Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Science ; 385(6710): 757-765, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146425

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo-electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix. Subtomogram averaging revealed ACE2 dimers cross-linking spikes before transitioning into S2 intermediates, which were captured at various stages of refolding. Pan-betacoronavirus neutralizing antibodies targeting the S2 stem-helix bound to and inhibited refolding of spike prehairpin intermediates. Combined with molecular dynamics simulations, these structures elucidate the process of SARS-CoV-2 entry and reveal how pan-betacoronavirus S2-targeting antibodies neutralize infectivity by arresting prehairpin intermediates.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Internalização do Vírus , Redobramento de Proteína , Tomografia com Microscopia Eletrônica , Multimerização Proteica , Betacoronavirus/imunologia , Betacoronavirus/química , Membrana Celular/metabolismo , COVID-19/virologia , COVID-19/imunologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo
2.
Viruses ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39066235

RESUMO

The RNA viruses SARS-CoV, SARS-CoV-2 and MERS-CoV encode the non-structural Nsp16 (2'-O-methyltransferase) that catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to the first ribonucleotide in mRNA. Recently, it has been found that breaking the bond between Nsp16 and SAM substrate results in the cessation of mRNA virus replication. To date, only a limited number of such inhibitors have been identified, which can be attributed to a lack of an effective "recipe". The aim of our study was to propose and verify a rapid and effective screening protocol dedicated to such purposes. We proposed four new indices describing structure-binding strength (structure-binding affinity, structure-hydrogen bonding, structure-steric and structure-protein-ligand indices) were then applied and shown to be extremely helpful in determining the degree of increase or decrease in binding affinity in response to a relatively small change in the ligand structure. After initial pre-selection, based on similarity to SAM, we limited the study to 967 compounds, so-called molecular chameleons. They were then docked in the Nsp16 protein pocket, and 10 candidate ligands were selected using the novel structure-binding affinity index. Subsequently the selected 10 candidate ligands and 8 known inhibitors and were docked to Nsp16 pockets from SARS-CoV-2, MERS-CoV and SARS-CoV. Based on the four new indices, the best ligands were selected and a new one was designed by tuning them. Finally, ADMET profiling and molecular dynamics simulations were performed for the best ligands. The new structure-binding strength indices can be successfully applied not only to screen and tune ligands, but also to determine the effectiveness of the ligand in response to changes in the target viral entity, which is particularly useful for assessing drug effectiveness in the case of alterations in viral proteins. The developed approach, the so-called chameleon strategy, has the capacity to introduce a novel universal paradigm to the field of drugs design, including RNA antivirals.


Assuntos
Antivirais , SARS-CoV-2 , Proteínas não Estruturais Virais , Ligantes , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Humanos , Ligação Proteica , COVID-19/virologia , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/antagonistas & inibidores , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/química , Ligação de Hidrogênio , Replicação Viral/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38345958

RESUMO

Interaction of nucleic acid molecules is essential for their functional roles in the cell and their applications in biotechnology. While simple duplex interactions have been studied before, the problem of efficiently predicting the minimum free energy structure of more complex interactions with possibly pseudoknotted structures remains a challenge. In this work, we introduce a novel and efficient algorithm for prediction of Duplex Interaction of Nucleic acids with pseudoKnots, DinoKnot follows the hierarchical folding hypothesis to predict the secondary structure of two interacting nucleic acid strands (both homo- and hetero-dimers). DinoKnot utilizes the structure of molecules before interaction as a guide to find their duplex structure allowing for possible base pair competitions. To showcase DinoKnots's capabilities we evaluated its predicted structures against (1) experimental results for SARS-CoV-2 genome and nine primer-probe sets, (2) a clinically verified example of a mutation affecting detection, and (3) a known nucleic acid interaction involving a pseudoknot. In addition, we compared our results against our closest competition, RNAcofold, further highlighting DinoKnot's strengths. We believe DinoKnot can be utilized for various applications including screening new variants for potential detection issues and supporting existing applications involving DNA/RNA interactions, adding structural considerations to the interaction to elicit functional information.


Assuntos
Algoritmos , Biologia Computacional , Conformação de Ácido Nucleico , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/química , Biologia Computacional/métodos , COVID-19/virologia , RNA Viral/genética , RNA Viral/química , RNA Viral/metabolismo , Genoma Viral/genética , Betacoronavirus/genética , Betacoronavirus/química
4.
Electrophoresis ; 45(11-12): 1010-1017, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225719

RESUMO

In this work, a capillary electrophoresis method was developed as a quality control tool to determine the enantiomeric purity of a series of five chiral compounds evaluated as potential severe acute respiratory syndrome coronavirus 2 3CL protease inhibitors. The first cyclodextrin tested, that is, highly sulfated-ß-cyclodextrin, at 6% (m/v) in a 25 mM phosphate buffer, using a capillary dynamically coated with polyethylene oxide, at an applied voltage of 15 kV and a temperature of 25°C, was found to successfully separate the five derivatives. The limits of detection and quantification were calculated together with the greenness score of the method in order to evaluate the method in terms of analytical and environmental performance. In addition, it is noteworthy that simultaneously high-performance liquid chromatography separation of the enantiomers of the same compounds with two different columns, the amylose tris(3,5-dimethylphenylcarbamate)-coated and the cellulose tris(3,5-dichlorophenylcarbamate)-immobilized on silica stationary phases, was studied. Neither the former stationary phase nor the latter was able to separate all derivatives in a mobile phase consisting of n-heptane/propan-2-ol 80/20 (v/v).


Assuntos
SARS-CoV-2 , Estereoisomerismo , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/análise , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Cromatografia Capilar Eletrocinética Micelar/métodos , Limite de Detecção , COVID-19 , Humanos , Betacoronavirus/isolamento & purificação , Betacoronavirus/química , Cromatografia Líquida de Alta Pressão/métodos
5.
Nature ; 624(7990): 201-206, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794193

RESUMO

Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Assuntos
Betacoronavirus , Polissacarídeos , Ácidos Siálicos , Glicoproteína da Espícula de Coronavírus , Humanos , Regulação Alostérica , Betacoronavirus/química , Betacoronavirus/ultraestrutura , Resfriado Comum/virologia , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Evasão da Resposta Imune
6.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34887342

RESUMO

The constant emergence of COVID-19 variants reduces the effectiveness of existing vaccines and test kits. Therefore, it is critical to identify conserved structures in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes as potential targets for variant-proof diagnostics and therapeutics. However, the algorithms to predict these conserved structures, which simultaneously fold and align multiple RNA homologs, scale at best cubically with sequence length and are thus infeasible for coronaviruses, which possess the longest genomes (∼30,000 nt) among RNA viruses. As a result, existing efforts on modeling SARS-CoV-2 structures resort to single-sequence folding as well as local folding methods with short window sizes, which inevitably neglect long-range interactions that are crucial in RNA functions. Here we present LinearTurboFold, an efficient algorithm for folding RNA homologs that scales linearly with sequence length, enabling unprecedented global structural analysis on SARS-CoV-2. Surprisingly, on a group of SARS-CoV-2 and SARS-related genomes, LinearTurboFold's purely in silico prediction not only is close to experimentally guided models for local structures, but also goes far beyond them by capturing the end-to-end pairs between 5' and 3' untranslated regions (UTRs) (∼29,800 nt apart) that match perfectly with a purely experimental work. Furthermore, LinearTurboFold identifies undiscovered conserved structures and conserved accessible regions as potential targets for designing efficient and mutation-insensitive small-molecule drugs, antisense oligonucleotides, small interfering RNAs (siRNAs), CRISPR-Cas13 guide RNAs, and RT-PCR primers. LinearTurboFold is a general technique that can also be applied to other RNA viruses and full-length genome studies and will be a useful tool in fighting the current and future pandemics.


Assuntos
Algoritmos , RNA Viral/química , SARS-CoV-2/química , Betacoronavirus/química , Betacoronavirus/genética , Sequência Conservada , Genoma Viral , Mutação , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Viral/genética , SARS-CoV-2/genética , Alinhamento de Sequência
7.
Int J Nanomedicine ; 16: 4813-4830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290504

RESUMO

Human coronaviruses present a substantial global disease burden, causing damage to populations' health, economy, and social well-being. Glycans are one of the main structural components of all microbes and organismic structures, including viruses-playing multiple essential roles in virus infection and immunity. Studying and understanding virus glycans at the nanoscale provide new insights into the diagnosis and treatment of viruses. Glycan nanostructures are considered potential targets for molecular diagnosis, antiviral therapeutics, and the development of vaccines. This review article describes glycan nanostructures (eg, glycoproteins and glycolipids) that exist in cells, subcellular structures, and microbes. We detail the structure, characterization, synthesis, and functions of virus glycans. Furthermore, we describe the glycan nanostructures of different human coronaviruses, such as human coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome-associated coronavirus (SARS-CoV), human coronavirus NL63 (HCoV-NL63), human coronavirus HKU1 (HCoV-HKU1), the Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and how glycan nanotechnology can be useful to prevent and combat human coronaviruses infections, along with possibilities that are not yet explored.


Assuntos
Betacoronavirus/química , Nanoestruturas/análise , Nanoestruturas/química , Polissacarídeos/análise , Polissacarídeos/química , Humanos
8.
Biomol NMR Assign ; 15(1): 153-157, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33389548

RESUMO

Coronaviruses have become of great medical and scientific interest because of the Covid-19 pandemic. The hCoV-HKU1 is an endemic betacoronavirus that causes mild respiratory symptoms, although the infection can progress to severe lung disease and death. During viral replication, a discontinuous transcription of the genome takes place, producing the subgenomic messenger RNAs. The nucleocapsid protein (N) plays a pivotal role in the regulation of this process, acting as an RNA chaperone and participating in the nucleocapsid assembly. The isolated N-terminal domain of protein N (N-NTD) specifically binds to the transcriptional regulatory sequences and control the melting of the double-stranded RNA. Here, we report the resonance assignments of the N-NTD of HKU1-CoV.


Assuntos
Betacoronavirus/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Espectroscopia de Ressonância Magnética , Isótopos de Carbono , Escherichia coli/metabolismo , Hidrogênio , Isótopos de Nitrogênio , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Software
9.
Cell Mol Life Sci ; 78(4): 1655-1688, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32712910

RESUMO

The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein-protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.


Assuntos
Betacoronavirus/química , Quirópteros/virologia , Infecções por Coronavirus/virologia , Proteínas Intrinsicamente Desordenadas/química , Proteoma/análise , Proteínas Virais/química , Animais , Proteínas de Ligação a DNA/química , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Motivos de Ligação ao RNA , SARS-CoV-2/química , Relação Estrutura-Atividade
10.
Int. j. odontostomatol. (Print) ; 14(4): 501-507, dic. 2020. graf
Artigo em Espanhol | LILACS | ID: biblio-1134527

RESUMO

RESUMEN: Un nuevo coronavirus (SARS-CoV-2) ha sido reconocido como el agente etiológico de una misteriosa neumonía originada en Wuhan, China. La OMS ha nombrado a la nueva enfermedad como COVID-19 y, además, la ha declarado pandemia. Taxonómicamente, SARS-CoV-2 pertenece al género de los betacoronavirus junto con SARS-CoV y MERS-CoV. SARS-CoV-2 utiliza la enzima convertidora de la angiotensina 2 (ACE2) como el receptor objetivo para el ingreso en una célula huésped. La expresión de ACE2 en células de tejidos humanos podría indicar un potencial riesgo de reconocimiento por parte del virus y, por ende, ser susceptibles a la infección. Mediante algunas técnicas de laboratorio y de bioinformática, se ha visto una alta presencia de ACE2 en células epiteliales alveolares tipo II de pulmón y en enterocitos del intestino delgado. En la cavidad oral, se ha podido identificar la presencia de ACE2, principalmente, en células epiteliale s de glándulas salivales y células epiteliales de la lengua. Además, se ha reportado la manifestación de algunos síntomas, como sequedad bucal y ambligeustia, los que podrían estar relacionadas con una infección de SARS-CoV-2 en estos órganos. Sin embargo, son necesarios mayores estudios que evidencien esta situación.


ABSTRACT: A novel coronavirus (SARS-CoV-2) has been recognized as a etiologic agent of a mysterious pneumonia originating in Wuhan, China. WHO has named the new disease as COVID-19 and, in addition, has declared it a pandemic. Taxonomically, SARS-CoV-2 belongs to the betacoronavirus genus along with SARS-CoV and MERS-CoV. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the target receptor for entry into a host cell. The expression of ACE2 in cells of human tissues could indicate a potential risk of recognition by the virus and, therefore, be susceptible to infection. Through some laboratory and bioinformatics techniques, high presence of ACE2 has been seen in type II alveolar epithelial cells of the lung and enterocytes of the small intestine. In oral cavity, mainly presence of ACE2 has been identified in epithelial cells of salivary glands and epithelial cells of tongue. In addition, manifestation of some symptoms, such as dry mouth and amblygeustia, have been reported, which could be related to a SARS-CoV-2 infection in these organs. However, further studies are needed to prove this situation.


Assuntos
Humanos , Inibidores da Enzima Conversora de Angiotensina , Infecções por Coronavirus/epidemiologia , Peptidil Dipeptidase A/química , Betacoronavirus/química , Técnicas de Cultura de Tecidos/métodos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/virologia , Boca/virologia
11.
Nat Commun ; 11(1): 5877, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208735

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively, 11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for subsequent viral assembly and maturation. We have determined X-ray crystallographic structures of this cysteine protease in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product bound state at 2.0 Å resolution by employing an active site mutation (C145A). We characterize the stereochemical features of the acyl-enzyme intermediate including critical hydrogen bonding distances underlying catalysis in the Cys/His dyad and oxyanion hole. We also identify a highly ordered water molecule in a position compatible for a role as the deacylating nucleophile in the catalytic mechanism and characterize the binding groove conformational changes and dimerization interface that occur upon formation of the acyl-enzyme. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for future antiviral therapeutic development including revised molecular docking strategies based on Mpro inhibition.


Assuntos
Betacoronavirus/enzimologia , Cisteína Endopeptidases/química , Proteínas não Estruturais Virais/química , Betacoronavirus/química , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Dimerização , Humanos , Modelos Moleculares , Mutação , Inibidores de Proteases/metabolismo , Conformação Proteica , SARS-CoV-2 , Especificidade por Substrato , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
12.
Nat Commun ; 11(1): 5874, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208736

RESUMO

Non-structural proteins (nsp) constitute the SARS-CoV-2 replication and transcription complex (RTC) to play a pivotal role in the virus life cycle. Here we determine the atomic structure of a SARS-CoV-2 mini RTC, assembled by viral RNA-dependent RNA polymerase (RdRp, nsp12) with a template-primer RNA, nsp7 and nsp8, and two helicase molecules (nsp13-1 and nsp13-2), by cryo-electron microscopy. Two groups of mini RTCs with different conformations of nsp13-1 are identified. In both of them, nsp13-1 stabilizes overall architecture of the mini RTC by contacting with nsp13-2, which anchors the 5'-extension of RNA template, as well as interacting with nsp7-nsp8-nsp12-RNA. Orientation shifts of nsp13-1 results in its variable interactions with other components in two forms of mini RTC. The mutations on nsp13-1:nsp12 and nsp13-1:nsp13-2 interfaces prohibit the enhancement of helicase activity achieved by mini RTCs. These results provide an insight into how helicase couples with polymerase to facilitate its function in virus replication and transcription.


Assuntos
Betacoronavirus/química , Betacoronavirus/fisiologia , Replicação Viral , Betacoronavirus/genética , Betacoronavirus/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Relação Estrutura-Atividade , Transcrição Gênica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
13.
Nat Commun ; 11(1): 5885, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208793

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic ß-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualize RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We report that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.


Assuntos
Betacoronavirus/química , Betacoronavirus/fisiologia , Replicação Viral , Células A549 , Animais , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Vesículas Citoplasmáticas/virologia , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/virologia , Humanos , Pandemias , Pneumonia Viral/virologia , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2 , Células Vero , Vírion/química , Vírion/metabolismo , Montagem de Vírus
14.
Database (Oxford) ; 20202020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33216893

RESUMO

DPL (http://www.peptide-ligand.cn/) is a comprehensive database of peptide ligand (DPL). DPL1.0 holds 1044 peptide ligand entries and provides references for the study of the polypeptide platform. The data were collected from PubMed-NCBI, PDB, APD3, CAMPR3, etc. The lengths of the base sequences are varied from 3 to78. DPL database has 923 linear peptides and 88 cyclic peptides. The functions of peptides collected by DPL are very wide. It includes 540 entries of antiviral peptides (including SARS-CoV-2), 55 entries of signal peptides, 48 entries of protease inhibitors, 45 entries of anti-hypertension, 37 entries of anticancer peptides, etc. There are 270 different kinds of peptide targets. All peptides in DPL have clear binding targets. Most of the peptides and receptors have 3D structures experimentally verified or predicted by CYCLOPS, I-TASSER and SWISS-MODEL. With the rapid development of the COVID-2019 epidemic, this database also collects the research progress of peptides against coronavirus. In conclusion, DPL is a unique resource, which allows users easily to explore the targets, different structures as well as properties of peptides.


Assuntos
Antivirais/química , Betacoronavirus/química , Bases de Dados de Produtos Farmacêuticos , Bases de Dados de Proteínas , Modelos Moleculares , Peptídeos/química , Sequência de Aminoácidos , Betacoronavirus/genética , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Domínios Proteicos , SARS-CoV-2
15.
J Mol Model ; 26(12): 341, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33200284

RESUMO

HER-2 type breast cancer is one of the most aggressive malignancies found in women. Tucatinib is recently developed and approved as a potential medicine to fight this disease. In this manuscript, we present the gross structural features of this compound and its reactivity and wave function properties using computational simulations. Density functional theory was used to optimise the ground state geometry of the molecule and molecular docking was used to predict biological activity. As the electrons interact with electromagnetic radiations, electronic excitations between different energy levels are analysed in detail using time-dependent density functional theory. Various intermolecular and intermolecular interactions are analysed and reaction sites for attacking electrophiles and nucleophiles identified. Information entropy calculations show that the compound is inherently stable. Docking with COVID-19 proteins show docking score of - 9.42, - 8.93, - 8.45 and - 8.32 kcal/mol respectively indicating high interaction between the drug and proteins. Hence, this is an ideal candidate to study repurposing of existing drugs to combat the pandemic.


Assuntos
Antineoplásicos/química , Antivirais/química , Betacoronavirus/química , Elétrons , Oxazóis/química , Inibidores de Proteases/química , Piridinas/química , Quinazolinas/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Antineoplásicos/metabolismo , Antivirais/metabolismo , Betacoronavirus/enzimologia , Sítios de Ligação , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxazóis/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Piridinas/metabolismo , Teoria Quântica , Quinazolinas/metabolismo , SARS-CoV-2 , Termodinâmica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
16.
J Proteome Res ; 19(11): 4587-4608, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33006900

RESUMO

The development of computational strategies for the quantitative characterization of the functional mechanisms of SARS-CoV-2 spike proteins is of paramount importance in efforts to accelerate the discovery of novel therapeutic agents and vaccines combating the COVID-19 pandemic. Structural and biophysical studies have recently characterized the conformational landscapes of the SARS-CoV-2 spike glycoproteins in the prefusion form, revealing a spectrum of stable and more dynamic states. By employing molecular simulations and network modeling approaches, this study systematically examined functional dynamics and identified the regulatory centers of allosteric interactions for distinct functional states of the wild-type and mutant variants of the SARS-CoV-2 prefusion spike trimer. This study presents evidence that the SARS-CoV-2 spike protein can function as an allosteric regulatory engine that fluctuates between dynamically distinct functional states. Perturbation-based modeling of the interaction networks revealed a key role of the cross-talk between the effector hotspots in the receptor binding domain and the fusion peptide proximal region of the SARS-CoV-2 spike protein. The results have shown that the allosteric hotspots of the interaction networks in the SARS-CoV-2 spike protein can control the dynamic switching between functional conformational states that are associated with virus entry to the host receptor. This study offers a useful and novel perspective on the underlying mechanisms of the SARS-CoV-2 spike protein through the lens of allosteric signaling as a regulatory apparatus of virus transmission that could open up opportunities for targeted allosteric drug discovery against SARS-CoV-2 proteins and contribute to the rapid response to the current and potential future pandemic scenarios.


Assuntos
Regulação Alostérica/fisiologia , Betacoronavirus , Infecções por Coronavirus/virologia , Simulação de Dinâmica Molecular , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus , Regulação Alostérica/genética , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/metabolismo , COVID-19 , Humanos , Pandemias , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Comput Biol Med ; 126: 104054, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33074111

RESUMO

The repurposing of FDA approved drugs is presently receiving attention for COVID-19 drug discovery. Previous studies revealed the binding potential of several FDA-approved drugs towards specific targets of SARS-CoV-2; however, limited studies are focused on the structural and molecular basis of interaction of these drugs towards multiple targets of SARS-CoV-2. The present study aimed to predict the binding potential of six FDA drugs towards fifteen protein targets of SARS-CoV-2 and propose the structural and molecular basis of the interaction by molecular docking and dynamic simulation. Based on the literature survey, fifteen potential targets of SARS-CoV-2, and six FDA drugs (Chloroquine, Hydroxychloroquine, Favipiravir, Lopinavir, Remdesivir, and Ritonavir) were selected. The binding potential of individual drug towards the selected targets was predicted by molecular docking in comparison with the binding of the same drugs with their usual targets. The stabilities of the best-docked conformations were confirmed by molecular dynamic simulation and energy calculations. Among the selected drugs, Ritonavir and Lopinavir showed better binding towards the prioritized targets with minimum binding energy (kcal/mol), cluster-RMS, number of interacting residues, and stabilizing forces when compared with the binding of Chloroquine, Favipiravir, and Hydroxychloroquine, later drugs demonstrated better binding when compared to the binding with their usual targets. Remdesvir showed better binding to the prioritized targets in comparison with the binding of Chloroquine, Favipiravir, and Hydroxychloroquine, but showed lesser binding potential when compared to the interaction between Ritonavir and Lopinavir and the prioritized targets. The structural and molecular basis of interactions suggest that the FDA drugs can be repurposed towards multiple targets of SARS-CoV-2, and the present computational models provide insights on the scope of repurposed drugs against COVID-19.


Assuntos
Antivirais/química , Betacoronavirus/química , Infecções por Coronavirus/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pneumonia Viral/tratamento farmacológico , Proteínas Virais , COVID-19 , Reposicionamento de Medicamentos , Humanos , Pandemias , SARS-CoV-2 , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química
18.
J Proteome Res ; 19(11): 4553-4566, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33103435

RESUMO

While the COVID-19 pandemic is causing important loss of life, knowledge of the effects of the causative SARS-CoV-2 virus on human cells is currently limited. Investigating protein-protein interactions (PPIs) between viral and host proteins can provide a better understanding of the mechanisms exploited by the virus and enable the identification of potential drug targets. We therefore performed an in-depth computational analysis of the interactome of SARS-CoV-2 and human proteins in infected HEK 293 cells published by Gordon et al. (Nature2020, 583, 459-468) to reveal processes that are potentially affected by the virus and putative protein binding sites. Specifically, we performed a set of network-based functional and sequence motif enrichment analyses on SARS-CoV-2-interacting human proteins and on PPI networks generated by supplementing viral-host PPIs with known interactions. Using a novel implementation of our GoNet algorithm, we identified 329 Gene Ontology terms for which the SARS-CoV-2-interacting human proteins are significantly clustered in PPI networks. Furthermore, we present a novel protein sequence motif discovery approach, LESMoN-Pro, that identified 9 amino acid motifs for which the associated proteins are clustered in PPI networks. Together, these results provide insights into the processes and sequence motifs that are putatively implicated in SARS-CoV-2 infection and could lead to potential therapeutic targets.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Interações Hospedeiro-Patógeno/genética , Pandemias , Pneumonia Viral , Mapas de Interação de Proteínas , Algoritmos , Motivos de Aminoácidos , Betacoronavirus/química , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Ontologia Genética , Células HEK293 , Humanos , Anotação de Sequência Molecular , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Proteínas/química , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2 , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Front Immunol ; 11: 570018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042151

RESUMO

The pandemic of Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 has induced global eagerness to develop vaccines and therapeutics for treating COVID-19, including neutralizing antibodies. To develop effective therapeutic antibodies against SARS-CoV-2, it is critical to understand the interaction between viral and host's proteins. The human ACE2 (hACE2) protein is the crucial target for the SARS-CoV's Spike protein that allows the virus to adhere to host epithelial cells. X-ray crystal structures and biophysical properties of protein-protein interactions reveal a large interaction surface with high binding-affinity between SARS-CoV-2 and hACE2 (18 interactions), at least 15-fold stronger than between SARS-CoV-1 and hACE2 (eight interactions). This suggests that antibodies against CoV-1 infection might not be very efficient against CoV-2. Furthermore, interspecies comparisons indicate that ACE2 proteins of man and cat are far closer than dog, ferret, mouse, and rat with significant differences in binding-affinity between Spike and ACE2 proteins. This strengthens the notion of productive SARS-CoV-2 transmission between felines and humans and that classical animal models are not optimally suited for evaluating therapeutic antibodies. The large interaction surface with strong affinity between SARS-CoV-2 and hACE2 (dG-12.4) poses a huge challenge to develop reliable antibody therapy that truly blocks SARS-CoV-2 adherence and infection. We gauge that single antibodies against single epitopes might not sufficiently interfere with the strong interaction-synapse between Spike and hACE2 proteins. Instead, appropriate combinations of high-affinity neutralizing antibodies against different epitopes might be needed, preferably of IgA-class for optimal and prolonged activity at epithelial layers of respiratory and intestine tracts.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Afinidade de Anticorpos , Betacoronavirus , Peptidil Dipeptidase A , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Betacoronavirus/química , Betacoronavirus/imunologia , Cristalografia por Raios X , Humanos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
20.
J Phys Chem B ; 124(44): 9785-9792, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33095007

RESUMO

Over 50 peptides, which were known to inhibit SARS-CoV-1, were computationally screened against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. Based on the binding affinity and interaction, 15 peptides were selected, which showed higher affinity compared to the α-helix of the human ACE2 receptor. Molecular dynamics simulation demonstrated that two peptides, S2P25 and S2P26, were the most promising candidates, which could potentially block the entry of SARS-CoV-2. Tyr489 and Tyr505 residues present in the "finger-like" projections of the RBD were found to be critical for peptide interaction. Hydrogen bonding and hydrophobic interactions played important roles in prompting peptide-protein binding and interaction. Structure-activity relationship indicated that peptides containing aromatic (Tyr and Phe), nonpolar (Pro, Gly, Leu, and Ala), and polar (Asn, Gln, and Cys) residues were the most significant contributors. These findings can facilitate the rational design of selective peptide inhibitors targeting the spike protein of SARS-CoV-2.


Assuntos
Antivirais/metabolismo , Betacoronavirus/química , Peptídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/química , Sítios de Ligação , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Peptídeos/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...