Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 90(7-08): 523-533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843792

RESUMO

Benzylisoquinoline alkaloids are the major bioactive components in Chelidonium majus, a plant that has a long usage history for the treatment of gastrointestinal ailments in European and Asian phytomedicine. This study reports on the development and application of a supercritical fluid chromatography technique for the simultaneous qualitative and quantitative determination of seven benzylisoquinoline alkaloids in under six minutes using a Viridis BEH 2-EP column and a modifier comprising methanol with 30% acetonitrile and 20 mM ammonium formate. The method was fully validated according to ICH guidelines showing, e.g., excellent linearity (≥ 0.9997) and maximum deviations for intraday and inter-day precision of 2.99 and 2.76%, respectively. The new supercritical fluid chromatography assay was not only employed for the analysis of several C. majus samples but was also used for the subsequent development of a fast centrifugal partition chromatography technique, whereby five benzylisoquinoline alkaloids could be isolated within approximately 2.5 h, with only two of them, protopine and chelidonine, requiring an additional purification step. To achieve this, a solvent system composed of chloroform/methanol/0.3 M hydrochloric acid was used in descending mode. By injecting 500 mg of crude extract, stylopine (1.93 mg), sanguinarine (0.57 mg), chelidonine (1.29 mg), protopine (1.95 mg), and coptisine (7.13 mg) could be obtained. The purity of compounds was confirmed by supercritical fluid chromatography and MS.


Assuntos
Alcaloides , Benzilisoquinolinas , Chelidonium , Chelidonium/química , Benzilisoquinolinas/isolamento & purificação , Benzilisoquinolinas/química , Benzilisoquinolinas/análise , Alcaloides/isolamento & purificação , Alcaloides/química , Alcaloides/análise , Cromatografia com Fluido Supercrítico/métodos , Extratos Vegetais/química , Benzofenantridinas/química , Benzofenantridinas/isolamento & purificação , Chelidonium majus
2.
Langmuir ; 40(22): 11381-11389, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776135

RESUMO

The nanomaterialization of traditional Chinese medicine (TCM) has aroused widespread interest among researchers. Sanguinarine (SAN) is a kind of TCM with good antibacterial properties, which has important applications in anti-infection of wounds. Additionally, the combination of photothermal therapy and chemotherapy can overcome bacterial resistance, further improving bactericidal and wound healing efficiency. In this paper, we prepared an antibacterial agent by loading SAN on the zwitterion-modified MXene quantum dot nanocarrier (SAN@AHEP@Ta4C3), realizing pH/NIR controlled drug release and photothermal/chemotherapy synergistic antibacterial and wound healing. The particle size of SAN@AHEP@Ta4C3 is about 120 nm, and it has a good water solubility and stability. In addition, it also has excellent photothermal conversion performance (η = 39.2%), which can effectively convert light energy into heat energy under near-infrared (NIR) laser irradiation, further promoting drug release and achieving bactericidal effects by synergistic chemotherapy and photothermal therapy. The in vitro and in vivo experiments show that SAN@AHEP@Ta4C3 exhibits an excellent antibacterial effect against Staphylococcus aureus and Escherichia coli, and it can effectively promote the wound healing of mice. Moreover, the SAN@AHEP@Ta4C3 also has good biocompatibility and has no side effects on normal tissue and organs. This work introduces a multifunctional antibacterial agent based on TCM and hot-spot material MXene, which will have considerable application prospects in biomedical fields.


Assuntos
Antibacterianos , Benzofenantridinas , Portadores de Fármacos , Escherichia coli , Isoquinolinas , Pontos Quânticos , Staphylococcus aureus , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização/efeitos dos fármacos , Pontos Quânticos/química , Staphylococcus aureus/efeitos dos fármacos , Animais , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Escherichia coli/efeitos dos fármacos , Camundongos , Portadores de Fármacos/química , Isoquinolinas/química , Isoquinolinas/farmacologia , Medicina Tradicional Chinesa , Terapia Fototérmica , Liberação Controlada de Fármacos , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791436

RESUMO

A comprehensive study of the interactions of human serum albumin (HSA) and α-1-acid glycoprotein (AAG) with two isoquinoline alkaloids, i.e., allocryptopine (ACP) and protopine (PP), was performed. The UV-Vis spectroscopy, molecular docking, competitive binding assays, and circular dichroism (CD) spectroscopy were used for the investigations. The results showed that ACP and PP form spontaneous and stable complexes with HSA and AAG, with ACP displaying a stronger affinity towards both proteins. Molecular docking studies revealed the preferential binding of ACP and PP to specific sites within HSA, with site 2 (IIIA) being identified as the favored location for both alkaloids. This was supported by competitive binding assays using markers specific to HSA's drug binding sites. Similarly, for AAG, a decrease in fluorescence intensity upon addition of the alkaloids to AAG/quinaldine red (QR) complexes indicated the replacement of the marker by the alkaloids, with ACP showing a greater extent of replacement than PP. CD spectroscopy showed that the proteins' structures remained largely unchanged, suggesting that the formation of complexes did not significantly perturb the overall spatial configuration of these macromolecules. These findings are crucial for advancing the knowledge on the natural product-protein interactions and the future design of isoquinoline alkaloid-based therapeutics.


Assuntos
Simulação de Acoplamento Molecular , Ligação Proteica , Humanos , Sítios de Ligação , Dicroísmo Circular , Orosomucoide/química , Orosomucoide/metabolismo , Alcaloides de Berberina/química , Alcaloides de Berberina/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Benzofenantridinas/química , Benzofenantridinas/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo
4.
Arch Pharm (Weinheim) ; 357(7): e2300756, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501877

RESUMO

The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-ß (RORß) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORß inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.


Assuntos
Berberina , Chelidonium , Fator 4 Nuclear de Hepatócito , Isoquinolinas , Humanos , Berberina/farmacologia , Berberina/química , Berberina/síntese química , Ligantes , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Chelidonium/química , Isoquinolinas/farmacologia , Isoquinolinas/química , Isoquinolinas/síntese química , Benzofenantridinas/farmacologia , Benzofenantridinas/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Relação Estrutura-Atividade , Células Hep G2 , Relação Dose-Resposta a Droga , Estrutura Molecular , Linhagem Celular Tumoral , Chelidonium majus
5.
Anticancer Agents Med Chem ; 23(7): 765-778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36045531

RESUMO

Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias , Humanos , Benzofenantridinas/farmacologia , Benzofenantridinas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Isoquinolinas/química , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle
6.
Fitoterapia ; 164: 105362, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427595

RESUMO

Two new benzophenanthridine alkaloids enantiomers (±)-zanthonitidumines A (1) and B (2), along with seven known analogues (3-9), were isolated from Zanthoxylum nitidium. Their structures were elucidated on the basis of extensive spectroscopic techniques and ECD data. Compound 2 exhibited the most significant inhibition of IL-6 generation as well as TNF-α release which suggest that it may be a potential anti-inflammatory agent.


Assuntos
Alcaloides , Zanthoxylum , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Zanthoxylum/química , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Anti-Inflamatórios/farmacologia
7.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209167

RESUMO

Benzophenanthridines belong to the benzylisoquinolic alkaloids, representing one of the main groups of this class. These alkaloids include over 120 different compounds, mostly in plants from the Fumariaceae, Papaveraceae, and Rutaceae families, which confer chemical protection against pathogens and herbivores. Industrial uses of BZD include the production of environmentally friendly agrochemicals and livestock food supplements. However, although mainly considered toxic compounds, plants bearing them have been used in traditional medicine and their medical applications as antimicrobials, antiprotozoals, and cytotoxic agents have been envisioned. The biosynthetic pathways for some BZD have been established in different species, allowing for the isolation of the genes and enzymes involved. This knowledge has resulted in a better understanding of the process controlling their synthesis and an opening of the gates towards their exploitation by applying modern biotechnological approaches, such as synthetic biology. This review presents the new advances on BDZ biosynthesis and physiological roles. Industrial applications, mainly with pharmacological approaches, are also revised.


Assuntos
Benzofenantridinas/biossíntese , Alcaloides/biossíntese , Alcaloides/química , Alcaloides/farmacologia , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Vias Biossintéticas , Desenvolvimento de Medicamentos , Isoquinolinas/química , Isoquinolinas/farmacologia , Medicina Tradicional , Fenômenos Fisiológicos Vegetais , Relação Estrutura-Atividade
8.
Molecules ; 26(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641558

RESUMO

Peroxisome proliferator-activated receptors (PPARs) play crucial roles in glucose and lipid metabolism and inflammation. Sanguinarine is a natural product that is isolated from Sanguinaria Canadensis, a potential therapeutic agent for intervention in chronic diseases. In this study, biochemical and cell-based promoter-reporter gene assays revealed that sanguinarine activated both PPARα and PPARγ, and enhanced their transcriptional activity; thus, sanguinarine was identified as a dual agonist of PPARα/γ. Similar to fenofibrate, sanguinarine upregulates the expression of PPARα-target genes in hepatocytes. Sanguinarine also modulates the expression of key PPARγ-target genes and promotes adipocyte differentiation, but with a lower adipogenic activity compared with rosiglitazone. We report the crystal structure of sanguinarine bound to PPARα, which reveals a unique ligand-binding mode of sanguinarine, dissimilar to the classic Y-shaped binding pocket, which may represent a new pharmacophore that can be optimized for selectively targeting PPARα. Further structural and functional studies uncover the molecular basis for the selectivity of sanguinarine toward PPARα/γ among all three PPARs. In summary, our study identifies a PPARα/γ dual agonist with a unique ligand-binding mode, and provides a promising and viable novel template for the design of dual-targeting PPARs ligands.


Assuntos
Benzofenantridinas/química , Isoquinolinas/química , PPAR alfa/agonistas , PPAR gama/agonistas , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Benzofenantridinas/farmacologia , Cristalografia por Raios X , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Isoquinolinas/farmacologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360977

RESUMO

Inhibition of ruminal microbial urease is of particular interest due to its crucial role in regulating urea-N utilization efficiency and nitrogen pollution in the livestock industry. Acetohydroxamic acid (AHA) is currently the only commercially available urease inhibitor, but it has adverse side effects. The urease accessory protein UreG, which facilitates the functional incorporation of the urease nickel metallocentre, has been proposed in developing urease inhibitor through disrupting urease maturation. The objective of this study was to screen natural compounds as potential urease inhibitors by targeting UreG in a predominant ruminal microbial urease. In silico screening and in vitro tests for potential inhibitors were performed using molecular docking and an assay for the GTPase activity of UreG. Chelerythrine chloride was selected as a potential urease inhibitor of UreG with an inhibition concentration IC50 value of 18.13 µM. It exhibited mixed inhibition, with the Ki value being 26.28 µM. We further explored its inhibition mechanism using isothermal titration calorimetry (ITC) and circular dichroism (CD) spectroscopy, and we found that chelerythrine chloride inhibited the binding of nickel to UreG and induced changes in the secondary structure, especially the α-helix and ß-sheet of UreG. Chelerythrine chloride formed a pi-anion interaction with the Asp41 residue of UreG, which is an important residue in initiating the conformational changes of UreG. In conclusion, chelerythrine chloride exhibited a potential inhibitory effect on urease, which provided new evidence for strategies to develop novel urease inhibitors targeting UreG to reduce nitrogen excretion from ruminants.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Benzofenantridinas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Rúmen/microbiologia , Amônia/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzofenantridinas/química , Sítios de Ligação , Bovinos , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Ligação Proteica
10.
J Nat Prod ; 84(8): 2390-2397, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34325506

RESUMO

Reduction of an iminium C═N double bond is the most important phase I metabolism process associated with the cytotoxic property of quaternary benzophenanthridine alkaloids (QBAs). Inspired by the light-mediated reduction of QBAs with nicotinamide adenine dinucleotide, a visible-light-promoted reductive functionalization reaction of QBAs is reported in this study. C4-Alkyl-1,4-dihydropyridines (DHPs) enable the direct reductive alkylation of QBA independently, serving as both single-electron-transfer reductant reagents under irradiation with 455 nm blue light in the absence of photocatalysts and additional additives. Our protocol can be further applied to the semisynthesis of natural 6-substituted dihydrobenzophenanthridine derivatives such as O-acetyl maclekarpine E.


Assuntos
Benzofenantridinas/química , Materiais Biomiméticos/química , Alquilação , Benzofenantridinas/efeitos da radiação , Materiais Biomiméticos/efeitos da radiação , Transporte de Elétrons , Luz , Estrutura Molecular
11.
J Med Chem ; 64(11): 7617-7629, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34008967

RESUMO

As a recently discovered DNA repair enzyme, tyrosyl-DNA phosphodiesterase 1 (TDP1) removes topoisomerase IB (TOP1)-mediated DNA protein cross-links. Inhibiting TDP1 can potentiate the cytotoxicity of TOP1 inhibitors and overcome cancer cell resistance to TOP1 inhibitors. On the basis of our previous study, herein we report the synthesis of benzophenanthridinone derivatives as TOP1 and TDP1 inhibitors. Seven compounds (C2, C4, C5, C7, C8, C12, and C14) showed a robust TOP1 inhibitory activity (+++ or ++++), and four compounds (A13, C12, C13, and C26) showed a TDP1 inhibition (half-maximal inhibitory concentration values of 15 or 19 µM). We also show that the dual TOP1 and TDP1 inhibitor C12 induces both cellular TOP1cc, TDP1cc formation and DNA damage, resulting in cancer cell apoptosis at a sub-micromolar concentration. In addition, C12 showed an enhanced activity in drug-resistant MCF-7/TDP1 cancer cells and was synergistic with topotecan in both MCF-7 and MCF-7/TDP1 cells.


Assuntos
Benzofenantridinas/química , DNA Topoisomerases Tipo I/metabolismo , Inibidores de Fosfodiesterase/síntese química , Diester Fosfórico Hidrolases/metabolismo , Inibidores da Topoisomerase I/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzofenantridinas/metabolismo , Benzofenantridinas/farmacologia , Benzofenantridinas/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico
12.
Anticancer Agents Med Chem ; 21(16): 2100-2110, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33573577

RESUMO

BACKGROUND: Sanguinarine, a kind of benzophenanthridine alkaloid, is a natural compound with potential development value for its anticancer activity. Hundreds of studies have been carried out in vivo or in vitro, trying to make it feasible for the anticancer clinic medication of sanguinarine. However, sanguinarine was branded as a toxicant or even a carcinogen according to some toxicological experiments and cancer investigations. OBJECTIVE: Aiming at safety and effectiveness of sanguinarine, this article reviews the extant information on present studies of sanguinarine, and both anticancer carcinogenesis mechanism details are summarized. The future potential research directions of this valued compound are also discussed to provide reference for future drugs development. METHODS: PubMed, Web of Science, CNKI and WanFang databases were used to search current studies and experimental researches about anticancer effect or carcinogenic information of sanguinarine. RESULTS: Our results indicated that sanguinarine exhibited anticancer effect through anti-proliferation, anti-invasion, anti-angiogenesis and apoptosis within cancer lesion. Also, many clinical investigations indicated that sanguinarine and its related products might be associated to pre-carcinoma within oral or skin potentially. CONCLUSION: Sanguinarine is a natural compound with good development value for its potent anticancer activity; however, its carcinogenesis effect should also be taken seriously. Studies on structural modification and analogue design should be carried out to improve its safety and efficiency in the future.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Carcinógenos/antagonistas & inibidores , Isoquinolinas/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Benzofenantridinas/química , Proliferação de Células/efeitos dos fármacos , Humanos , Isoquinolinas/química , Neoplasias/patologia
13.
BMC Pharmacol Toxicol ; 22(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407916

RESUMO

BACKGROUND: The development of novel and effective drugs for targeted human hepatocellular carcinoma still remains a great challenge. The alkaloid nitidine chloride (NC), a component of a traditional Chinese medicine, has been shown to have anticancer properties, but doses at therapeutic levels have unacceptable side effects. Here we investigate folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-FA) as a potential carrier for controlled delivery of the drug. METHODS: Synthesized TPGS-FA was characterized by FTIR, UV-visible and 1H NMR spectroscopy, and TPGS loaded with NC was evaluated for its ability to induce apoptosis in Huh7 cells by Annexin V/PI and MTT assays, and observed by laser scanning confocal microscopy and inverted phase contrast microscopy. RESULTS: TPGS-FA/NC complexes were prepared successfully, and were homogenious with a uniform size of ~ 14 nm diameter. NC was released from the TPGS-FA/NC complexes in a controlled and sustained manner under physiological conditions (pH 7.4). Furthermore, its cytotoxicity to hepatocarcinoma cells was greater than that of free NC. CONCLUSIONS: TPGS-FA is shown to be useful carrier for drugs such as NC, and TPGS-FA/NC could potentially be a potent and safe drug for the treatment of hepatocellular carcinoma.


Assuntos
Antineoplásicos/administração & dosagem , Benzofenantridinas/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Ácido Fólico/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/administração & dosagem , Vitamina E/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofenantridinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ácido Fólico/química , Humanos , Micelas , Nanopartículas/química , Vitamina E/química
14.
Anal Biochem ; 612: 113966, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956692

RESUMO

Aberrant activation of the Wnt/ß-catenin signaling pathway is prominent in the development and metastasis of non-small cell lung cancer (NSCLC). Highly effective inhibition of this pathway highlights a therapeutic avenue against NSCLC. Moreover, ß-catenin/LEF1 interaction regulates ß-catenin nuclear transport as well as the transcriptions of the key oncogenes in Wnt/ß-catenin signaling pathway. Therefore, interruption of this interaction would be a promising therapeutic strategy for NSCLC metastasis. To date, no economical and rapid high-throughput screening (HTS) assay has been reported for the discovery of ß-catenin/LEF1 interaction inhibitors. In this study, we developed a novel fluorescence polarization (FP)-based HTS assay to identify ß-catenin/LEF1 interaction inhibitors. The FITC-LEF1 sequence, incubation time, temperature, and DMSO resistance were optimized, and then a high Z' factor of 0.77 was achieved. A pilot screening of a natural product library via this established FP screening assay identified sanguinarine analogues as potential ß-catenin/LEF1 interaction inhibitors. GST pull-down and surface plasmon resonance (SPR) assay demonstrated that ß-catenin/LEF1 interaction is a potential anticancer target of sanguinarine in vitro. This newly developed FP screening assay will be vital for the rapid discovery of novel Wnt inhibitors targeting ß-catenin/LEF1 interaction.


Assuntos
Polarização de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Fator 1 de Ligação ao Facilitador Linfoide/antagonistas & inibidores , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzofenantridinas/química , Benzofenantridinas/metabolismo , Benzofenantridinas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Isoquinolinas/química , Isoquinolinas/metabolismo , Isoquinolinas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Proteínas Wnt/antagonistas & inibidores
15.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011447

RESUMO

Through pharmacological activity research, an increasing number of natural products and their derivatives are being recognized for their therapeutic value. In recent years, studies have been conducted on Corydalis yanhusuo W.T. Wang, a valuable medicinal herb listed in the Chinese Pharmacopoeia. Protopine, one of its components, has also become a research hotspot. To illustrate the identification, metabolism, and broad pharmacological activity of protopine and the botanical preparations containing it for further scientific studies and clinical applications, an in-depth and detailed review of protopine is required. We collected data on the identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine from 1986 to 2021 from the PubMed database using "protopine" as a keyword. It has been shown that protopine as an active ingredient of many botanical preparations can be rapidly screened and quantified by a large number of methods (such as the LC-ESI-MS/MS and the TLC/GC-MS), and the possible metabolic pathways of protopine in vivo have been proposed. In addition, protopine possesses a wide range of pharmacological activities such as anti-inflammatory, anti-platelet aggregation, anti-cancer, analgesic, vasodilatory, anticholinesterase, anti-addictive, anticonvulsant, antipathogenic, antioxidant, hepatoprotective, neuroprotective, and cytotoxic and anti-proliferative activities. In this paper, the identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine are reviewed in detail to lay a foundation for further scientific research and clinical applications of protopine.


Assuntos
Benzofenantridinas/química , Benzofenantridinas/isolamento & purificação , Benzofenantridinas/farmacologia , Alcaloides de Berberina/química , Alcaloides de Berberina/isolamento & purificação , Alcaloides de Berberina/farmacologia , Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos , Humanos , Redes e Vias Metabólicas , Estrutura Molecular , Inibidores da Agregação Plaquetária , Análise Espectral , Relação Estrutura-Atividade
16.
Angew Chem Int Ed Engl ; 59(40): 17556-17564, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32476195

RESUMO

We describe enantioselective syntheses of strychnos and chelidonium alkaloids. In the first case, indole acetic acid esters were established as excellent partner nucleophiles for enantioselective cooperative isothiourea/Pd catalyzed α-alkylation. This provides products containing indole-bearing stereocenters in high yield and with excellent levels of enantioinduction in a manner that is notably independent of the N-substituent. This led to concise syntheses of (-)-akuammicine and (-)-strychnine. In the second case, the poor performance of ortho-substituted cinnamyl electrophiles in the enantioselective cooperative isothiourea/Ir catalyzed α-alkylation was overcome by appropriate substituent choice, leading to enantioselective syntheses of (+)-chelidonine, (+)-norchelidonine, and (+)-chelamine.


Assuntos
Alcaloides/química , Chelidonium/química , Strychnos/química , Alcaloides/síntese química , Alquilação , Benzofenantridinas/síntese química , Benzofenantridinas/química , Alcaloides de Berberina/síntese química , Alcaloides de Berberina/química , Catálise , Chelidonium/metabolismo , Humanos , Indóis/síntese química , Indóis/química , Irídio/química , Paládio/química , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Estereoisomerismo , Estricnina/síntese química , Estricnina/química , Strychnos/metabolismo , Tioureia/química
17.
Biol Pharm Bull ; 43(7): 1027-1034, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32404582

RESUMO

Excessive contraction of airway smooth muscle cells (ASMCs) is a hallmark feature of asthma. Intriguing, the activation of bitter taste receptor (TAS2R) in ASMCs can relax ASMCs. However, there is a lack of potent TAS2R agonists that can be used in asthma therapies since those tested agonists cannot relax ASMCs at the dose below a few hundred micromolar. Considering that sanguinarine (SA) is a bitter substance often used in small doses for the treatment of asthma in folk medicine, the present study was to determine the rapid relaxation effect of SA on ASMCs and to reveal the underlying mechanisms associated with TAS2R signaling. Here, cell stiffness, traction force, calcium signaling, cAMP levels, and the mRNA expression were evaluated by using optical magnetic twisting cytometry, traction force microscopy, Fluo-4/AM labeling, enzyme-linked immunosorbent assay (ELISA), and quantitative (q)RT-PCR, respectively. We found that 0.5 µM SA immediately decreased cell stiffness and traction force, which is comparable with the effect of 5 µM isoproterenol. In addition, 0.5 µM SA immediately increased intracellular free calcium concentration ([Ca2+]i) and decreased the mRNA expression of contractile proteins such as calponin and α-smooth muscle actin after the treatment for 24 h. Furthermore, SA-mediated decrease in cell stiffness/traction force and increase in [Ca2+]i were significantly blunted by inhibiting the TAS2Rs signaling. These findings establish the rapid relaxation effect of SA at low concentration (<1 µM) on cultured ASMCs depending on TAS2R signaling, indicating that SA might be developed as a useful bronchodilator in asthma therapy.


Assuntos
Benzofenantridinas/farmacologia , Broncodilatadores/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Isoquinolinas/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Animais , Benzofenantridinas/química , Broncodilatadores/química , Sinalização do Cálcio/fisiologia , Forma Celular/efeitos dos fármacos , Forma Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Isoquinolinas/química , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo
18.
Eur J Med Chem ; 200: 112415, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32454229

RESUMO

As simple analogues of the natural compound chelerythrine, a novel anti-cholinesterase 2-phenylisoquinolin-2-ium scaffold was designed by structure imitation. The activity evaluation led to the discovery of seven compounds with potent anti-acetylcholinesterase activity with IC50 values of ≤0.72 µM, superior to chelerythrine and standard drugs galantamine. Particularly, compound 8y showed the excellent dual acetylcholinesterase-butyrylcholinesterase inhibition activity, superior to rivastigmine, a dual cholinesterase inhibitor drug. Furthermore, the compounds displayed a competitive anti-acetylcholinesterase mechanism with the substrate and low cytotoxicity. Molecular docking showed that the isoquinoline moiety is embedded in a cavity surrounded by four aromatic residues of acetylcholinesterase by the π-π action. Structure-activity relationship showed that the p-substituents on the C-ring can dramatically improve the anti-acetylcholinesterase activity, while 8-OMe can increase the activity against the two cholinesterases simultaneously. Thus, the title compounds emerged as promising lead compounds for the development of novel cholinesterase inhibitor agents.


Assuntos
Benzofenantridinas/química , Inibidores da Colinesterase/química , Descoberta de Drogas , Sítios de Ligação , Butirilcolinesterase , Inibidores da Colinesterase/metabolismo , Humanos , Concentração Inibidora 50 , Isoquinolinas/química , Isoquinolinas/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
19.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230817

RESUMO

The benzo[c]phenanthridine P8-D6 was recently found to suppress the catalytic activity of both human topoisomerase (Topo) I and II. Concomitantly, potent cytotoxic activity was observed in different human tumor cell lines, raising questions about the underlying mechanisms in vitro. In the present study, we addressed the question of whether P8-D6 acts as a so-called Topo poison, stabilizing the covalent Topo-DNA intermediate, thus inducing fatal DNA strand breaks in proliferating cells. In HT-29 colon carcinoma cells, fluorescence imaging revealed P8-D6 to be taken up by the cells and to accumulate in the perinuclear region. Confocal microscopy demonstrated that the compound is partially located inside the nuclei, thus reaching the potential target. In the "in vivo complex of enzyme" (ICE) bioassay, treatment of HT-29 cells with P8-D6 for 1 h significantly enhanced the proportion of Topo I and II covalently linked to the DNA in concentrations ≥1 µM, indicating effective dual Topo poisoning. Potentially resulting DNA damage was analyzed by single-cell gel electrophoresis ("comet assay"). Already at 1 h of incubation, significant genotoxic effects were observed in the comet assay in concentrations as low as 1 nM. Taken together, the present study demonstrates the high Topo-poisoning and genotoxic potential of P8-D6 in human tumor cells.


Assuntos
Benzofenantridinas/intoxicação , Núcleo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Núcleo Celular/metabolismo , Células HT29 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Análise de Célula Única , Inibidores da Topoisomerase/farmacologia
20.
Colloids Surf B Biointerfaces ; 191: 111003, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32276211

RESUMO

The increasing prevalence of fungal infections coupled with emerging drug resistance has stimulated an urgent need to explore new and effective antifungal agents. Sanguinarine and chelerythrine constitute alkaloids that have exhibited antifungal activities. However, the effects of a 1:1 mixture of these agents against Candida albicans and Cryptococcus neoformans have remained largely unexplored. The purpose of this study was to assess the anti-fungal and anti-biofilm efficacy of combined chelerythrine-sanguinarine against C. albicans and C. neoformans in vitro. Combined chelerythrine-sanguinarine inhibited C. albicans and C. neoformans growth with minimum inhibitory concentrations (MICs) of 2 and 16 µg/mL, respectively, and effectively inhibited adhesion and biofilm formation of these pathogens at minimum biofilm inhibitory concentrations of 1 and 8 µg/mL. Notably, the mixture significantly eradicated mature C. albicans and C. neoformans biofilms at 8 and 128 µg/mL, respectively. In particular, the mixture was found to disrupt cell membrane integrity and enhance penetration of antibiotics into fungal cells, suggesting its antifungal mode of action. Hence, combined chelerythrine-sanguinarine shows promise as a potential anti-fungal and anti-biofilm agent for the management of serious infections caused by C. albicans and C. neoformans.


Assuntos
Antifúngicos/farmacologia , Benzofenantridinas/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Isoquinolinas/farmacologia , Antifúngicos/química , Benzofenantridinas/química , Isoquinolinas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...