Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
J Environ Sci (China) ; 145: 97-106, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844327

RESUMO

Sediment is the ultimate sink of environmental pollutants. A total of 128 surface sediment samples were collected from 8 rivers and 3 reservoirs in Maoming City, Guangdong Province. This study assessed the content and distribution of brominated flame retardants in sediments. The acute toxicity effects of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) in sediments were evaluated using Caenorhabditis elegans as model organisms. The concentration of TBBPA in sediments ranged from not detected (ND) to 12.59 µg/kg and was mainly distributed in the central area, which was affected by the emission of TBBPA from residential and factory. The concentration of HBCDs ranged from ND to 6.31 µg/kg, and the diastereoisomer distribution was consistent, showing a trend close to the South China Sea. The composition pattern of HBCDs in the surface sediments from rivers were 41.73%-62.33%, 7.89%-25.54%, and 18.76%-40.65% for α-, ß-, and γ-HBCD, respectively, and in the sediments from reservoirs were 26.15%-45.52%, 7.44%-19.23%, and 47.04%-61.89% for α-, ß-, and γ-HBCD, respectively. When the sum of concentrations of TBBPA and HBCD in sediments were above high levels, reactive oxygen species in nematodes significantly increased, resulting in an oxidative stress response. Intestinal permeability was also enhanced, causing intestinal damage. In addition, in terms of this study, TBBPA had a greater impact on biotoxicity compared to HBCDs, and more attention should be paid to the toxic effects of the river ecosystem organisms in Maoming City, Guangdong Province. This study can complement the pollution database in the study area and provide basic data for pollution control.


Assuntos
Caenorhabditis elegans , Monitoramento Ambiental , Retardadores de Chama , Sedimentos Geológicos , Hidrocarbonetos Bromados , Poluentes Químicos da Água , Animais , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , China , Caenorhabditis elegans/efeitos dos fármacos , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/toxicidade , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise
2.
Folia Neuropathol ; 62(1): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741432

RESUMO

Polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) are dominant environmental and food contaminants. Tetrabromobisphenol A (TBBPA) is the most widely used BFR in the world to improve the fire safety of laminates in electrical and electronic equipment. Aroclor 1254, one of the PCBs, is widely distributed in the environment due to its extensive use in industrial applications around the world. Both groups of substances are potent toxicants. There is also increasing evidence that they have neurotoxic effects. In this study we tested the pro-inflammatory effects of Aroclor 1254 and TBBPA based on markers of microglial reactivity and levels of pro-inflammatory factors in the brain of immature rats. Aroclor 1254 or TBBPA were administered to the rats by oral gavage for two weeks at a dose of 10 mg/kg b.w. Both light and electron microscopy studies revealed features indicative of microglia activation in brains of exposed rats. Morphological changes were associated with overexpression of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Analysis of cytokine/chemokine array revealed significant secretion of inflammatory mediators following exposure to both TBBPA and Aroclor 1254, which was stronger in the cerebellum than in the forebrain of exposed immature rats. The results indicate a pro-inflammatory profile of microglia activation as one of the neurotoxic mechanisms of both examined toxicants.


Assuntos
Microglia , Síndromes Neurotóxicas , Bifenil Polibromatos , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Bifenil Polibromatos/toxicidade , Ratos , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/etiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Retardadores de Chama/toxicidade , Ratos Wistar
3.
Sci Total Environ ; 932: 173117, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734097

RESUMO

2,2',6-Tribromobisphenol A (Tri-BBPA), the main debrominated congener of tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and human body but with unknown toxicity. Tri-BBPA was synthesized and applied to investigate its sub-chronic exposure effects on 28 organ coefficients and clinical health indicators related to liver function, kidney function, and cardiovascular system function in female mice. Results showed that the liver was the targeted organ of Tri-BBPA exposure. Compared to the control group, the changes in liver coefficient, cholinesterase, total protein, albumin, γ-glutamyl transpeptidase, lactate dehydrogenase, and creatine kinase levels ranged from -61.2 % to 35.5 % in the high-exposed group. Creatine kinase was identified as a critical effect indicator of Tri-BBPA exposure. Using the Bayesian benchmark dose derivation method, a lower reference dose than TBBPA was established for Tri-BBPA (10.6 µg/kg-day). Serum metabolomics revealed that Tri-BBPA exposure may primarily damage the liver by disrupting tryptophan metabolism related to L-alanine, tryptamine, 5-hydroxyindoleacetic acid, and 5-methoxyindoleacetate in liver cells and leading to liver dysfunction. Notably, epilepsy, schizophrenia, early preeclampsia, and late-onset preeclampsia were the top six enriched diseases, suggesting that the nervous system may be particularly affected by Tri-BBPA exposure. Our findings hinted a non-negligible health risk of exposure to debrominated products of TBBPA.


Assuntos
Bifenil Polibromatos , Animais , Camundongos , Feminino , Bifenil Polibromatos/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Poluentes Ambientais/toxicidade
4.
J Environ Manage ; 359: 121077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718604

RESUMO

Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.


Assuntos
Microplásticos , Bifenil Polibromatos , Esgotos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Microplásticos/toxicidade , Anaerobiose , Espécies Reativas de Oxigênio/metabolismo
5.
Toxicology ; 505: 153837, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763426

RESUMO

Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.


Assuntos
Disruptores Endócrinos , Estresse Oxidativo , Bifenil Polibromatos , Progesterona , Testículo , Testosterona , Animais , Masculino , Bifenil Polibromatos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Ratos , Disruptores Endócrinos/toxicidade , Testosterona/sangue , Progesterona/sangue , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Epididimo/efeitos dos fármacos , Epididimo/patologia , Epididimo/metabolismo , Ratos Sprague-Dawley , Tamanho do Órgão/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
6.
Chemosphere ; 359: 142290, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723691

RESUMO

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Assuntos
Biotransformação , Retardadores de Chama , Helianthus , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Catalase/metabolismo
7.
J Environ Sci (China) ; 142: 1-10, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527875

RESUMO

Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant. There is evidence showing that TBBPA can exert thyroid disrupting effects in mammals, but different results were also reported, along with inconsistent reports regarding its neurotoxicity. Here, we investigated thyroid disrupting effects and neurotoxicity of TBBPA (5, 50, 500 µg/(kg·day)) to male mice following maternal and direct exposure through drinking water, with the anti-thyroid drug propylthiouracil (PTU) as the positive control. On postnatal day (PND) 15, we expectedly observed severe thyroid compensatory hyperplasia and cerebellar developmental retardation in PTU-treated pups. The highest dose of TBBPA also caused thyroid histological alteration but had no effects on cerebellar development in terms of Purkinje cell morphology and the thickness of the internal granular layer and the molecular layer of the cerebellum. During puberty and adulthood, the thyroid morphological alterations became more pronounced in the TBBPA-treated animals, accompanied by decreased serum thyroid hormone levels. Furthermore, the 50 and 500 µg/(kg·day) TBBPA groups showed a significant decrease in the serum level of serotonin, a neurotransmitter associated with anxiety behaviors. Correspondingly, the highest dose group displayed anxiety-like behaviors in the elevated plus-maze test on PND 35, but this neurobehavioral alteration disappeared on PND 56. Moreover, no changes in neurobehavioral parameters tested were found in TBBPA-treated animals at puberty and adulthood. Altogether, all observations show that TBBPA can exert thyroid disrupting effects but has little overt impact on brain development and neurobehaviors in mice, suggesting that thyroid disruption does not necessarily cause overtly adverse neurodevelopmental outcomes.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Camundongos , Animais , Masculino , Glândula Tireoide/patologia , Bifenil Polibromatos/toxicidade , Encéfalo , Retardadores de Chama/toxicidade , Mamíferos
8.
J Hazard Mater ; 470: 134152, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552398

RESUMO

Soil contamination by emerging pollutants tetrabromobisphenol A (TBBPA) and microplastics has become a global environmental issue in recent years. However, little is known about the effect of microplastics on degradation of TBBPA in soil, especially aged microplastics. In this study, the effect of aged polystyrene (PS) microplastics on the degradation of TBBPA in soil and the mechanisms were investigated. The results suggested that the aged microplastics exhibited a stronger inhibitory effect on the degradation of TBBPA in soil than the pristine microplastics, and the degradation efficiency of TBBPA decreased by 21.57% at the aged microplastic content of 1%. This might be related to the higher TBBPA adsorption capacity of aged microplastics compared to pristine microplastics. Aged microplastics strongly altered TBBPA-contaminated soil properties, reduced oxidoreductase activity and affected microbial community composition. The decrease in soil oxidoreductase activity and relative abundance of functional microorganisms (e.g., Bacillus, Pseudarthrobacter and Sphingomonas) caused by aged microplastics interfered with metabolic pathways of TBBPA. This study indicated the importance the risk assessment and soil remediation for TBBPA-contaminated soil with aged microplastics.


Assuntos
Biodegradação Ambiental , Microplásticos , Bifenil Polibromatos , Poliestirenos , Microbiologia do Solo , Poluentes do Solo , Poliestirenos/química , Bifenil Polibromatos/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/química , Oxirredutases/metabolismo , Solo/química , Adsorção
9.
Sci Total Environ ; 923: 171358, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438024

RESUMO

Tetrabromobisphenol A (TBBPA) and Perfluorooctane sulfonate (PFOS) are emerging contaminants which coexist in marine environments, posing significant risks to ecosystems and human health. The behavior of these contaminants in the presence of dissolved organic matter (DOM), specifically the co-contamination of TBBPA and PFOS, is not well understood. The bioaccumulation, distribution, elimination, and toxic effects of TBBPA and PFOS on thick-shell mussels (Mytilus unguiculatus V.), with the absence and presence of humic acid (HA), a typical DOM, were studied. The results showed that the uptake of TBBPA decreased and the uptake of PFOS increased when exposed to 1 mg/L HA. However, at higher concentrations of HA (5 and 25 mg/L), the opposite effect was observed. Combined exposure to HA, TBBPA, and PFOS resulted in oxidative stress in the digestive gland, with the severity of stress dependent on exposure time and HA dose. Histological analysis revealed a positive correlation between HA concentration and tissue damage caused by TBBPA and PFOS. This study provides insights into the influence of HA on the bioaccumulation-elimination patterns and toxicity of TBBPA and PFOS in marine bivalves, offering valuable data for ecological and health risk assessments of combined pollutants in aquatic environments rich in DOM.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Mytilus , Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Humanos , Substâncias Húmicas , Ecossistema , Bioacumulação , Bifenil Polibromatos/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Chemosphere ; 353: 141378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442777

RESUMO

Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Feminino , Masculino , Ratos , Animais , Éter , Ratos Sprague-Dawley , Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Etil-Éteres , Neurotransmissores , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
11.
Environ Sci Technol ; 58(12): 5267-5278, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478874

RESUMO

Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 µg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Humanos , Peixe-Zebra , Células Endoteliais/metabolismo , Bifenil Polibromatos/toxicidade , Larva/metabolismo , Retardadores de Chama/toxicidade
12.
Environ Sci Technol ; 58(9): 4127-4136, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382014

RESUMO

Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 µg/kg/d TBBPA-DBMPE as well as 50 µg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 µg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 µg/kg/d TBBPA-DBMPE exerted lower effects than 50 µg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Animais , Camundongos , Retardadores de Chama/toxicidade , Éter , Bioacumulação , Sêmen , Hidrocarbonetos Bromados/toxicidade , Bifenil Polibromatos/toxicidade , Éteres , Etil-Éteres
13.
Adv Biol (Weinh) ; 8(2): e2300477, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37867281

RESUMO

In recent years, there has been growing concern over the rising incidence of liver diseases, with increasing exposure to environmental toxins as a significant contributing factor. However, the mechanisms of liver injury induced by environmental pollutants are largely unclear. Here, using tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant, as an example, environmental toxin-induced liver toxicity in mice is characterized via single-cell sequencing technology. Heterogeneous gene expression profiles after exposure to TBBPA in major cell types of the liver are demonstrated. In hepatocytes, pathway analysis of differentially expressed genes reveals the enhanced interferon response and diminished metabolic processes. The disrupted endothelial functions in TBBPA-treated cells are then shown. Moreover, the activation of M2-polarization in Kupffer cells, as well as activated effector T and B cells are unveiled in TBBPA-treated cells. Finally, ligand-receptor pair analysis shows that TBBPA disrupts cell-cell communication and induces an inflammatory microenvironment. Overall, the results reveal that TBBPA-induced dysfunction of hepatocytes and endothelial cells may then activate and recruit other immune cells such as Kuffer cells, and T/NK cells into the liver, further increasing inflammatory response and liver injury. Thus, the results provide novel insight into undesiring environmental pollutant-induced liver injury.


Assuntos
Poluentes Ambientais , Bifenil Polibromatos , Camundongos , Animais , Células Endoteliais , Fígado/metabolismo , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Poluentes Ambientais/metabolismo , Análise de Sequência de RNA
14.
Environ Pollut ; 341: 122895, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949162

RESUMO

The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is a recommended substitute for hexabromocyclododecane (HBCD), a banned persistent organic pollutant, yet its potential toxicities remains largely unexplored. Here, we investigated the effects of a long-term exposure to TBBPA-DBMPE at nominal doses of 50 and 1000 µg/kg/d on lipid homeostasis in CD-1 mice, in comparison with 50 µg/kg/d HBCD as a positive control. Male pups received chemical treatments through maternal administration via drinking water from postnatal day 0-21, followed by direct administration through drinking water after weaning. On the 23rd week after treatment, the oral lipid tolerance test revealed that low-dose TBBPA-DBMPE as well as HBCD affected lipid tolerance, although the fasting serum triglyceride (TG) levels were not altered. When chemical treatment was extended to the 32nd week, TBBPA-DBMPE-treated animals displayed adipocyte hypertrophy in both white adipose tissue (eWAT) and brown adipose tissue (BAT) and hepatic steatosis, which was largely consistent with the effects of HBCD. These findings indicate that like HBCD, TBBPA-DBMPE led to increased lipid load in mice. Interestingly, we also observed intestinal histological changes, coupled with increased expression of lipid absorption-related genes in both HBCD and TBBPA-DBMPE treatments, suggesting increased lipid absorption. This was supported by in vitro findings that both HBCD and TBBPA-DBMPE promoted lipid accumulation in IEC-6 cells under the stress of oleic acid for 6 h, implying that altered lipid absorption by the intestine may partly contributed to increased lipid load in mice. Overall, the effects of 50 µg/kg/d TBBPA-DBMPE in terms of some parameters were comparable with 50 µg/kg/d HBCD, suggesting that TBBPA-DBMPE may not be an ideal substitute of HBCD.


Assuntos
Água Potável , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Masculino , Camundongos , Animais , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Éter , Hidrocarbonetos Bromados/toxicidade , Hidrocarbonetos Bromados/análise , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Éteres , Etil-Éteres , Lipídeos
15.
Environ Health Perspect ; 131(10): 107005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815925

RESUMO

BACKGROUND: Polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) are persistent organic pollutants with potential endocrine-disrupting effects linked to adverse health outcomes. OBJECTIVES: In this study, we utilize high-resolution metabolomics (HRM) to identify internal exposure and biological responses underlying PCB and multigenerational PBB exposure for participants enrolled in the Michigan PBB Registry. METHODS: HRM profiling was conducted on plasma samples collected from 2013 to 2014 from a subset of participants enrolled in the Michigan PBB Registry, including 369 directly exposed individuals (F0) who were alive when PBB mixtures were accidentally introduced into the food chain and 129 participants exposed to PBB in utero or through breastfeeding, if applicable (F1). Metabolome-wide association studies were performed for PBB-153 separately for each generation and ΣPCB (PCB-118, PCB-138, PCB-153, and PCB-180) in the two generations combined, as both had direct PCB exposure. Metabolite and metabolic pathway alterations were evaluated following a well-established untargeted HRM workflow. RESULTS: Mean levels were 1.75 ng/mL [standard deviation (SD): 13.9] for PBB-153 and 1.04 ng/mL (SD: 0.788) for ΣPCB. Sixty-two and 26 metabolic features were significantly associated with PBB-153 in F0 and F1 [false discovery rate (FDR) p<0.2], respectively. There were 2,861 features associated with ΣPCB (FDR p<0.2). Metabolic pathway enrichment analysis using a bioinformatics tool revealed perturbations associated with ΣPCB in numerous oxidative stress and inflammation pathways (e.g., carnitine shuttle, glycosphingolipid, and vitamin B9 metabolism). Metabolic perturbations associated with PBB-153 in F0 were related to oxidative stress (e.g., pentose phosphate and vitamin C metabolism) and in F1 were related to energy production (e.g., pyrimidine, amino sugars, and lysine metabolism). Using authentic chemical standards, we confirmed the chemical identity of 29 metabolites associated with ΣPCB levels (level 1 evidence). CONCLUSIONS: Our results demonstrate that serum PBB-153 is associated with alterations in inflammation and oxidative stress-related pathways, which differed when stratified by generation. We also found that ΣPCB was associated with the downregulation of important neurotransmitters, serotonin, and 4-aminobutanoate. These findings provide novel insights for future investigations of molecular mechanisms underlying PBB and PCB exposure on health. https://doi.org/10.1289/EHP12657.


Assuntos
Bifenil Polibromatos , Bifenilos Policlorados , Feminino , Humanos , Bifenilos Policlorados/toxicidade , Bifenil Polibromatos/toxicidade , Michigan , Sistema de Registros , Inflamação
16.
Chemosphere ; 341: 139974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648165

RESUMO

Tetrabromobisphenol A (TBBPA) is the most-produced brominated flame retardant, which can be found in various industrial and household products. Studies have shown that TBBPA has hepatotoxicity, and could pose a risk to aquatic animals. The endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in cells, the homeostasis and orchestrated interactions of which are crucial to maintaining cellular function. The aim of this study was to explore the involvement of ER-mitochondria crosstalk in TBBPA-induced toxicity in aquatic animals' hepatocytes. Herein, we exposed grass carp hepatocytes (L8824 cells) to different concentrations of TBBPA. Our experimental results suggested that TBBPA exposure suppressed cell viability and caused apoptosis of L8824 cells. TBBPA treatment upregulated expressions of ER stress markers, increased reactive oxygen species (ROS) and mitochondrial Ca2+ levels, and reduced mitochondrial membrane potential (MMP) in L8824 cells. However, the pretreatment of 2-aminoethoxydiphenyl borate (2-APB) could alleviate TBBPA-induced cell apoptosis, ER stress, and mitochondrial dysfunction. Additionally, 2-APB pretreat relieved ER-mitochondrial contact and the expression of ER-mitochondrial function-related genes induced by high-dose TBBPA. Taken together, these results indicated that TBBPA caused grass carp hepatocyte apoptosis by destroying ER-mitochondrial crosstalk.


Assuntos
Apoptose , Bifenil Polibromatos , Animais , Hepatócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo
17.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985477

RESUMO

Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Humanos , Monitoramento Biológico , Retardadores de Chama/análise , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-36843298

RESUMO

Tetrabromobisphenol A (TBBPA) is a reactive brominated flame retardant widely used in various industrial and household products. This compound is persistent in the environment and accumulates in living organisms through the food chain, and is toxic to animals and human beings. Studies have shown that TBBPA is toxic to various human cell lines, including neuronal cells. Apigenin is a dietary flavonoid that exhibits various beneficial health effects on biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated the cytoprotective effects of apigenin against TBBPA-mediated cytotoxicity in SK-N-MC cells. Our results demonstrated that treatment of SK-N-MC cells with apigenin increased the cell viability, which was decreased by TBBPA, and reduced apoptosis and autophagy induced by TBBPA. Although we did not observe any change in the levels of IL-1ß and nitrite in cultured cells after TBBPA treatment, apigenin was found to decrease the production of these pro-inflammatory mediators. Apigenin decreased the intracellular Ca2+ concentration, NOX4 level, oxidative stress, and mitochondrial membrane potential loss and increased the mitochondrial biogenesis and nuclear Nrf2 levels that were reduced by TBBPA. Finally, apigenin treatment decreased Akt and ERK induction in cells exposed to TBBPA. Based on these results, apigenin could be a promising candidate for designing natural drugs to treat or prevent TBBPA-related neurological disorders.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Apigenina/farmacologia , Apigenina/metabolismo , Estresse Oxidativo , Neurônios/metabolismo , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo
19.
Environ Pollut ; 322: 121143, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731738

RESUMO

Tetrabromobisphenol A (TBBPA) is an industrial chemical and the most widely used brominated flame retardant, and has raised environmental health concerns. However, the maternal transfer toxicity of TBBPA is less studied in fish despite its frequency in the water environment, and limited evidence exists to confirm the major contributing factors. In this study, we performed a 28-d experiment on female and male zebrafish exposed to TBBPA (0, 5, 50, and 500 µg/L), and shortened body length of offspring larvae was observed at the maximum exposure concentration. By cross-mating control and exposed zebrafish (male or female), our results showed that the observed growth inhibition in the progeny was attributed to the maternal transfer effect. Although 28-d exposure resulted in the existence of TBBPA in ovaries and ova, the maternal transfer of TBBPA was not responsible for the shortened body length of offspring larvae, as evidenced through TBBPA embryo microinjection. Moreover, proteomic analyses in ova indicated that the abundance of apolipoproteins (apoa1, apoa1b, apoa2, apoa4b, and apoc1) was significantly downregulated in the ova, which may be partially responsible for the shortened body length of offspring larvae. Interestingly, these proteins did not differentially express in the ovaries. Therefore, our results demonstrate that TBBPA exposure disturbed maternal protein transfer from the ovaries to the ova, providing novel insights into the underlying maternal transfer effects.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Masculino , Feminino , Peixe-Zebra/metabolismo , Larva , Proteômica , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36828348

RESUMO

Tetrabromobisphenol A-bis (2-hydroxyethyl) ether (TBBPA-DHEE) has been detected in various environmental media and organisms, and its ecological risks and health hazards have attracted great attention, but sufficient toxicological data have not proved the toxic effects of TBBPA-DHEE exposure on aquatic organism. In this study, the neurotoxicity and mechanism of zebrafish (3-month-old) exposed to TBBPA-DHEE (0.86 µg/L, 12.9 µg/L, 193.5 µg/L) were studied. Furthermore, the neurotoxicity susceptibility of different sexes of zebrafish was revealed. Behavioral studies revealed that TBBPA-DHEE exposure has significant differences in average speed, duration of mania, the distance between objects, and ATP content between male and female zebrafish. Slight damage in brain tissue of male zebrafish was found. The transcriptome analysis revealed that the molecular mechanism of neurotoxicity in mature female and male zebrafish is different. For mature female zebrafish, TBBPA-DHEE significantly affected the expression of genes related to behavior and development, and its mechanism may be that it can produce neurotoxicity by affecting related genes in the hormone, synapse, and Ca2+ signaling pathway. For mature male zebrafish, TBBPA-DHEE can significantly affect their behavior and expression of nerve-related genes. Results from the transcriptomic analysis suggests that the possible molecular mechanism may be through the inhibition of Ca2+ signal transmission and produce neurotoxicity by affecting the expression of related genes in neural synapses, Ca2+ signal, and MAPK signal in brain tissue of zebrafish. The results suggested that exposure to low-dose TBBPA-DHEE could induce neurotoxicity in zebrafish, and female and male zebrafish showed different toxic effects and molecular mechanisms.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Feminino , Masculino , Peixe-Zebra/metabolismo , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Retardadores de Chama/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA