (MMT) as an adjuvant that possesses both inflammation-oriented abilities and the ability to regulate gut microbiota. This adjuvant can be used as a universal protein oral delivery technology by fusing with advantageous binding amino acid sequences. We demonstrated that anti-TNF-α nanobody (VII) can be intercalated into the MMT interlayer space. The carboxylate groups (-COOH) of aspartic acid (D) and glutamic acid (E) interact with the MMT surface through electrostatic interactions with sodium ions (Na+). The amino groups (NH2) of asparagine (N) and glutamine (Q) are primarily attracted to the MMT layers through hydrogen bonding with oxygen atoms on the surface. This binding mechanism protects VII from degradation and ensures its release in the intestinal tract, as well as retaining biological activity, leading to significantly enhanced therapeutic effects on colitis. Furthermore, VII@MMT increases the abundance of short-chain fatty acids (SCFAs)-producing strains, including Clostridia, Prevotellaceae, Alloprevotella, Oscillospiraceae, Clostridia_vadinBB60_group, and Ruminococcaceae, therefore enhance the production of SCFAs and butyrate, inducing regulatory T cells (Tregs) production to modulate local and systemic immune homeostasis. Overall, the MMT adjuvant provides a promising universal strategy for protein oral delivery by rational designed protein.


Assuntos
Bentonita , Microbioma Gastrointestinal , Fator de Necrose Tumoral alfa , Bentonita/química , Animais , Administração Oral , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Humanos , Inflamação/tratamento farmacológico , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia
3.
Environ Geochem Health ; 46(10): 383, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167286

RESUMO

Traditional cement solidifying or stabilizing heavy metal-contaminated sites often face issues like alkalinity loss, cracking, and poor long-term performance. Therefore, bentonite-supported nano-zero-valent iron (B-nZVI) was introduced to optimize the remediation effect of cement in this paper. The effects of B-nZVI, ordinary Portland cement (OPC), and B-nZVI + OPC on the chemical stability of heavy metals and the physical strength of lead-contaminated soil were compared using semi-dynamic leaching methods, BCR tests, unconfined strength analysis, and micro-assisted analysis. Results demonstrated that the addition of B-nZVI effectively enhanced the remediation efficacy of OPC on lead-contaminated soil. The combination of B-nZVI and OPC exhibited a synergistic repair effect, offering superior physical strength and chemical stability for lead remediation. B-nZVI facilitated the adsorption and enrichment of Pb2+, thereby reducing oxidizable lead and enhancing short-term stabilization. Meanwhile, OPC precipitation and silicate gelling stabilized exchangeable lead into the residual form, necessitating repeated hydration gelling. Additionally, B-nZVI's sealing effect via water absorption delayed the leaching of exchangeable lead, thereby reducing lead migration. Even with only 1% B-nZVI added to the 12% OPC base, the leaching amount of Pb2+ decreased significantly from 67.6 to 6.59 mg/kg after 7 d of curing. The unconfined strength of contaminated soil treated with the composite solidifying agent for 7 d was 12.87% higher than that of OPC alone, and for 28 d, it was 36.48% higher. This optimization scheme presents a promising approach for effective and sustainable remediation of heavy metal-contaminated sites.


Assuntos
Materiais de Construção , Recuperação e Remediação Ambiental , Ferro , Chumbo , Poluentes do Solo , Poluentes do Solo/química , Chumbo/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Bentonita/química , Metais Pesados/química , Adsorção
4.
Int J Biol Macromol ; 277(Pt 2): 134118, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098460

RESUMO

Coated fertilizers have been widely used to improve fertility in barren land. However, improving soil structure and water-retention capacity is also essential for arid and semi-arid areas with sandy soils to promote crop growth. Most currently available coated fertilizers rarely meet these requirements, limiting their application scope. Therefore, this study "tailored" pectin-montmorillonite (PM) multifunctional coatings for arid areas, featuring intercalation reactions and nanoscale entanglement between pectin and montmorillonite via hydrogen bonding and electrostatic and van der Waals forces. Notably, PM coatings have demonstrated an effective "relay" model of action. First, the PM-50 coating could act as a "shield" to protect urea pills, increasing the mechanical strength (82.12 %). Second, this coating prolonged the release longevity of urea (<0.5 h to 15 days). Further, the remaining coating performed a water-retention function. Subsequently, the degraded coating improved the soil properties. Thus, this coating facilitated the growth of wheat seedlings in a simulated arid environment. Moreover, the cytotoxicity test, life cycle assessment, and soil biodegradation experiment showed that the PM coating exhibited minimal environmental impact. Overall, the "relay" model of PM coating overcomes the application limitations of traditional coated fertilizers and provides a sustainable strategy for developing coating materials in soil degradation areas.


Assuntos
Bentonita , Preparações de Ação Retardada , Fertilizantes , Pectinas , Solo , Água , Pectinas/química , Água/química , Solo/química , Bentonita/química , Preparações de Ação Retardada/química , Biodegradação Ambiental , Triticum/química , Ureia/química
5.
Environ Res ; 261: 119716, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096990

RESUMO

Bentonite is a non-metallic mineral with montmorillonite as the main component. It is an environmentally friendly mineral material with large reserves, wide distribution, and low price. Bentonite can be easily modified organically using the surfactant saponin to obtain saponin-modified bentonite (Sap-BT). This study investigates the immobilization of crude enzymes obtained from Trametes versicolor by physical adsorption with Sap-BT. Thus, saponin-modified bentonite immobilized crude enzymes (CE-Sap-BT) were developed to remove benzo[a]pyrene. Immobilization improves the stability of free enzymes. CE-Sap-BT can maintain more than 80% of activity at 45 °C and after storage for 15 d. Additionally, CE-Sap-BT exhibited a high removal rate of benzo[a]pyrene in soil, with 65.69% after 7 d in highly contaminated allotment soil and 52.90% after 6 d in actual soil contaminated with a low concentration of benzo[a]pyrene at a very low laccase dosage (0.1 U/3 g soil). The high catalytic and removal performance of CE-Sap-BT in contaminated sites showed more excellent practical application value.


Assuntos
Bentonita , Benzo(a)pireno , Enzimas Imobilizadas , Saponinas , Poluentes do Solo , Bentonita/química , Benzo(a)pireno/química , Poluentes do Solo/química , Adsorção , Saponinas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
6.
Environ Sci Pollut Res Int ; 31(40): 52917-52932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39164559

RESUMO

Phosphogypsum (PG) is a solid by-product of the phosphate industry, rich in contaminants and produced in large quantities. Raw materials and stabilized specimens, consisting of bentonite-lime-PG mixtures, were characterized by mineralogical, microstructural, chemical, alpha-particle, and gamma-ray spectrometry analysis before hydration and after hardening. Compressive strength and leaching tests were performed on hardened specimens. The physicochemical parameters and chemical composition of leachates from raw materials and hardened specimens were determined. PG contains high concentrations of natural radionuclides, specially from U series. Uranium-238 activities are double in PG than the worldwide average for soil values. The mobility of PTEs from PG is Cd (2.43%), Zn (2.36%), Ni (2.07%), Cu (1.04%), Pb (0.25%), and As (0.21%). Cadmium is the cation most easily released by PG in water with a concentration 0.0316 mg kg-1. When PG is added to bentonite-lime mixture, cadmium is no longer released. The radionuclide 238,234U and 210Po predominates in the leachates of PG. However, the activity of 210Po becomes negligible in the leachates of bentonite-lime-PG mixtures. The addition of PG to bentonite-lime mixtures facilitates the trapping of trace elements (PTEs) and radionuclides, providing potential applications for PG as road embankments and fill coatings.


Assuntos
Bentonita , Sulfato de Cálcio , Solo , Oligoelementos , Bentonita/química , Sulfato de Cálcio/química , Oligoelementos/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Radioisótopos/análise , Fósforo/análise , Fósforo/química , Urânio/análise
7.
Int J Biol Macromol ; 277(Pt 3): 134316, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094859

RESUMO

Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.


Assuntos
Bentonita , Quitosana , Retardadores de Chama , Polieletrólitos , Polipropilenos , Quitosana/química , Bentonita/química , Polipropilenos/química , Polieletrólitos/química , Resistência à Tração , Química Verde/métodos , Materiais Biocompatíveis/química , Fenômenos Mecânicos
8.
J Environ Manage ; 368: 122170, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137639

RESUMO

The removal of tetracycline antibiotics using adsorbents is becoming an environmentally friendly and cost-effective method. This study systematically analyzed the stability, structure, morphology, and chemical properties of various adsorbents. Batch adsorption experiments (pH, time, temperature, tetracycline concentration, and adsorbent dosage) were conducted to compare the adsorption capacity of the six adsorbents (biochar, activated carbon, montmorillonite, zeolite, chitosan, and polymerized aluminum chloride) for tetracycline removal. The results indicated that montmorillonite had the highest adsorption efficiency, followed by biochar, with chitosan showing the lowest efficiency. At an adsorbent dose of 25 g/L and an initial tetracycline concentration of 120 mg/L, the removal rates of tetracycline by montmorillonite, biochar, and chitosan were 97.6%, 69.3%, and 12.2%, respectively. Furthermore, the removal rate of tetracycline by biochar, following the response surface methodology optimal mode, increased by 5.5%. The Elovich model was better suited to explain the adsorption process of tetracycline compared to the conventional pseudo-first kinetic model and second-order kinetic model. The isothermal adsorption model suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. Tetracycline was efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups. Additionally, montmorillonite demonstrated superior performance as an adsorbent for tetracycline removal from swine wastewater compared to the other adsorbents studied.


Assuntos
Bentonita , Carvão Vegetal , Quitosana , Tetraciclina , Águas Residuárias , Poluentes Químicos da Água , Tetraciclina/química , Adsorção , Animais , Águas Residuárias/química , Suínos , Bentonita/química , Quitosana/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Cinética , Zeolitas/química , Purificação da Água/métodos
9.
Water Res ; 264: 122220, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116613

RESUMO

The environmental transport and fate of nanoscale zero-valent iron particles (nZVI) in soil and groundwater can be altered by their hetero-aggregation with clay mineral particles (CMP). This study examines the interactions between bare or carboxymethyl cellulose (CMC)-coated nZVI with typical CMP, specifically kaolinite and montmorillonite. Methods include co-settling experiments, aggregation kinetic studies, electron microscopy, Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (EDLVO) energy analysis, and density functional theory calculations, focusing on the pH dependency of these interactions. The EDLVO theory effectively described the interactions between nZVI and CMP in aquatic environments. Under acidic conditions (pH 3.5), the interfacial interaction between bare nZVI and kaolinite is regulated by van der Waals forces, while complexation, van der Waals forces, and electrostatic attraction govern the interaction of bare nZVI with montmorillonite, primarily depositing on the SiO face. In contrast, the positively charged AlO face and edge of CMP are the main deposition sites for CMC-coated nZVI through hydrogen bonding, van der Waals forces, and electrostatic attraction. At neutral (pH 6.5) and alkaline (pH 9.5) conditions, both bare and CMC-coated nZVI predominantly attach to the AlO face and edge, facilitated by complexation or hydrogen bonding, alongside van der Waals forces. The attachment of CMC-coated nZVI to CMP surfaces shows reversible aggregation or deposition due to the steric repulsion from the CMC coating. These findings hold significant implications for the environmental applications and risk of nZVI.


Assuntos
Argila , Ferro , Ferro/química , Argila/química , Minerais/química , Bentonita/química , Concentração de Íons de Hidrogênio , Caulim/química , Cinética
10.
J Environ Manage ; 367: 122013, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098069

RESUMO

Leachate emanating from landfills contains ammonia which may cause serious health effects on living things. An effectively designed clay barrier should not allow the contaminant to infiltrate the soil and groundwater systems. The utilization of certain industrial by-products in engineered landfill barriers, not only reduces the need for conventional liner materials but also helps in sustainable waste management. This study investigated the hydraulic conductivity, unconfined compressive strength, compaction, and adsorption characteristics of lithomargic clay blended with an optimum percentage of bentonite (10%) and granulated blast furnace slag (15%) permeated with ammonia. The results revealed that increasing the content of granulated blast furnace slag decreased the maximum dry density while increasing the optimum moisture content. In comparison to lithomargic clay, the hydraulic conductivity of the amended soil liner permeated with ammonia decreased from a value of 3 × 10-8 m/s to 5 × 10-10 m/s. The unconfined compressive strength of the amended soil specimens showed an increasing trend with curing times (i.e., 0, 14, 28, and 56 days). The batch adsorption results revealed that Freundlich and Langmuir's isotherm fits the equilibrium adsorption data and the adsorption of ammonia on clay liner follows non-linear behaviour. Overall, the experimental results implied that lithomargic clay blended with 10% bentonite and 15% granulated blast furnace slag can be used as an impermeable soil reactive barrier in engineered landfills.


Assuntos
Amônia , Bentonita , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Bentonita/química , Amônia/química , Adsorção , Eliminação de Resíduos/métodos , Solo/química , Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/química , Argila/química
11.
Int J Biol Macromol ; 278(Pt 3): 134747, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151844

RESUMO

Today, with the growth of the human population, industrial activities have also increased. Different industries such as painting, cosmetics, leather, etc. have broadly developed, and as a result, they also produce a lot of pollutants. These pollutants can enter the environment and pollute water, air, and soil. Organic dyes, nitro compounds, drug residues, pesticides and herbicides are pollutants that should be removed from the environment. Natural polymers or biopolymers are important types of organic materials that are broadly applied for different applications. Among them, polysaccharides and lignin, which are two types of biopolymers, have attracted much consideration owing to their advantages such as biocompatibility, environmental friendly, safety, availability, etc. Polysaccharides include cellulose, gum, starch, alginate (Alg), chitin, and chitosan (CS). On the other hand, bentonite is one of the types of clays, which owing to their properties like large specific surface area, adsorption performance, naturally available, etc., have drawn the interest of many researchers. As a result, the synthesis of a composite including polysaccharide/lignin and bentonite can be very efficient for different applications, especially environmental ones. In this review, we instigated the preparation of these composites as well as the removal performance of them. In fact, we reported recent advancements in the synthesis of lignin- and polysaccharide-bentonite composites for the removal of diverse kinds of contaminants like organic dyes, nitro compounds, and hazardous materials.


Assuntos
Bentonita , Lignina , Polissacarídeos , Purificação da Água , Bentonita/química , Lignina/química , Purificação da Água/métodos , Polissacarídeos/química , Poluentes Químicos da Água/química
12.
Int J Biol Macromol ; 278(Pt 2): 134703, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151853

RESUMO

New hybrid hydrogel composites based on a mixture of natural polysaccharides (sodium alginate, κ-carrageenan, and chitosan) filled with the clay mineral of natural origin, montmorillonite (MMT), were studied. The structure of intercalated/flocculated MMT distribution in the interpenetrating network of polysaccharide matrix was characterized using FTIR, X-ray diffraction, and SEM techniques. Swelling kinetics was investigated using the weight analysis, whereas the phase transition of water in the composition of hybrid hydrogels, by DSC method. Their biosafety was estimated using the Nelyubov method, germination test on cress (L. sativum) seeds, and metabolic fingerprinting of microbial communities and dehydrogenase assay. The obtained results indicated promising water-retaining properties of the synthesized materials. The hydrogels had a good sorption affinity for cadmium (Cd) ions confining bioavailability of the selected toxic heavy metal. They were safe for soil microorganisms and did not generate metabolic stress for them. Moreover, they did not reduce the viability of pea seeds. Thus, the development of biosafe hybrid hydrogel composites with a comprehensive, good effect on the environment could be considered as successful.


Assuntos
Alginatos , Bentonita , Materiais Biocompatíveis , Carragenina , Quitosana , Hidrogéis , Hidrogéis/química , Hidrogéis/síntese química , Quitosana/química , Bentonita/química , Carragenina/química , Alginatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Argila/química , Cádmio/química , Sementes/química , Adsorção
13.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125013

RESUMO

Carvacrol and thymol are broad-spectrum natural antimicrobial agents. To reduce their volatility and improve their antimicrobial performance, synergistic systems were prepared loading the active molecules in zinc-modified clays. Montmorillonite (MMT) and zeolite (ZEO) were modified with zinc ions (ZnMMT and ZnZEO), with well-known antimicrobial properties, and then with carvacrol or thymol, reaching the 26 ± 3% and 33 ± 2% w/w of loading, respectively. The resulting hybrid materials were characterized by FT-IR, XPS, XRD, TGA, and GC-MS to evaluate carvacrol/thymol release in simulating food matrices. Antimicrobial assays carried out using spoiler and pathogenic bacterial strains showed that the antimicrobial activity of both thymol and carvacrol was largely preserved once they were loaded into Zn-modified clays. However, MMT hybrids showed an antibacterial activity significantly higher than ZEO hybrids at 50 mg/mL of thymol and carvacrol. For this reason, deeper antimicrobial evaluations were carried out only for ZnMMT composites. ZnMMT loaded with thymol or carvacrol produced inhibition zones against most of the target strains, also at 3.12 mg/mL, while the positive controls represented by the single molecule thymol or carvacrol were not active. The hybrid materials can be useful for applications in which the antimicrobial activity of natural molecules need to be displayed over time as requested for the control of microbial pathogens and spoilage bacteria in different applications, such as active packaging, biomaterials, and medical devices.


Assuntos
Anti-Infecciosos , Argila , Cimenos , Testes de Sensibilidade Microbiana , Timol , Zinco , Cimenos/química , Cimenos/farmacologia , Timol/química , Timol/farmacologia , Zinco/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Argila/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias/efeitos dos fármacos , Bentonita/química
14.
Water Sci Technol ; 90(4): 1198-1209, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39215732

RESUMO

High concentrations of Na+ and NH4+ in landfill leachate lead to deterioration of bentonite barrier and pose a threat to the environment. This study focused on the pollution interception and permeability characteristics of the bentonite barrier exposed to NaCl and NH4Cl solutions. Based on previous findings, salt solution concentrations were established at 74.80, 37.40, 18.70, and 9.4 mmol/L. The bentonite contents in the mixture were set at 0, 5, 10, and 15%. The results indicate that the samples exhibit better interception of NH4+ compared to Na+. This difference arises from the cation exchange sequence, the size of the hydration radius, and the hydrogen bonding of the two cations. Additionally, the difference in hydration enthalpy between the two cations leads to variations in the swelling of bentonite, resulting in a higher hydraulic conductivity coefficient in NH4Cl solution. This study shows that although bentonite barriers have better interception for NH4+, they exhibit greater hydraulic conductivity in NH4Cl solution, increasing the risk of leachate carrying other contaminants.


Assuntos
Bentonita , Permeabilidade , Cloreto de Sódio , Bentonita/química , Cloreto de Sódio/química , Cloreto de Amônio/química , Cátions , Poluentes Químicos da Água/química
15.
Environ Pollut ; 358: 124491, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964646

RESUMO

The deep geological repository (DGR) concept consists of storing radioactive waste in metal canisters, surrounded by compacted bentonite, and placed deeply into a geological formation. Here, bentonite slurry microcosms with copper canisters, inoculated with bacterial consortium and amended with acetate, lactate and sulfate were set up to investigate their geochemical evolution over a year under anoxic conditions. The impact of microbial communities on the corrosion of the copper canisters in an early-stage (45 days) was also assessed. The amended bacterial consortium and electron donors/acceptor accelerated the microbial activity, while the heat-shocked process had a retarding effect. The microbial communities partially oxidize lactate to acetate, which is subsequently consumed when the lactate is depleted. Early-stage microbial communities showed that the bacterial consortium reduced microbial diversity with Pseudomonas and Stenotrophomonas dominating the community. However, sulfate-reducing bacteria such as Desulfocurvibacter, Anaerosolibacter, and Desulfosporosinus were enriched coupling oxidation of lactate/acetate with reduction of sulfates. The generated biogenic sulfides, which could mediate the conversion of copper oxides (possibly formed by trapped oxygen molecules on the bentonite or driven by the reduction of H2O) to copper sulfide (Cu2S), were identified by X-ray photoelectron spectroscopy (XPS). Overall, these findings shed light on the ideal geochemical conditions that would affect the stability of DGR barriers, emphasizing the impact of the SRB on the corrosion of the metal canisters, the gas generation, and the interaction with components of the bentonite.


Assuntos
Bentonita , Cobre , Resíduos Radioativos , Bentonita/química , Corrosão , Bactérias/metabolismo , Espanha , Consórcios Microbianos
16.
Int J Biol Macromol ; 277(Pt 1): 134163, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059536

RESUMO

This study developed a nanocomposite hydrogel, CAM4-MMT, for efficiently removing basic fuchsin dye from water. The hydrogel was prepared by grafting a copolymer of acrylic acid (AA) and acrylamide (AM) onto carboxymethyl konjac glucomannan (CMKGM), and doped with montmorillonite (MMT), exhibited excellent thermal stability, a porous inner structure, large specific surface area (1.407 m2/g), and high swelling capacity (107.3 g/g). The hydrogel achieved a maximum adsorption capacity of 694.1 mg/g and a removal rate of 99.5 %. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption process. Regeneration and reuse tests confirmed that the hydrogel has excellent recyclability. In conclusion, the CAM4-MMT composite hydrogel efficiently removed basic fuchsin from water solutions, offering a new scheme for eliminating basic fuchsin using natural polysaccharides with promising applications.


Assuntos
Acrilamida , Acrilatos , Bentonita , Hidrogéis , Mananas , Mananas/química , Acrilamida/química , Bentonita/química , Hidrogéis/química , Acrilatos/química , Adsorção , Cinética , Corantes de Rosanilina/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Corantes/química , Concentração de Íons de Hidrogênio
17.
Int J Biol Macromol ; 277(Pt 2): 134133, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074704

RESUMO

In recent years, numerous attempts have been made to develop a low-cost adsorbent for selectively recovering industrially important products from fermentation broth or complex mixtures. The current study is a novel attempt to selectively adsorb esterase from Trichoderma harzianum using cheap adsorbents like bentonite (BT), activated charcoal (AC), silicon dioxide (SiO2), and titanium dioxide (TiO2). AC had the highest esterase adsorption of 97.58% due to its larger surface area of 594.45 m3/g. SiO2 was found to have the highest selectivity over esterase, with an estimated purification fold of 7.2. Interestingly, the purification fold of 5.5 was found in the BT-extracted fermentation broth. The functional (FT-IR) and morphological analysis (SEM-EDX) were used to characterize the adsorption of esterase. Esterase adsorption on AC, SiO2, and TiO2 was well fitted by Freundlich isotherm, demonstrating multilayer adsorption of esterase. A pseudo-second-order kinetic model was developed for esterase adsorption in various adsorbents. Thermodynamic analysis revealed that adsorption is an endothermic process. AC has the lowest Gibbs free energy of -10.96 kJ/mol, which supports the spontaneous maximum adsorption of both esterase and protein. In the desorption study, the maximum recovery of esterase from TiO2 using sodium chloride was 41.34 %. Unlike other adsorbents, the AC-adsorbed esterase maintained its catalytic activity and stability, implying that it could be used as an immobilization system for commercial applications. According to the kinetic analysis, the overall rate of the reaction was controlled by reaction kinetics rather than external mass transfer resistance, as indicated by the Damkohler number.


Assuntos
Esterases , Adsorção , Cinética , Esterases/metabolismo , Esterases/química , Esterases/isolamento & purificação , Carvão Vegetal/química , Titânio/química , Termodinâmica , Dióxido de Silício/química , Hypocreales/enzimologia , Biocatálise , Bentonita/química
18.
J Colloid Interface Sci ; 675: 660-669, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38991280

RESUMO

The global rise in obesity necessitates innovative weight loss strategies. Naturally occurring smectite clays, such as montmorillonite (MMT), offer promise due to their unique properties that interfere with free fatty acid (FFA) liberation, reducing systemic uptake. However, the mechanisms of MMT-FFA interactions and their implications for weight management are undefined. This study investigates these interactions by adding MMT (10 % w/w) to in vitro lipolysis media containing medium chain triglycerides (MCTs), and monitoring FFA liberation using pH-stat titration. Nanoparticle tracking analysis (NTA) and synchrotron-based small-angle X-ray scattering (sSAXS) observed time-dependent structural changes, while electron microscopy examined clay morphology during digestion. A 35 % reduction in FFA liberation occurred after 25 min of digestion with MCT + MMT, with digestion kinetics following a biphasic model driven by calcium soap formation. NTA revealed a 17-fold decrease in vesicular structures with MCT + MMT, and sSAXS highlighted a rapid lamellar phase evolution linked to calcium soap formation. This acceleration is attributed to MMT's adsorption to unionized FFAs via hydrogen bonding, supported by TEM images showing a decrease in d-spacing, indicating FFA intercalation is not the main adsorption mechanism. These findings highlight MMT's potential as a novel intervention for reducing dietary lipid absorption in obesity and metabolic diseases.


Assuntos
Bentonita , Ácidos Graxos não Esterificados , Bentonita/química , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Lipólise , Triglicerídeos/química , Triglicerídeos/metabolismo , Tamanho da Partícula
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124823, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39033609

RESUMO

In the present work, we study different physicochemical properties related to LADME processes of volasertib, a Polo-like kinase 1 inhibitor in advanced clinical trials. Firstly, the protonation equilibria, the extent of ionization at the physiological pH and pKa values of this drug are studied combining spectroscopic techniques and computational calculations. Secondly, the binding process of volasertib to the human serum albumin (HSA) protein is analyzed by fluorescence spectroscopy. We report a high binding constant to HSA (Ka = 4.10 × 106 M-1) and their pharmacokinetic implications are discussed accordingly. The negative enthalpy and entropy (ΔH0 = -54.49 kJ/mol; ΔS0 = -58.90 J K-1 mol-1) determined for the binding process suggests the implication of hydrogen bonds and van der Waals interactions in the formation of the HSA-volasertib complex. Additionally, volasertib is encapsulated in an alginate/montmorillonite bionanocomposite as a proof of concept for an oral delivery nanocarrier. The physical properties of that nanocomposite as well as volasertib delivery kinetics are analyzed.


Assuntos
Alginatos , Bentonita , Nanocompostos , Espectrometria de Fluorescência , Humanos , Alginatos/química , Bentonita/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Nanocompostos/química , Ligação Proteica , Pteridinas/química , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Termodinâmica
20.
Environ Res ; 259: 119574, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986800

RESUMO

Environmental pollution is increasing worldwide due to population and industrialization. Among the various forms of pollution, water pollution poses a significant challenge in contemporary times. In this study, we synthesized CuO-decorated montmorillonite K30 (MK30) nanosheets via a simple ultrasonication technique. The structural, morphological, compositional, and optical properties of the synthesized nanocomposites were evaluated using advanced instrumentation techniques. The morphology of CuO was cubic and cubic CuO evenly designed on the MK30, which was proved by Field Emission Scanning Electron Microscopy (FESEM). The adsorption photocatalytic activity of the synthesized cubic CuO/MK30 composites was examined through the degradation of MB under visible light irradiation. The apparent reaction rate constant of 20% CuO/MK30 was 12.5 folds higher than that of CuO. These conditions included a catalyst dosage ranging from 5 to 15 mg, a pH level ranging from to 3-11, and a pollutant concentration ranging from 5 to 20 mg/L. The optimal conditions for MB dye removal were determined using response surface methodology (RSM). A scavenger study of the composite was conducted and verified that •O2- and •OH radicals play an important role in the degradation process. This investigation addressed the process of adsorption and potential removal pathways, with a particular emphasis on the role of functional groups. The environmentally friendly CuO/MK30 nanocomposites exhibited potential as photocatalysts for efficiently absorbing and degrading MB dye and TC drug pollutants. They represent promising candidates for the treatment of industrial wastewater, aiming to mitigate the environmental threats posed by organic pollutants.


Assuntos
Bentonita , Cobre , Nanocompostos , Poluentes Químicos da Água , Bentonita/química , Cobre/química , Nanocompostos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...