RESUMO
The presence of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) compounds in beauty salons has raised concerns about potential health risks. This study aimed to measure the levels of BTEX compounds in the air of beauty salons in Lahijan, Iran and assess the associated health risks. Air samples were collected from 15 beauty salons, and the concentrations of BTEX compounds were measured according to 1501 NIOSH standard method. The results showed that the mean concentrations of benzene (20.62 µg/m3), toluene (18.3 µg/m3), ethylbenzene (38.36 µg/m3), and O and P-xylene (27.35, 23.6 µg/m3) were above the recommended levels. The indoor to outdoor ratios for benzene, toluene, ethylbenzene, O and P-xylene were 3.04, 2.36, 3.75, 4.89, and 6.54, respectively. Also, the toluene/benzene (T/B) ratio in indoor and outdoor was 20.9 and 2.68 respectively. Almost half of the technicians (49.12%) reported adverse health effects, including joint pain, itchy eyes and nose, and respiratory allergies. The IARC guideline suggests that there is a potential risk of cancer development for individuals in all salons with LCR values exceeding 10-6, but the HQ index values indicate no non-carcinogenic risk. The findings suggest that beauty salon workers and customers are at risk of developing health problems from exposure to BTEX compounds. Effective risk management strategies, such as proper ventilation, use of personal protective equipment, and substitution of harmful chemicals with safer alternatives, to minimize exposure and protect the health of salon workers and customers recommended.
Assuntos
Derivados de Benzeno , Exposição Ocupacional , Tolueno , Xilenos , Humanos , Derivados de Benzeno/análise , Derivados de Benzeno/efeitos adversos , Medição de Risco , Tolueno/análise , Tolueno/efeitos adversos , Xilenos/análise , Xilenos/toxicidade , Xilenos/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Irã (Geográfico) , Benzeno/análise , Benzeno/toxicidade , Benzeno/efeitos adversos , Feminino , Adulto , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Monitoramento Ambiental , Masculino , Beleza , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/toxicidadeRESUMO
The carcinogenicity of benzene was reevaluated by the International Agency for Research on Cancer in 2017, with the Working Group reaffirming positive yet inconclusive associations with non-Hodgkin lymphoma (NHL). To extend our previous observation of a significant exposure-response for cumulative occupational benzene exposure and NHL risk among Chinese women in a population-based cohort in Shanghai, we extended follow-up of this cohort and pooled the data with a similarly designed population-based cohort of men in Shanghai. Cumulative exposure estimates were derived for 134,449 participants in the pooled analysis by combining ordinal job-exposure matrix intensity ratings with quantitative benzene measurements from an inspection database of Shanghai factories. Associations between benzene exposure metrics and NHL (n = 363 cases including multiple myeloma [MM]) were assessed using Cox proportional hazard models. Ever occupational exposure to benzene in the pooled population was associated with NHL risk (HR = 1.5, 95% CI = 1.2-2.0), and exposure-response relationships were observed for increasing duration (ptrend = .003) and cumulative exposure (ptrend = .003). Associations with ever exposure, duration, and cumulative exposure were similar for NHL with and without MM in the case definition, including lifetime cumulative exposures in the highest quartile (HR = 1.6, 95% CI = 1.1-2.4 with MM included; HR = 1.7, 95% CI = 1.1-2.7 with MM excluded). An elevated risk of the chronic lymphocytic leukemia subtype was suggested in the pooled analyses (HR for ever vs. never exposure = 2.3, 95% CI = 0.9-5.6). These observations provide additional support for a plausible association between occupational benzene exposure and risk of NHL.
Assuntos
Benzeno , Linfoma não Hodgkin , Exposição Ocupacional , Humanos , Benzeno/toxicidade , Benzeno/efeitos adversos , Exposição Ocupacional/efeitos adversos , Linfoma não Hodgkin/epidemiologia , Linfoma não Hodgkin/induzido quimicamente , Linfoma não Hodgkin/etiologia , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Seguimentos , Estudos Prospectivos , Adulto , Idoso , Fatores de Risco , Mieloma Múltiplo/epidemiologia , Mieloma Múltiplo/induzido quimicamente , Mieloma Múltiplo/etiologia , Doenças Profissionais/epidemiologia , Doenças Profissionais/induzido quimicamente , Modelos de Riscos Proporcionais , População do Leste AsiáticoRESUMO
Metabolic conversion of benzene (Bz) is thought to be required for the hematotoxic effects observed following Bz exposures. Most safe exposure limits set for Bz utilize epidemiology data on the hematotoxic effects of Bz for the dose-response assessments. These hematotoxic effects occurred among workers exposed to elevated Bz levels, thus dose extrapolation is required for assessing relevant risks for populations exposed orders of magnitude lower. Thus, understanding how Bz is metabolized over a wide range of air Bz levels is an important topic for risk assessments for Bz. Here, we analyze biomonitoring data for workers exposed to Bz to make evaluations of how the metabolism of Bz varies across a wide range of exposures. Our analysis indicates that the presence of metabolites derived from exposures to sources other than Bz (nonspecific metabolites of Bz) are significant confounders among biomonitoring studies and this precludes making any assessments of how Bz metabolism differs below approximately 3 ppm air Bz exposures using such nonspecific metabolites.
Assuntos
Benzeno , Monitoramento Biológico , Exposição Ocupacional , Benzeno/toxicidade , Benzeno/metabolismo , Humanos , Medição de Risco , Monitoramento Biológico/métodos , Monitoramento Ambiental/métodosRESUMO
Aging petrochemical landfills serve as reservoirs of inorganic and organic contaminants, posing potential risks of contamination to the surrounding environment. Identifying the pollution characteristics and elucidating the translocation/ transformation processes of typical contaminants in aging petrochemical landfills are crucial yet challenging endeavors. In this study, we employed a combination of chemical analysis and microbial metagenomic technologies to investigate the pollution characteristics of benzene, toluene, ethylbenzene, and xylene (BTEX) as well as metal(loid)s in a representative aging landfill, surrounding soils, and underlying groundwater. Furthermore, we aimed to explore their transformations driven by microbial activity. Our findings revealed widespread distribution of metal(loid)s, including Cd, Ni, Cu, As, Mn, Pb, and Zn, in these environmental media, surpassing soil background values and posing potential ecological risks. Additionally, microbial processes were observed to contribute significantly to the degradation of BTEX compounds and the transformation of metal(loid)s in landfills and surrounding soils, with identified microbial communities and functions playing key roles. Notably, co-occurrence network analysis unveiled the coexistence of functional genes associated with BTEX degradation and metal(loid) transformation, driven primarily by As, Ni, and Cd. These results shed light on the co-selection of resistance traits against BTEX and metal(loid) contaminants in soil microbial consortia under co-contamination scenarios, supporting microbial adaptive evolution in aging petrochemical landfills. The insights gained from this study enhance our understanding of characteristic pollutants and microbial transformation processes in aging landfills, thereby facilitating improved landfill management and contamination remediation strategies.
Assuntos
Derivados de Benzeno , Benzeno , Microbiologia do Solo , Poluentes do Solo , Tolueno , Instalações de Eliminação de Resíduos , Xilenos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Derivados de Benzeno/toxicidade , Benzeno/toxicidade , Tolueno/toxicidade , Xilenos/toxicidade , Biodegradação Ambiental , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Metais/toxicidade , Metais/análise , Água Subterrânea/química , Água Subterrânea/microbiologiaRESUMO
A 14-day rat study with plasma metabolomics was conducted to evaluate the toxicity of Benzene. Wistar rats were orally administered Benzene daily at doses of 0, 300 and 1000â¯mg/kg bw. The study identified liver and kidneys as target organs of Benzene toxicity and found reductions in total white blood cells, absolute lymphocyte and eosinophil cell counts, and increased relative monocyte counts suggesting bone marrow as a target organ. The study also confirmed liver as a target organ using metabolomics, which showed indications of a stress reaction in rats and changes in metabolites suggestive of a metabolic disorder. The metabolomics investigations did not find any other toxicologically relevant modes of action, and the observed metabolite changes were not associated with markers for mitochondrial dysfunction. The study concludes that integration of omics technologies, such as metabolomics, in regulatory toxicity studies is possible, confirms existing knowledge and adds additional information that can be used for mechanistic understanding of observed toxicity.
Assuntos
Benzeno , Rim , Fígado , Metaboloma , Metabolômica , Ratos Wistar , Animais , Benzeno/toxicidade , Masculino , Metaboloma/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Ratos , Relação Dose-Resposta a Droga , Administração OralRESUMO
According to the International Agency for Research on Cancer, leukemia ranks 14th in incidence and 11th in mortality and has a 5-year prevalence of approximately 1300,000 cases. Acute lymphoblastic leukemia is the most common hematopoietic syndrome in children during the first 5 years of life and represents approximately 75â¯% of all neoplasms among the pediatric population. The development of leukemia is strongly governed by DNA alterations that accelerate the growth of bone marrow cells. Currently, the most examined factor in pediatric leukemia is exposure to multiple compounds, such as hydrocarbons. Benzene, an aromatic hydrocarbon, can cause health challenges and is categorized as a carcinogen. Benzene toxicity has been widely associated with occupational exposure. Importantly, studies are underway to generate evidence that can provide clues regarding the risk of environmental benzene exposure and hematological problems in children. In this review, we summarize the existing evidence regarding the effects of benzene on pediatric leukemia, the associations between the effect of benzene on carcinogenesis, and the presence of certain molecular signatures in benzene-associated pediatric leukemia. Although there is sufficient evidence regarding the effects of benzene on carcinogenesis and leukemia, epidemiological research has primarily focused on occupational risk. Moreover, most benzene-induced molecular and cytogenetic alterations have been widely described in adults but not in the pediatric population. Thus, epidemiological efforts are crucial in the pediatric population in terms of epidemiological, clinical, and biomedical research.
Assuntos
Benzeno , Exposição Ambiental , Humanos , Benzeno/toxicidade , Criança , Exposição Ambiental/efeitos adversos , Leucemia/induzido quimicamente , Leucemia/epidemiologia , Leucemia/genética , Exposição Ocupacional/efeitos adversos , Pré-Escolar , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/induzido quimicamente , Fatores de Risco , LactenteRESUMO
Benzene is a common contaminant in the workplace and wider environment, which induces hematotoxicity. Our previous study has implicated that lncRNAs mediated apoptosis and autophagy induced by benzene. Nevertheless, the roles of extracellular vesicle(EVs)-derived lncRNAs in benzene toxicity are unknown. However, the role of EVs and EVs-derived lncRNAs in benzene-induced toxicity remains unclear. In this research, we explored the function of EVs and EVs-derived lncRNAs in cell-cell communication through benzene-induced apoptosis and autophagy. Our findings demonstrated that EVs derived from 1,4-BQ-treated cells treated cells and coculture with 1,4-BQ-treated cells enhanced apoptosis and autophagy via regulating the pathways of PI3K-AKT-mTOR and chaperone-mediated autophagy. Treating with GW4869 in 1,4-BQ-treated cells significantly inhibited EV secretion, which reduced apoptosis and autophagy. Furthermore, we identified a set of differentially expressed autophagy- and apoptosis-related lncRNAs using EVs-derived lncRNA sequencing. Among them, 8 candidate lncRNAs were upregulated in EVs derived from 1,4-BQ-treated cells, as determined by lncRNA sequencing and qRT-PCR. Importantly, these lncRNAs were also increased in the serum EVs of benzene-exposed workers. 1,4-BQ-treated cells released EVs that transfer differentially expressed lncRNAs, thereby inducing apoptosis and autophagy in the recipient cells. The above results support the hypothesis that EVs-derived lncRNAs participate in intercellular communication during benzene-induced hematotoxicity and function as potential biomarkers for risk assessment of benzene-exposed workers.
Assuntos
Apoptose , Autofagia , Benzeno , Vesículas Extracelulares , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagia/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Benzeno/toxicidade , Exposição Ocupacional/efeitos adversos , Masculino , Transdução de Sinais/efeitos dos fármacosRESUMO
Benzene is a common environmental pollutant and significant health hazard. Low-dose benzene exposure is common in most industrial settings, and some workers exhibit hematotoxicity characterized by impaired hematopoietic function. Consequently, understanding the early hematopoietic damage and biomarkers associated with low-dose benzene exposure is of critical importance for health risk assessment. Using data from a 5-year prospective cohort study on benzene exposure and the National Center for Biotechnology Information's Gene Expression Omnibus database, we detected significant downregulation of the ubiquitin-conjugating enzyme UBE2L3 (E2) in benzene-exposed subjects compared to control subjects. Liquid chromatography tandem mass spectrometry and co-immunoprecipitation experiments illustrated the binding interaction between UBE2L3 and the ubiquitin-protein ligase ZNF598 (E3). We applied deep learning algorithms to predict candidate interacting proteins and then conducted validation via co-immunoprecipitation experiments, which showed that ZNF598 engages in binding with the autophagy protein LAMP-2. Subsequent overexpression and knockdown of UBE2L3 coupled with immunofluorescence experiments and transmission electron microscopy revealed that UBE2L3 disrupts the ubiquitination-degradation of LAMP-2 by ZNF598, reduces GPX4 expression levels, and activates an autophagy-dependent ferroptosis pathway. It also leads to increased lipid peroxidation, thereby promoting ferroptosis and contributing to the hematotoxicity induced by benzene. In summary, our results suggest that UBE2L3 may be involved in early hematopoietic damage by modulating the autophagy-dependent ferroptosis signaling pathway in benzene-induced hematotoxicity.
Assuntos
Autofagia , Benzeno , Ferroptose , Enzimas de Conjugação de Ubiquitina , Ferroptose/efeitos dos fármacos , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Benzeno/toxicidade , Autofagia/efeitos dos fármacos , Humanos , Poluentes Ambientais/toxicidade , Estudos Prospectivos , Masculino , Adulto , FemininoRESUMO
BACKGROUND: Oil refinery workers are exposed to benzene, which is a well-known cause of leukaemia, but results on leukaemia in oil refinery workers have been mixed, and the data on workers' exposure is limited. Oil refinery workers are also exposed to asbestos and several studies have shown increased risk of mesothelioma. AIM: The objective was to investigate cancer incidence, especially leukaemia, at low to moderate exposure to benzene in an update of a previous study of employees at three Swedish oil refineries. METHODS: Cancer incidence was followed up in 2264 men (1548 refinery operators) employed at three oil refineries in Sweden for at least one year. Job types and employment times were collected from complete company files. A retrospective assessment of the benzene exposure was performed by occupational hygienists in collaboration with the refineries using historic measurements as well as detailed information on changes in the industrial hygiene and technological developments. Cases of cancer were retrieved by a linkage with the Swedish Cancer Register through 35-47 years of follow-up and standardized incidence ratios (SIR) with 95% confidence intervals (CI) were calculated. RESULTS: In total, 258 tumors had occurred versus 240 expected (SIR 1.07; 95% CI 0.95-1.21). There were 10 cases of leukaemia, all in refinery operators (SIR 2.4; 95% CI 1.18-4.51). There were three cases of pleural mesothelioma, two of which in refinery operators. The mean estimated cumulative benzene exposure for the cases of leukaemia was 7.9 ppm-years (median 4.9, range 0.1-31.1). DISCUSSION: The study suggests that low to moderate average cumulative benzene exposure increases the risk of leukaemia. Limitations include the modest number of cases and potential misclassification of exposure. CONCLUSION: The present study indicated an increased risk of leukaemia in male oil refinery workers with low to moderate exposure to benzene.
Assuntos
Benzeno , Leucemia , Exposição Ocupacional , Indústria de Petróleo e Gás , Humanos , Benzeno/toxicidade , Suécia/epidemiologia , Exposição Ocupacional/efeitos adversos , Masculino , Incidência , Pessoa de Meia-Idade , Adulto , Leucemia/epidemiologia , Leucemia/induzido quimicamente , Doenças Profissionais/epidemiologia , Doenças Profissionais/induzido quimicamente , Estudos Retrospectivos , Neoplasias/epidemiologia , Neoplasias/induzido quimicamente , Poluentes Ocupacionais do ArRESUMO
Benzene is a common environmental and occupational pollutant, benzene exposure causes damage to hematopoietic system. ZMAT3 is a zinc finger protein which has important biological functions. In this study, benzene-exposed mouse model and ZMAT3 overexpression and low expression hematopoietic stem cells (HSCs) models were constructed to explore the mechanism of ZMAT3 in benzene-induced hematopoietic toxicity. The results showed that benzene increased the expression of ZMAT3 in mouse bone marrow (BM) cells, HSCs and peripheral blood (PB) leukocyte, and the changes in HSCs were more sensitive than BM and PB cells. In addition, overexpression of ZMAT3 decreased the self-renewal ability of HSCs and reduced the HSCs differentiation into myeloid hematopoietic cells, while low expression has the opposite effect. Besides, over and low expression of ZMAT3 both increased the HSCs differentiation into lymphoid progenitor cells. Moreover, bioinformatics analysis suggested that ZMAT3 was associated with TNF-α signaling pathway, and the correlation was confirmed in mouse model. Meanwhile, the results indicated that ZMAT3 promoted TNF-α mRNA processing by binding to the ARE structural domain on TNF-α and interacting with hnRNP A2/B1 and hnRNP A1 proteins, ultimately activating the NF-κB signaling pathway. This study provides a new mechanism for the study of benzene toxicity.
Assuntos
Benzeno , Diferenciação Celular , Células-Tronco Hematopoéticas , NF-kappa B , Transdução de Sinais , Fator de Necrose Tumoral alfa , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Benzeno/toxicidade , NF-kappa B/metabolismo , NF-kappa B/genética , Diferenciação Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Autorrenovação Celular/efeitos dos fármacosRESUMO
Benzene is associated with diverse occupational and public health hazards. It exhibits an ability to rapidly permeate the skin and contaminate water and food sources, leading to dermal and ingestion exposures. Despite numerous studies examining the associations between benzene and various indicators of harm, the findings have yielded inconsistent results. Furthermore, relying solely on air concentration as a measure of benzene exposure is limited, as it fails to account for internal exposure dose and individual susceptibility. This study aimed to conduct a comprehensive review in order to present current knowledge on benzene biomarkers and their significance in evaluating exposure levels and associated health hazards. The search methodology adhered to the PRISMA guidelines and involved the application of specific inclusion and exclusion criteria across multiple databases including PubMed, Embase, and Web of Science. Two researchers independently extracted and evaluated the relevant data based on predetermined criteria. Following the screening process, a total of 80 articles were considered eligible out of the initially retrieved 1053 articles after undergoing screening and assessment for inclusion. As the level of exposure decreased, specific biomarkers demonstrated a gradual increase in limitations, including heightened background concentrations and vulnerability to confounding factors. The advancement of sampling and analysis techniques will yield new biomarkers. Additionally, when conducting practical work, it is crucial to employ a comprehensive utilization of diverse biomarkers while excluding individual metabolic variations and combined exposure factors.
Assuntos
Benzeno , Biomarcadores , Exposição Ocupacional , Benzeno/análise , Benzeno/toxicidade , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/efeitos adversos , Biomarcadores/análiseRESUMO
Benzene is the main environmental pollutant and risk factor of childhood leukemia and chronic benzene poisoning. Benzene exposure leads to hematopoietic stem and progenitor cell (HSPC) dysfunction and abnormal blood cell counts. However, the key regulatory targets and mechanisms of benzene hematotoxicity are unclear. In this study, we constructed a benzene-induced hematopoietic damage mouse model to explore the underlying mechanisms. We identified that Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) was significantly reduced in benzene-exposed mice. Moreover, targeting IGF2BP1 effectively mitigated damages to hematopoietic function and hematopoietic molecule expression caused by benzene in mice. On the mechanics, by metabolomics and transcriptomics, we discovered that branched-chain amino acid (BCAA) metabolism and fatty acid oxidation were key metabolic pathways, and Branched-chain amino acid transaminase 1 (BCAT1) and Carnitine palmitoyltransferase 1a (CPT1A) were critical metabolic enzymes involved in IGF2BP1-mediated hematopoietic injury process. The expression of the above molecules in the benzene exposure population was also examined and consistent with animal experiments. In conclusion, targeting IGF2BP1 alleviated hematopoietic injury caused by benzene exposure, possibly due to the reprogramming of BCAA metabolism and fatty acid oxidation via BCAT1 and CPT1A metabolic enzymes. IGF2BP1 is a potential regulatory and therapeutic target for benzene hematotoxicity.
Assuntos
Aminoácidos de Cadeia Ramificada , Benzeno , Ácidos Graxos , Oxirredução , Animais , Benzeno/toxicidade , Aminoácidos de Cadeia Ramificada/metabolismo , Ácidos Graxos/metabolismo , Oxirredução/efeitos dos fármacos , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacosRESUMO
OBJECTIVES: Previous studies established a causal relationship between occupational benzene exposure and acute myeloid leukemia (AML). However, mixed results have been reported for associations between benzene exposure and other myeloid and lymphoid malignancies. Our work examined whether occupational benzene exposure is associated with increased mortality from overall lymphohaematopoietic (LH) cancer and major subtypes. METHODS: Mortality records were linked to a Swiss census-based cohort from two national censuses in 1990 and 2000. Cases were defined as having any LH cancers registered in death certificates. We assessed occupational exposure by applying a quantitative benzene job-exposure matrix (BEN-JEM) to census-reported occupations. Exposure was calculated as the products of exposure proportions and levels (P × L). Cox proportional hazards models were used to calculate LH cancer death hazard ratios (HR) and 95% confidence intervals (CI) associated with benzene exposure, continuously and in ordinal categories. RESULTS: Our study included approximately 2.97 million persons and 13 415 LH cancer cases, including 3055 cases with benzene exposure. We observed increased mortality risks per unit (P × L) increase in continuous benzene exposure for AML (HR 1.03, 95% CI 1.00-1.06) and diffuse large B-cell lymphoma (HR 1.09, 95% CI 1.04-1.14). When exposure was assessed categorically, increasing trends in risks were observed with increasing benzene exposure for AML (P=0.04), diffuse large B-cell lymphoma (P=0.02), and follicular lymphoma (P=0.05). CONCLUSION: In a national cohort from Switzerland, we found that occupational exposure to benzene is associated with elevated mortality risks for AML, diffuse large B-cell lymphoma, and possibly follicular lymphoma.
Assuntos
Benzeno , Exposição Ocupacional , Humanos , Benzeno/toxicidade , Benzeno/efeitos adversos , Exposição Ocupacional/efeitos adversos , Suíça/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos de Coortes , Adulto , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/induzido quimicamente , Idoso , Doenças Profissionais/mortalidade , Doenças Profissionais/epidemiologia , Doenças Profissionais/induzido quimicamente , Modelos de Riscos Proporcionais , Fatores de RiscoRESUMO
Recent reports suggest that benzene exposure may be associated with solid cancers, such as lung and bladder cancers. Instead, evidence on the association between benzene and colorectal cancer (CRC) is sparse. Thus, we aimed to summarize current literature on the association between occupational benzene exposure and CRC. We searched Pubmed, Embase (through Ovid), and Scopus to retrieve cohort and nested case-control studies on the association between occupational benzene exposure and solid cancers. The search was initially completed in December 2022 and later updated in April 2024. We assessed quality of included studies using a modified version of Newcastle-Ottawa Scale. We computed pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) of CRC according to occupational benzene exposure, using the Paule-Mandel method. Twenty-eight studies were included in the meta-analysis. Most of them were conducted in Europe or North America (82.1%) and were industry-based (89.3%). Pooled RRs comparing workers exposed to benzene with those who were unexposed for incidence and mortality were 1.10 (95% CI: 1.06, 1.15) and 1.04 (95% CI: 0.97, 1.11) for CRC, 1.12 (95% CI: 1.01, 1.24) and 1.08 (95% CI: 0.99, 1.19) for colon cancer, and 1.04 (95% CI: 0.94, 1.14) and 1.05 (95% CI: 0.92, 1.19) for rectal cancer, respectively. Only one study supported the occurrence of a dose-response relationship between occupational benzene exposure and CRC, while others found no increase in risk according to dose of exposure or duration of employment. Our findings suggest that occupational benzene exposure may be associated with CRC. Further research with detailed assessment of individual-level exposure is warranted to confirm our results.
Assuntos
Benzeno , Neoplasias Colorretais , Exposição Ocupacional , Exposição Ocupacional/efeitos adversos , Benzeno/toxicidade , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/induzido quimicamente , Humanos , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/epidemiologiaRESUMO
Objectives: To assess leukemia risk in occupational populations exposed to low levels of benzene. Methods: Leukemia incidence data from the Chinese Benzene Cohort Study were fitted using the Linearized multistage (LMS) model. Individual benzene exposure levels, urinary S-phenylmercapturic acid (S-PMA) and trans, trans-muconic acid (t, t-MA) were measured among 98 benzene-exposed workers from factories in China. Subjects were categorized into four groups by rounding the quartiles of cumulative benzene concentrations (< 3, 3-5, 5-12, ≥12 mg/m3·year, respectively). The risk of benzene-induced leukemia was assessed using the LMS model, and the results were validated using the EPA model and the Singapore semi-quantitative risk assessment model. Results: The leukemia risks showed a positive correlation with increasing cumulative concentration in the four exposure groups (excess leukemia risks were 4.34, 4.37, 4.44 and 5.52 × 10-4, respectively; Ptrend < 0.0001) indicated by the LMS model. We also found that the estimated leukemia risk using urinary t, t-MA in the LMS model was more similar to those estimated by airborne benzene compared to S-PMA. The leukemia risk estimated by the LMS model was consistent with both the Singapore semi-quantitative risk assessment model at all concentrations and the EPA model at high concentrations (5-12, ≥12 mg/m3·year), while exceeding the EPA model at low concentrations (< 3 and 3-5 mg/m3·year). However, in all four benzene-exposed groups, the leukemia risks estimated by these three models exceeded the lowest acceptable limit for carcinogenic risk set by the EPA at 1 × 10-6. Conclusion: This study demonstrates the utility of the LMS model derived from the Chinese benzene cohort in assessing leukemia risk associated with low-level benzene exposure, and suggests that leukemia risk may occur at cumulative concentrations below 3 mg/m3·year.
Assuntos
Benzeno , Leucemia , Exposição Ocupacional , Ácido Sórbico , Benzeno/toxicidade , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Medição de Risco , Leucemia/induzido quimicamente , Leucemia/epidemiologia , China/epidemiologia , Masculino , Adulto , Ácido Sórbico/análogos & derivados , Ácido Sórbico/análise , Pessoa de Meia-Idade , Acetilcisteína/urina , Acetilcisteína/análogos & derivados , Feminino , Estudos de Coortes , IncidênciaRESUMO
Epigenetic methods to prevent the reproductive toxicity of oil-related environmental contaminants are currently unavailable. The present study aimed to examine the ability of the microRNA miR-152 to mitigate the effects of benzene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without benzene (0, 10 and 100 ng/ml). The expression of miR-152; viability; proliferation (cell proliferation and expression of mRNAs and accumulation of PCNA and cyclin B1); apoptosis (expression of mRNAs and accumulation of bax and caspase 3; and the proportion of cells with fragmented DNA); and release of progesterone, estradiol and IGF-I were analyzed via RT-qPCR; the Trypan blue exclusion test; quantitative immunocytochemistry; BrdU; XTT; TUNEL assays; and ELISA. Administration of benzene promoted the expression of apoptosis markers and reduced cell viability, all measured markers of proliferation, the release of steroid hormones and IGF-I. Overexpression of miR-152 was associated with increased cell viability, proliferation, progesterone and IGF-I release and reduced apoptosis and estradiol output. Moreover, miR-152 mitigated or prevented the effects of benzene on all the measured parameters in addition to estradiol release. The present observations suggest the toxic effect of benzene and the stimulatory influence of miR-152 on ovarian cell functions. Moreover, this is the first demonstration of the ability of miRNAs to mitigate and prevent the reproductive toxicity of benzene.
Assuntos
Apoptose , Benzeno , Proliferação de Células , Sobrevivência Celular , Células da Granulosa , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Apoptose/efeitos dos fármacos , Suínos , Sobrevivência Celular/efeitos dos fármacos , Benzeno/toxicidade , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Progesterona , Estradiol , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Poluentes Ambientais/toxicidadeRESUMO
Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet. Methods: In this study, we treated K562 cells with 40 µmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks. Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity. Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.
Assuntos
Benzeno , Hemolíticos , Proteoma , Proteoma/metabolismo , Proteômica , Benzeno/toxicidade , Células K562 , Humanos , Testes de Toxicidade/métodos , Hemolíticos/toxicidadeRESUMO
INTRODUCTION: Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS: We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS: Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION: We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Assuntos
Benzeno , Formaldeído , Leucemia Mieloide Aguda , Humanos , Benzeno/toxicidade , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/induzido quimicamente , Formaldeído/toxicidade , Causalidade , Probabilidade , Medição de Risco , Exposição Ambiental , Fatores de RiscoRESUMO
OBJECTIVE: Benzene is one of the major carcinogenic factors that can affect liver, kidneys, and lungs. Chronic inhalation of benzene vapor by petrol stations workers has been shown to have an impact on hematological parameters; thus, the present study aimed to investigate the effect of benzene exposure on petrol station workers. SUBJECTS AND METHODS: The study involved 99 participants, 50 of whom have been exposed to benzene and 49 of whom have not (control). A 5 ml blood sample in an ethylenediaminetetraacetic acid (EDTA) anticoagulant tube was collected from each subject, and a complete blood count test was used to test hematological parameters. RESULTS: The current study showed a significant decrease in red blood cells, packed cell volume, and hemoglobin in the exposed group compared to the control group. However, the amount of white blood cells was significantly increased (p < 0.0001) in the exposed group compared to the control group. Notably, there was no significant difference in platelet counts between the two groups. In terms of exposure time, subjects who have been exposed to benzene for more than a year and fewer than 10 years showed a significant decrease (p < 0.05) in RBCs indices and a significant increase (p < 0.0001) in WBCs compared to those in the control group CONCLUSIONS: Thus, the findings indicated that significant differences in hematological parameters were found in workers who were exposed to benzene compared to those who had not been exposed.
Assuntos
Benzeno , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Benzeno/toxicidade , Adulto , Masculino , Contagem de Células Sanguíneas , Hemoglobinas/análise , Hemoglobinas/metabolismo , Pessoa de Meia-IdadeRESUMO
Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.