Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.246
Filtrar
1.
AAPS PharmSciTech ; 25(6): 166, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009861

RESUMO

Cancer has been an enormous pain point for patients and regulatory bodies across the globe. In Dec. 2023, the US FDA released guidance on benzene-grade carbomer formulations, which triggered pharmaceutical manufacturers to assess risk, test finished products, and reformulate drug products with benzene-grade carbomer. The immediate implementation of the stoppage of finished products with benzene-grade carbomers has threatened pharmaceutical excipients and finished product manufacturers. The gravity of this situation prompted the US Pharmacopeia to extend the deadline for discontinuation from August 1, 2025, to August 1, 2026, allowing manufacturers ample time for reformulation and regulatory compliance.There is an immediate need to understand the guidance and to learn how manufacturers should do the risk assessment and approach reformulation. This review provides an in-depth analysis of the risk assessment and reformulation processes involved in various dosage forms utilizing benzene-grade carbomer, supported by specific case studies.This review offers insights into navigating the USFDA guidelines to ensure formulation safety and compliance, thus enabling pharmaceutical practitioners to uphold the highest standards of patient care and tackle life cycle management challenges.The decision of the USFDA to restrict the usage of high benzene content of carbomer in the formulation is a welcome move. This article has shown a way for researchers to see opportunities in the path and provide best-in-class medicines to patients with a better formulation safety profile.


Assuntos
Benzeno , United States Food and Drug Administration , Medição de Risco/métodos , Estados Unidos , Benzeno/química , United States Food and Drug Administration/normas , Humanos , Química Farmacêutica/métodos , Excipientes/química , Composição de Medicamentos/métodos , Indústria Farmacêutica/métodos , Indústria Farmacêutica/normas , Resinas Acrílicas/química
2.
J Environ Manage ; 363: 121343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843727

RESUMO

This work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants - benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40-120 kHz and 80-200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40-120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation capacity degrading 99.37-99.69% of BTEXs in 40 min, while 86.09-91.76% of BTEX degradation was achieved after 60 min in 80-200 kHz i.e., high-frequency US (HFDUS) combined with O3. The synergistic indexes determined using degradation rate constants were found as 7.86 and 2.9 for LFDUS/O3 and HFDUS/O3 processes, respectively. The higher extend of BTEX degradation in both processes was observed at pH 6.5 and 10. Among the reactive oxygen species (ROSs), hydroxyl radicals (HO•) were found predominant according to scavenging tests, singlet oxygen also importantly contributed in degradation, while O2•- radicals had a minor contribution. Sulfate (SO42-) ions demonstrated higher inhibitory effect compared to chloride (Cl-) and carbonate (CO32-) ions in both processes. Degradation pathways of BTEX was proposed based on the intermediates identified using GC-MS technique.


Assuntos
Derivados de Benzeno , Benzeno , Ozônio , Poluentes Químicos da Água , Xilenos , Ozônio/química , Xilenos/química , Derivados de Benzeno/química , Benzeno/química , Poluentes Químicos da Água/química , Tolueno/química , Oxirredução , Água/química , Espécies Reativas de Oxigênio/química , Purificação da Água/métodos
3.
Chemosphere ; 361: 142551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852280

RESUMO

The fate of volatile organic compounds (VOC) vapors in the unsaturated zone is the basis for evaluating the natural attenuation potential and vapor intrusion risk. Microcosm and column experiments were conducted to study the effects chemical speciation and soil types/properties on the fate of petroleum VOCs in unsaturated zone. The biodegradation and total attenuation rates of the seven VOCs obtained by microcosm experiments in black soil and yellow earth were also generally higher than those in floodplain soil, lateritic red earth, and quartz sand. The VOC vapors in floodplain soil, lateritic red earth, and quartz sand showed slow total attenuation rates (<0.3 d-1). N-pentane, methylcyclopentane, and methylcyclohexane showed lower biodegradation rates than octane and three monoaromatic hydrocarbons. Volatilization into the atmosphere and biodegradation are two important natural attenuation paths for VOCs in unsaturated soil columns. The volatilization loss fractions of different volatile hydrocarbons in all five unsaturated soils were generally in the order: n-pentane (93.5%-97.8%) > methylcyclopentane (77.2%-85.5%) > methylcyclohexane (53.5%-69.2%) > benzene (17.1%-73.3%) > toluene (0-45.7%) > octane (1.9%-34.2%) > m-xylene (0-5.7%). The fractions by volatilization into the atmosphere of all seven hydrocarbons in quartz sand, lateritic red earth, and floodplain soil were close and higher compared to the yellow earth and black soil. Overall, this study illustrated the important roles chemical speciation and soil properties in determining the vapor-phase transport and natural attenuation of VOCs in the unsaturated zone.


Assuntos
Biodegradação Ambiental , Petróleo , Poluentes do Solo , Solo , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Petróleo/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Adsorção , Volatilização , Pentanos/química , Pentanos/análise , Octanos/química , Tolueno/química , Tolueno/análise , Benzeno/análise , Benzeno/química
4.
Int J Biol Macromol ; 273(Pt 2): 132706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825294

RESUMO

Benzene, as a common volatile organic compound, represents serious risk to human health and environment even at low level concentration. There is an urgent concern on visualized, sensitive and real time detection of benzene gases. Herein, by doping Fe3+ and graphene quantum dots (GQDs), a cellulose nanocrystal (CNC) chiral nematic film was designed with dual response of photonic colors and fluorescence to benzene gas. The chiral nematic CNC/Fe/GQDs film could respond to benzene gas changes by reversible motion. Moreover, chiral nematic film also displays reversible responsive to humidity changes. The resulting CNC/Fe/GQDs chiral nematic film showed excellent response performance at benzene gas concentrations of 0-250 mg/m3. The maximal reflection wavelength film red shifted from 576 to 625 nm. Furthermore, structural color of CNC/Fe/GQDs chiral nematic film change at 44 %, 54 %, 76 %, 87 %, and 99 % relative humidity. Interestingly, due to the stability of GQDs to water molecules, CNC/Fe/GQDs chiral nematic film exhibit fluorescence response to benzene gas even in high humidity (RH = 99 %) environment. Besides, we further developed a smartphone-based response network system for quantitively determinization and signal transformation. This work provides a promising routine to realize a new benzene gas response regime and promotes the development of real-time benzene gas detection.


Assuntos
Benzeno , Celulose , Nanopartículas , Celulose/química , Benzeno/química , Benzeno/análise , Nanopartículas/química , Pontos Quânticos/química , Grafite/química , Fluorescência , Gases/análise , Gases/química , Cor , Fótons
5.
Chemosphere ; 359: 142247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705410

RESUMO

Mn or Co supported CeO2 fiber catalysts were synthesized following a biotemplating route and evaluated in soot combustion and benzene total oxidation. The catalysts were characterized by SEM, EDX, N2 physisorption, FTIR-ATR, XRD, RAMAN and XPS. SEM results confirmed that the "twisted ribbon" morphology of the biotemplate was mostly maintained. XRD and Raman showed that Mn and Co cations partially insert into ceria lattice and also segregate at the surface of the fibers. XPS allowed to determine that both set of catalysts exhibit Ce3+ and Ce4+ species, in addition to adsorbed and lattice oxygen. Also, the average oxidation state (AOS) of surface Mn could be calculated. Compared to bare Fib Ce, the performances for both reactions were improved for the supported catalysts, except from the catalyst with lowest Mn content for soot combustion. The catalytic activity was discussed in terms of the physicochemical features of the supported catalysts.


Assuntos
Benzeno , Cério , Cobalto , Manganês , Oxirredução , Fuligem , Cério/química , Benzeno/química , Catálise , Manganês/química , Cobalto/química , Fuligem/química
6.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691504

RESUMO

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Assuntos
Benzeno , Benzeno/química , Compostos Orgânicos/química , Oxirredução , Aerossóis , Volatilização , Poluentes Atmosféricos , Modelos Teóricos
7.
ACS Sens ; 9(4): 1906-1915, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38565844

RESUMO

As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/µg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.


Assuntos
Benzeno , Cobre , Limite de Detecção , Estruturas Metalorgânicas , Termodinâmica , Benzeno/análise , Benzeno/química , Cobre/química , Estruturas Metalorgânicas/química , Adsorção , Cinética , Teoria da Densidade Funcional , Gases/análise , Gases/química
8.
J Environ Sci (China) ; 143: 201-212, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644017

RESUMO

Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.


Assuntos
Benzeno , Cobalto , Oxirredução , Óxidos , Prata , Benzeno/química , Cobalto/química , Prata/química , Catálise , Óxidos/química , Modelos Químicos , Poluentes Atmosféricos/química
9.
Environ Sci Pollut Res Int ; 31(19): 27935-27948, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523212

RESUMO

Herein, microwave-assisted activated carbon (MW-AC) was fabricated from peanut shells using a ZnCl2 activator and utilized for the first time to eliminate benzene vapor as a volatile organic compound (VOC). During the MW-AC production process, which involved two steps-microwave treatment and muffle furnace heating-we investigated the effects of various factors and achieved the highest iodine number of 1250 mg/g. This was achieved under optimal operating conditions, which included a 100% impregnation ratio, CO2 as the gas in the microwave environment, a microwave power set at 500 W, a microwave duration of 10 min, an activation temperature of 500 °C and an activation time of 45 min. The structural and morphological properties of the optimized MW-AC were assessed through SEM, FTIR, and BET analysis. The dynamic adsorption process of benzene on the optimized MW-AC adsorbent, which has a significant BET surface area of 1204.90 m2/g, was designed using the Box-Behnken approach within the response surface methodology. Under optimal experimental conditions, including a contact duration of 80 min, an inlet concentration of 18 ppm, and a temperature of 26 °C, the maximum adsorption capacity reached was 568.34 mg/g. The experimental data are better described by the pseudo-second-order kinetic model, while it is concluded that the equilibrium data are better described by the Langmuir isotherm model. MW-AC exhibited a reuse efficiency of 86.54% for benzene vapor after five consecutive recycling processes. The motivation of the study highlights the high adsorption capacity and superior reuse efficiency of MW-AC adsorbent with high BET surface area against benzene pollutant. According to our results, the developed MW-AC presents itself as a promising adsorbent candidate for the treatment of VOCs in various industrial applications.


Assuntos
Arachis , Benzeno , Carvão Vegetal , Micro-Ondas , Compostos de Zinco , Adsorção , Benzeno/química , Carvão Vegetal/química , Compostos de Zinco/química , Arachis/química , Compostos Orgânicos Voláteis/química , Cloretos/química , Cinética , Poluentes Atmosféricos/química
10.
Bioorg Med Chem ; 102: 117652, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442523

RESUMO

Aromatic rings are critical core substructures in the majority of pharmaceutical compounds. There is much recent interest in replacing aromatic structures with saturated bioisosteres of benzene, which are generally fused or bridged ring systems. These bioisosteres often show improved solubility properties compared to benzene, and may also undergo fewer unwanted metabolic processes. One key reason why aromatic rings have proven so successful in drug design is their rigidity. This paper uses molecular dynamics simulations supported by crystallographic data to assess the rigidity of bicyclopentane and cubane ring systems as two of the most common benzene bioisosteres and compares this to benzene. Whilst a benzene ring is shown to be more flexible than these two bioisosteres in terms of its dihedral ring flexibility, substituents around the ring tend to behave in a much more similar way in both benzene and the bioisosteric systems.


Assuntos
Benzeno , Pentanos , Benzeno/química , Simulação de Dinâmica Molecular , Solubilidade
11.
Arch Pharm (Weinheim) ; 357(6): e2300545, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423951

RESUMO

A series of benzene sulfonamides 15-26 were synthesized and determined for their in vitro and in silico inhibitory profiles toward acetylcholinesterase (AChE) and carbonic anhydrases (CAs). Commercially available 3,4-dimethoxytoluene was reacted with chlorosulfonic acid to furnish benzene sulfonyl chloride derivatives. The reaction of substituted benzene sulfonyl chloride with some amines also including (±)-α-amino acid methyl esters afforded a series of novel benzene sulfonamides. In this study, the enzyme inhibition abilities of these compounds were evaluated against AChE and CAs. They exhibited a highly potent inhibition ability on AChE and -CAs (Ki values are in the range of 28.11 ± 4.55 nM and 145.52 ± 28.68 nM for AChE, 39.20 ± 2.10 nM to 131.54 ± 12.82 nM for CA I, and 50.96 ± 9.83 nM and 147.94 ± 18.75 nM for CA II). The present newly synthesized novel benzene sulfonamides displayed efficient inhibitory profiles against AChE and CAs, and it is anticipated that they may emerge as lead molecules for some diseases including glaucoma, epilepsy, and Alzheimer's disease.


Assuntos
Acetilcolinesterase , Inibidores da Anidrase Carbônica , Inibidores da Colinesterase , Sulfonamidas , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Humanos , Anidrases Carbônicas/metabolismo , Relação Dose-Resposta a Droga , Benzenossulfonamidas , Benzeno/química
12.
Nat Commun ; 15(1): 1891, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424084

RESUMO

Plasma membrane lysis is an effective anticancer strategy, which mostly relying on soluble molecular membranolytic agents. However, nanomaterial-based membranolytic agents has been largely unexplored. Herein, we introduce a mesoporous membranolytic nanoperforators (MLNPs) via a nano- and molecular-scale multi-patterning strategy, featuring a spiky surface topography (nanoscale patterning) and molecular-level periodicity in the spikes with a benzene-bridged organosilica composition (molecular-scale patterning), which cooperatively endow an intrinsic membranolytic activity. Computational modelling reveals a nanospike-mediated multivalent perforation behaviour, i.e., multiple spikes induce nonlinearly enlarged membrane pores compared to a single spike, and that benzene groups aligned parallelly to a phospholipid molecule show considerably higher binding energy than other alignments, underpinning the importance of molecular ordering in phospholipid extraction for membranolysis. Finally, the antitumour activity of MLNPs is demonstrated in female Balb/c mouse models. This work demonstrates assembly of organosilica based bioactive nanostructures, enabling new understandings on nano-/molecular patterns co-governed nano-bio interaction.


Assuntos
Benzeno , Nanoestruturas , Feminino , Animais , Camundongos , Benzeno/química , Nanoestruturas/química , Fosfolipídeos
13.
Chemosphere ; 351: 141197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244866

RESUMO

One of the main gaseous pollutants released by chemical production industries are benzene, toluene and xylene (BTX). These dangerous gases require immediate technology to combat them, as they put the health of living organisms at risk. The development of heterogeneous photocatalytic oxidation technology offers several viewpoints, particularly in gaseous-phase decontamination without an additional supply of oxidants in air at atmospheric pressure. However, difficulties such as low quantum efficiency, ability to absorb visible light, affinity towards CO2 and H2O synthesis, and low stability continue to limit its practical use. This review presents recent advances in dry-phase heterogeneous photodegradation as an advanced technology for the practical removal of BTX molecules. This review also examines the impact of low-cost light sources, the roles of the active sites of photocatalysts, and the feasible concentration range of BTX molecules. Numerous studies have demonstrated a significant improvement in the efficiency of the photodegradation of volatile organic compounds by enhancing the photocatalytic reactor system and other factors, such as humidity, temperature, and flow rate. The mechanism for BTX photodegradation based on density functional theory (DFT), electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigations is also discussed. Finally, the present research complications and anticipated future developments in the field of heterogeneous photocatalytic oxidation technology are discussed.


Assuntos
Benzeno , Xilenos , Benzeno/química , Xilenos/química , Tolueno/química , Catálise , Luz , Gases
14.
Chemosphere ; 350: 141114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184080

RESUMO

MXenes are an emerging class of two-dimensional (2D) inorganic materials with great potential for versatile applications such as adsorption and catalysis. Here, we describe the synthesis of a platinized titanium carbide MXene (Pt@Ti3C2) catalyst with varying amounts of platinum (0.1%-2 wt.%) for the low-temperature oxidation of benzene, an aromatic volatile organic compound often found in industrial flue gas. A 1% formulation of Pt@Ti3C2-R allowed near-complete (97%) oxidation of benzene to CO2 at 225 °C with a steady-state reaction rate (r) of 0.119 mol g-1·h-1. This low-temperature catalytic oxidation reaction was promoted by an increase in the lattice oxygen (O*)/Pt2+ species (active sites) of 1%Pt@Ti3C2-R from 45.3/34.6% to 71.0/61.1% through pre-thermal reduction under H2 flow, as revealed by X-ray photoelectron spectroscopy, temperature-programmed reduction, and in situ diffuse reflectance infrared Fourier transform spectroscopy analyses. The cataltyic activity of 1% Pt@Ti3C2-R against benzene was assessed under the control of the key process variables (e.g., catalyst mass, flow rate, benzene concentration, relative humidity, and time-on-stream) to help optimize the oxidation reaction process. The results provide new insights into the use of platinum-based 2D MXene catalysts for low-temperature oxidative removal of benzene from the air.


Assuntos
Benzeno , Nitritos , Platina , Elementos de Transição , Temperatura , Benzeno/química , Platina/química , Oxirredução , Titânio/química , Catálise , Estresse Oxidativo
15.
Chemistry ; 30(11): e202303548, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38012076

RESUMO

We herein evaluate a biological applicability of 1,3-substituted cuneanes as an isostere of m-substituted benzenes based on its structural similarity. An investigation of a method to obtain 1,3-substituted cuneanes by selective isomerization of 1,4-substituted cubanes enables this attempt by giving a key synthetic step to obtain a cuneane analogs of pharmaceuticals having m-substituted benzene moiety. Biological evaluation of the synthesized analogs and in silico study of the obtained result revealed a potential usage of cuneane skeleton in medicinal chemistry.


Assuntos
Derivados de Benzeno , Benzeno , Benzeno/química , Isomerismo , Derivados de Benzeno/química
16.
J Chem Inf Model ; 63(24): 7744-7754, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055931

RESUMO

The article shows that the definition of the HOMA index of geometrical aromaticity satisfies the axioms of a similarity function between the examined and benzene ring. Consequently, for purely mathematical reasons, the index works exceptionally well as an index of aromaticity: it expresses a geometric similarity to the archetypal aromatic benzene. Thus, if the molecule is geometrically similar to benzene, then it is also chemically similar, and therefore, it is aromatic. However, the similarity property legitimizes using the HOMA-like indices to express similarity to molecules other than benzene, whether cyclic or linear and existing or hypothetical. The paper demonstrates an example of HOMA-similarity to cyclohexane, which expresses a (relaxed)-saturicity property not accompanied by strong structural strains or steric hindrances. Further, it is also shown that the HOMA index can evaluate the properties of whole molecules, such as 25 unbranched catacondensed isomers of hexacene. The index exhibits a significant quadratic correlation with the total energy differences of planar isomers from which the nonplanar ones deviate. Moreover, the HOMA index of hexacene isomers significantly correlates with the Kekulé count connected to the resonance energy in the Hückel approximation. As a result, the study shows that the HOMA index can be used not only for aromaticity analyses but also as a general chemical descriptor applicable to rings, chains, composed molecular moieties, or even whole molecules.


Assuntos
Benzeno , Benzeno/química
17.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(10): 480-512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38072454

RESUMO

The aromaticity and synthetic application of "heavy benzenes", i.e., benzenes containing a heavier Group 14 element (Si, Ge, Sn, and Pb) in place of skeletal carbon, have been the targets of many theoretical and synthetic studies. Although the introduction of a sterically demanding substituent enabled us to synthesize and isolate heavy aromatic species as a stable compound by suppressing their high reactivity and tendency to polymerize, the existence of a protection group is an obstruction to the development of functional materials based on heavy aromatics. This review will delineate the most recent topics in the chemistry of heavy aromatics, i.e., the chemistry of "metallabenzenyl anions", which are the heavier Group 14 element analogs of phenyl anions stabilized by taking advantage of charge repulsion instead of steric protection.


Assuntos
Benzeno , Carbono , Benzeno/química , Ânions/química
18.
Environ Sci Pollut Res Int ; 30(51): 110431-110460, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789221

RESUMO

With the intention of separating benzene (C6H6) from indoor polluted air and collecting it in a cleaner way, it is promising of getting C6H6 adsorbed on activated carbon materials with outstanding physicochemical properties. In this study, how C6H6 is adsorbed over single-wall carbon materials and relevant adsorption processes are enhanced is thoroughly investigated via density functional theory (DFT). Especially, distinction between partial and whole effects of adsorbents on C6H6 adsorption, features of electron distribution across section of adsorption forms, and regulation mechanism of nonsteady-state adsorption for C6H6 are key points. According to calculation results, C6H6 molecules could be captured by pure single-wall carbon nanotube (CNT) through repulsive forces (quantified as 103.42 kJ/mol) from all quarters, which makes it stay in nonsteady-state adsorption forms and easily run into free state. Therefore, when external temperature increases from 0 to 300 K, molecular movement will be intense enough to help C6H6 break into another random positions instead of statistically remaining immobile. As for this problem, single-wall CNTs are modified through making defects and replacing some C atoms with N atoms, respectively. In this way, surficial electron distribution of modified adsorbents is regulated to tremendously cut down repulsive forces (quantified as 50.30 kJ/mol) and reverse nonsteady-state adsorption into near-equilibrium quasi-steady-state adsorption (single-side attraction near 100 kJ/mol). Therefore, this research would provide useful information for exploiting single-wall carbon materials as effective adsorbents of C6H6 in order to quickly achieve indoor air purification.


Assuntos
Poluição do Ar , Nanotubos de Carbono , Benzeno/química , Adsorção , Temperatura , Nanotubos de Carbono/química
19.
Chemosphere ; 340: 139761, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558001

RESUMO

BTEX (benzene, toluene, ethylbenzene, xylene) are common pollutants often found in former gasworks sites together with some other contaminants like indene, indane and naphthalene (Ie, Ia, N). This study aimed to evaluate the inhibitory or stimulative substrate interactions between BTEX, and Ie, Ia, N during aerobic biodegradation. For this, batch bottles, containing originally anaerobic subsurface sediments, groundwater and indigenous microorganisms from a contaminated former gasworks site, were spiked with various substrate combinations (BTEX, BTEXIe, BTEXIa, BTEXN, BTEXIeIa, BTEXIeN, BTEXIaN, BTEXIeIaN). Subsequently concentrations were monitored over time. For the BTEXIeIaN mixture, initial concentrations were between 1 and 5 mg L-1, and all compounds were completely degraded by the microbial consortia within 39 days of incubation. The experimental data were fitted to a first order kinetic degradation model for interpretation of inhibition/stimulation between the compounds. Results showed that indene, indane, and naphthalene inhibited the degradation of benzene, toluene, ethylbenzene, o-xylene, with benzene being the most affected. M/p-xylene is the only compound whose biodegradation is stimulated by the presence of indene and indane (individually or mixed) but inhibited by the presence of naphthalene. 16S rRNA amplicon sequencing revealed differentiation in the microbial communities within the batches with different substrate mixtures, especially within the two microbial groups Micrococcaceae and Commamonaceae. Indene had more effect on the BTEX microbial community than indane or naphthalene and the presence of indene increased the relative abundance of Micrococcaceae family. In conclusion, co-presence of various pollutants leads to differentiation in degradation processes as well as in microbial community development. This sheds some light on the underlying reasons for that organic compounds present in mixtures in the subsurface of former gasworks sites are either recalcitrant or subjective towards biodegradation, and this understanding helps to further improve the bioremediation of such sites.


Assuntos
Poluentes Ambientais , Indenos , Microbiota , Benzeno/química , Biodegradação Ambiental , Cinética , RNA Ribossômico 16S/genética , Derivados de Benzeno/química , Xilenos/metabolismo , Tolueno/química , Naftalenos
20.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513362

RESUMO

Heterocyclic compounds are significant lead drug candidates based on their various structure-activity relationships (SAR), and their use in pharmaceutics is constantly developing. Benzimidazole (BnZ) is synthesized by a condensation reaction between benzene and imidazole. The BnZ structure consists of two nitrogen atoms embedded in a five-membered imide ring which is fused with a benzene ring. This review examines the conventional and green synthesis of metallic and non-metallic BnZ and their derivatives, which have several potential SARs, along with a wide range of pharmacological properties, including anti-cancer, anti-inflammatory, anti-microbial, anti-tubercular, and anti-protozoal properties. These compounds have been proven by pharmacological investigations to be efficient against different strains of microbes. Therefore, in this review, the structural variations of BnZ are listed along with various applications, predominantly related to their biological activities.


Assuntos
Anti-Infecciosos , Anti-Inflamatórios , Benzimidazóis , Benzimidazóis/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Relação Estrutura-Atividade , Benzeno/química , Imidazóis/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Catálise , Metais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...