Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.338
Filtrar
1.
Int Rev Neurobiol ; 176: 209-268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38802176

RESUMO

Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.


Assuntos
Esclerose Lateral Amiotrófica , Genômica , Biologia de Sistemas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/terapia , Biologia de Sistemas/métodos , Genômica/métodos , Proteômica/métodos , Animais
2.
NPJ Syst Biol Appl ; 10(1): 53, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760412

RESUMO

Breast cancer is one of the prevailing cancers globally, with a high mortality rate. Metastatic breast cancer (MBC) is an advanced stage of cancer, characterised by a highly nonlinear, heterogeneous process involving numerous singling pathways and regulatory interactions. Epithelial-mesenchymal transition (EMT) emerges as a key mechanism exploited by cancer cells. Transforming Growth Factor-ß (TGFß)-dependent signalling is attributed to promote EMT in advanced stages of breast cancer. A comprehensive regulatory map of TGFß induced EMT was developed through an extensive literature survey. The network assembled comprises of 312 distinct species (proteins, genes, RNAs, complexes), and 426 reactions (state transitions, nuclear translocations, complex associations, and dissociations). The map was developed by following Systems Biology Graphical Notation (SBGN) using Cell Designer and made publicly available using MINERVA ( http://35.174.227.105:8080/minerva/?id=Metastatic_Breast_Cancer_1 ). While the complete molecular mechanism of MBC is still not known, the map captures the elaborate signalling interplay of TGFß induced EMT-promoting MBC. Subsequently, the disease map assembled was translated into a Boolean model utilising CaSQ and analysed using Cell Collective. Simulations of these have captured the known experimental outcomes of TGFß induced EMT in MBC. Hub regulators of the assembled map were identified, and their transcriptome-based analysis confirmed their role in cancer metastasis. Elaborate analysis of this map may help in gaining additional insights into the development and progression of metastatic breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Transdução de Sinais , Fator de Crescimento Transformador beta , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Feminino , Transdução de Sinais/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes/genética , Regulação Neoplásica da Expressão Gênica/genética
3.
NPJ Syst Biol Appl ; 10(1): 60, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811585

RESUMO

The amazing complexity of gene regulatory circuits, and biological systems in general, makes mathematical modeling an essential tool to frame and develop our understanding of their properties. Here, we present some fundamental considerations to develop and analyze a model of a gene regulatory circuit of interest, either representing a natural, synthetic, or theoretical system. A mathematical model allows us to effectively evaluate the logical implications of our hypotheses. Using our models to systematically perform in silico experiments, we can then propose specific follow-up assessments of the biological system as well as to reformulate the original assumptions, enriching both our knowledge and our understanding of the system. We want to invite the community working on different aspects of gene regulatory circuits to explore the power and benefits of mathematical modeling in their system.


Assuntos
Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Modelos Genéticos , Simulação por Computador , Biologia de Sistemas/métodos , Humanos , Regulação da Expressão Gênica/genética , Biologia Computacional/métodos
4.
PLoS One ; 19(5): e0304410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809924

RESUMO

The association between Alzheimer's disease and metabolic disorders as significant risk factors is widely acknowledged. However, the intricate molecular mechanism intertwining these conditions remains elusive. To address this knowledge gap, we conducted a thorough investigation using a bioinformatics method to illuminate the molecular connections and pathways that provide novel perspectives on these disorders' pathological and clinical features. Microarray datasets (GSE5281, GSE122063) from the Gene Expression Omnibus (GEO) database facilitated the way to identify genes with differential expression in Alzheimer's disease (141 genes). Leveraging CoreMine, CTD, and Gene Card databases, we extracted genes associated with metabolic conditions, including hypertension, non-alcoholic fatty liver disease, and diabetes. Subsequent analysis uncovered overlapping genes implicated in metabolic conditions and Alzheimer's disease, revealing shared molecular links. We utilized String and HIPPIE databases to visualize these shared genes' protein-protein interactions (PPI) and constructed a PPI network using Cytoscape and MCODE plugin. SPP1, CD44, IGF1, and FLT1 were identified as crucial molecules in the main cluster of Alzheimer's disease and metabolic syndrome. Enrichment analysis by the DAVID dataset was employed and highlighted the SPP1 as a novel target, with its receptor CD44 playing a significant role in the inflammatory cascade and disruption of insulin signaling, contributing to the neurodegenerative aspects of Alzheimer's disease. ECM-receptor interactions, focal adhesion, and the PI3K/Akt pathways may all mediate these effects. Additionally, we investigated potential medications by repurposing the molecular links using the DGIdb database, revealing Tacrolimus and Calcitonin as promising candidates, particularly since they possess binding sites on the SPP1 molecule. In conclusion, our study unveils crucial molecular bridges between metabolic syndrome and AD, providing insights into their pathophysiology for therapeutic interventions.


Assuntos
Doença de Alzheimer , Reposicionamento de Medicamentos , Síndrome Metabólica , Mapas de Interação de Proteínas , Biologia de Sistemas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes , Biologia Computacional/métodos , Transdução de Sinais , Bases de Dados Genéticas , Perfilação da Expressão Gênica
5.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38702075

RESUMO

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Assuntos
Adipócitos , Adipogenia , Distribuição da Gordura Corporal , Humanos , Adipócitos/metabolismo , Masculino , Feminino , Adipogenia/genética , Índice de Massa Corporal , Adulto , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Teorema de Bayes , Relação Cintura-Quadril , Tecido Adiposo/metabolismo , Via de Sinalização Wnt/genética , Regulação da Expressão Gênica/genética , Biologia de Sistemas/métodos
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731835

RESUMO

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Assuntos
Leucemia Mieloide Aguda , Biologia de Sistemas , Tretinoína , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Tretinoína/farmacologia , Biologia de Sistemas/métodos , Células HL-60 , Perfilação da Expressão Gênica , Células K562 , Descoberta de Drogas/métodos , Transcriptoma , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
Sci Rep ; 14(1): 12498, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822072

RESUMO

The absence of detailed knowledge about regulatory interactions makes the use of phenomenological assumptions mandatory in cell biology modeling. Furthermore, the challenges associated with the analysis of these models compel the implementation of mathematical approximations. However, the constraints these methods introduce to biological interpretation are sometimes neglected. Consequently, understanding these restrictions is a very important task for systems biology modeling. In this article, we examine the impact of such simplifications, taking the case of a single-gene autoinhibitory circuit; however, our conclusions are not limited solely to this instance. We demonstrate that models grounded in the same biological assumptions but described at varying levels of detail can lead to different outcomes, that is, different and contradictory phenotypes or behaviors. Indeed, incorporating specific molecular processes like translation and elongation into the model can introduce instabilities and oscillations not seen when these processes are assumed to be instantaneous. Furthermore, incorporating a detailed description of promoter dynamics, usually described by a phenomenological regulatory function, can lead to instability, depending on the cooperative binding mechanism that is acting. Consequently, although the use of a regulating function facilitates model analysis, it may mask relevant aspects of the system's behavior. In particular, we observe that the two cooperative binding mechanisms, both compatible with the same sigmoidal function, can lead to different phenotypes, such as transcriptional oscillations with different oscillation frequencies.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Biologia de Sistemas/métodos , Regiões Promotoras Genéticas
8.
BMC Bioinformatics ; 25(1): 199, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789933

RESUMO

BACKGROUND: Computational models in systems biology are becoming more important with the advancement of experimental techniques to query the mechanistic details responsible for leading to phenotypes of interest. In particular, Boolean models are well fit to describe the complexity of signaling networks while being simple enough to scale to a very large number of components. With the advance of Boolean model inference techniques, the field is transforming from an artisanal way of building models of moderate size to a more automatized one, leading to very large models. In this context, adapting the simulation software for such increases in complexity is crucial. RESULTS: We present two new developments in the continuous time Boolean simulators: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the computational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU accelerators to perform these simulations. CONCLUSION: These implementations enable simulation and exploration of the behavior of very large models, thus becoming a valuable analysis tool for the systems biology community.


Assuntos
Simulação por Computador , Software , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Algoritmos , Gráficos por Computador
9.
Sci Rep ; 14(1): 12082, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802422

RESUMO

Deep learning neural networks are often described as black boxes, as it is difficult to trace model outputs back to model inputs due to a lack of clarity over the internal mechanisms. This is even true for those neural networks designed to emulate mechanistic models, which simply learn a mapping between the inputs and outputs of mechanistic models, ignoring the underlying processes. Using a mechanistic model studying the pharmacological interaction between opioids and naloxone as a proof-of-concept example, we demonstrated that by reorganizing the neural networks' layers to mimic the structure of the mechanistic model, it is possible to achieve better training rates and prediction accuracy relative to the previously proposed black-box neural networks, while maintaining the interpretability of the mechanistic simulations. Our framework can be used to emulate mechanistic models in a large parameter space and offers an example on the utility of increasing the interpretability of deep learning networks.


Assuntos
Aprendizado Profundo , Naloxona , Redes Neurais de Computação , Biologia de Sistemas , Biologia de Sistemas/métodos , Naloxona/farmacologia , Humanos , Farmacologia/métodos , Analgésicos Opioides/farmacologia , Simulação por Computador
10.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741151

RESUMO

MOTIVATION: Systems biology aims to better understand living systems through mathematical modelling of experimental and clinical data. A pervasive challenge in quantitative dynamical modelling is the integration of time series measurements, which often have high variability and low sampling resolution. Approaches are required to utilize such information while consistently handling uncertainties. RESULTS: We present BayModTS (Bayesian modelling of time series data), a new FAIR (findable, accessible, interoperable, and reusable) workflow for processing and analysing sparse and highly variable time series data. BayModTS consistently transfers uncertainties from data to model predictions, including process knowledge via parameterized models. Further, credible differences in the dynamics of different conditions can be identified by filtering noise. To demonstrate the power and versatility of BayModTS, we applied it to three hepatic datasets gathered from three different species and with different measurement techniques: (i) blood perfusion measurements by magnetic resonance imaging in rat livers after portal vein ligation, (ii) pharmacokinetic time series of different drugs in normal and steatotic mice, and (iii) CT-based volumetric assessment of human liver remnants after clinical liver resection. AVAILABILITY AND IMPLEMENTATION: The BayModTS codebase is available on GitHub at https://github.com/Systems-Theory-in-Systems-Biology/BayModTS. The repository contains a Python script for the executable BayModTS workflow and a widely applicable SBML (systems biology markup language) model for retarded transient functions. In addition, all examples from the paper are included in the repository. Data and code of the application examples are stored on DaRUS: https://doi.org/10.18419/darus-3876. The raw MRI ROI voxel data were uploaded to DaRUS: https://doi.org/10.18419/darus-3878. The steatosis metabolite data are published on FairdomHub: 10.15490/fairdomhub.1.study.1070.1.


Assuntos
Teorema de Bayes , Fluxo de Trabalho , Animais , Ratos , Humanos , Camundongos , Biologia de Sistemas/métodos , Fígado/metabolismo , Software , Imageamento por Ressonância Magnética/métodos
11.
BMC Bioinformatics ; 25(1): 202, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816801

RESUMO

INTODUCTION: In systems biology, an organism is viewed as a system of interconnected molecular entities. To understand the functioning of organisms it is essential to integrate information about the variations in the concentrations of those molecular entities. This information can be structured as a set of networks with interconnections and with some hierarchical relations between them. Few methods exist for the reconstruction of integrative networks. OBJECTIVE: In this work, we propose an integrative network reconstruction method in which the network organization for a particular type of omics data is guided by the network structure of a related type of omics data upstream in the omic cascade. The structure of these guiding data can be either already known or be estimated from the guiding data themselves. METHODS: The method consists of three steps. First a network structure for the guiding data should be provided. Next, responses in the target set are regressed on the full set of predictors in the guiding data with a Lasso penalty to reduce the number of predictors and an L2 penalty on the differences between coefficients for predictors that share edges in the network for the guiding data. Finally, a network is reconstructed on the fitted target responses as functions of the predictors in the guiding data. This way we condition the target network on the network of the guiding data. CONCLUSIONS: We illustrate our approach on two examples in Arabidopsis. The method detects groups of metabolites that have a similar genetic or transcriptomic basis.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Biologia de Sistemas/métodos , Redes Reguladoras de Genes , Algoritmos , Biologia Computacional/métodos , Multiômica
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581416

RESUMO

The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.


Assuntos
Redes Reguladoras de Genes , Neoplasias Hepáticas , Humanos , Biologia de Sistemas/métodos , Transcriptoma , Algoritmos , Biologia Computacional/métodos
13.
Sci Rep ; 14(1): 9582, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671040

RESUMO

Stress is an adaptive response to the stressors that adversely affects physiological and psychological health. Stress elicits HPA axis activation, resulting in cortisol release, ultimately contributing to oxidative, inflammatory, physiological and mental stress. Nutritional supplementations with antioxidant, anti-inflammatory, and stress-relieving properties are among widely preferred complementary approaches for the stress management. However, there is limited research on the potential combined impact of vitamins, minerals and natural ingredients on stress. In the present study, we have investigated the effect of a multi-nutrient botanical formulation, Nutrilite® Daily Plus, on clinical stress parameters. The stress-modulatory effects were quantified at population level using a customized sub-clinical inflammation mathematical model. The model suggested that combined intervention of botanical and micronutrients lead to significant decline in physical stress (75% decline), mental stress (70% decline), oxidative stress (55% decline) and inflammatory stress (75% decline) as evident from reduction in key stress parameters such as ROS, TNF-α, blood pressure, cortisol levels and PSS scores at both individual and population levels. Further, at the population level, the intervention relieved stress in 85% of individuals who moved towards a healthy state. The in silico studies strongly predicts the use of Gotukola based Nutrilite® Daily Plus as promising anti-stress formulation.


Assuntos
Estresse Oxidativo , Biologia de Sistemas , Humanos , Biologia de Sistemas/métodos , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Suplementos Nutricionais , Masculino , Feminino , Antioxidantes/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Adulto , Modelos Teóricos , Hidrocortisona , Pessoa de Meia-Idade
14.
BMC Bioinformatics ; 25(1): 166, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664639

RESUMO

BACKGROUND: The Biology System Description Language (BiSDL) is an accessible, easy-to-use computational language for multicellular synthetic biology. It allows synthetic biologists to represent spatiality and multi-level cellular dynamics inherent to multicellular designs, filling a gap in the state of the art. Developed for designing and simulating spatial, multicellular synthetic biological systems, BiSDL integrates high-level conceptual design with detailed low-level modeling, fostering collaboration in the Design-Build-Test-Learn cycle. BiSDL descriptions directly compile into Nets-Within-Nets (NWNs) models, offering a unique approach to spatial and hierarchical modeling in biological systems. RESULTS: BiSDL's effectiveness is showcased through three case studies on complex multicellular systems: a bacterial consortium, a synthetic morphogen system and a conjugative plasmid transfer process. These studies highlight the BiSDL proficiency in representing spatial interactions and multi-level cellular dynamics. The language facilitates the compilation of conceptual designs into detailed, simulatable models, leveraging the NWNs formalism. This enables intuitive modeling of complex biological systems, making advanced computational tools more accessible to a broader range of researchers. CONCLUSIONS: BiSDL represents a significant step forward in computational languages for synthetic biology, providing a sophisticated yet user-friendly tool for designing and simulating complex biological systems with an emphasis on spatiality and cellular dynamics. Its introduction has the potential to transform research and development in synthetic biology, allowing for deeper insights and novel applications in understanding and manipulating multicellular systems.


Assuntos
Biologia Sintética , Biologia Sintética/métodos , Modelos Biológicos , Linguagens de Programação , Biologia de Sistemas/métodos , Software
15.
PLoS One ; 19(4): e0300441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648205

RESUMO

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. METHODS: With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. RESULTS: This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19. CONCLUSION: This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.


Assuntos
Neoplasias dos Ductos Biliares , COVID-19 , Colangiocarcinoma , Biologia Computacional , SARS-CoV-2 , Biologia de Sistemas , Colangiocarcinoma/genética , Colangiocarcinoma/virologia , Humanos , COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Biologia Computacional/métodos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/virologia , Biologia de Sistemas/métodos , Mapas de Interação de Proteínas/genética , Pandemias , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Betacoronavirus/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes
17.
J Virol ; 98(5): e0151623, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567951

RESUMO

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Assuntos
Macaca fascicularis , Modelos Animais , Vacina contra Febre Amarela , Animais , Feminino , Humanos , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunidade Inata , Biologia de Sistemas/métodos , Vacinação , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Febre Amarela/virologia , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia
18.
PLoS Comput Biol ; 20(2): e1011777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315738

RESUMO

In systems biology and pharmacology, large-scale kinetic models are used to study the dynamic response of a system to a specific input or stimulus. While in many applications, a deeper understanding of the input-response behaviour is highly desirable, it is often hindered by the large number of molecular species and the complexity of the interactions. An approach that identifies key molecular species for a given input-response relationship and characterises dynamic properties of states is therefore highly desirable. We introduce the concept of index analysis; it is based on different time- and state-dependent quantities (indices) to identify important dynamic characteristics of molecular species. All indices are defined for a specific pair of input and response variables as well as for a specific magnitude of the input. In application to a large-scale kinetic model of the EGFR signalling cascade, we identified different phases of signal transduction, the peculiar role of Phosphatase3 during signal activation and Ras recycling during signal onset. In addition, we discuss the challenges and pitfalls of interpreting the relevance of molecular species based on knock-out simulation studies, and provide an alternative view on conflicting results on the importance of parallel EGFR downstream pathways. Beyond the applications in model interpretation, index analysis is envisioned to be a valuable tool in model reduction.


Assuntos
Modelos Biológicos , Transdução de Sinais , Transdução de Sinais/fisiologia , Simulação por Computador , Biologia de Sistemas/métodos , Receptores ErbB/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-38170658

RESUMO

As the reconstruction of Genome-Scale Metabolic Models (GEMs) becomes standard practice in systems biology, the number of organisms having at least one metabolic model is peaking at an unprecedented scale. The automation of laborious tasks, such as gap-finding and gap-filling, allowed the development of GEMs for poorly described organisms. However, the quality of these models can be compromised by the automation of several steps, which may lead to erroneous phenotype simulations. Biological networks constraint-based In Silico Optimisation (BioISO) is a computational tool aimed at accelerating the reconstruction of GEMs. This tool facilitates manual curation steps by reducing the large search spaces often met when debugging in silico biological models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis (FBA) to evaluate and guide debugging of in silico phenotype simulations. The potential of BioISO to guide the debugging of model reconstructions was showcased and compared with the results of two other state-of-the-art gap-filling tools (Meneco and fastGapFill). In this assessment, BioISO is better suited to reducing the search space for errors and gaps in metabolic networks by identifying smaller ratios of dead-end metabolites. Furthermore, BioISO was used as Meneco's gap-finding algorithm to reduce the number of proposed solutions for filling the gaps.


Assuntos
Algoritmos , Genoma , Genoma/genética , Simulação por Computador , Redes e Vias Metabólicas/genética , Biologia de Sistemas/métodos , Modelos Biológicos , Software
20.
J R Soc Interface ; 21(210): 20230402, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290560

RESUMO

Throughout the life sciences, we routinely seek to interpret measurements and observations using parametrized mechanistic mathematical models. A fundamental and often overlooked choice in this approach involves relating the solution of a mathematical model with noisy and incomplete measurement data. This is often achieved by assuming that the data are noisy measurements of the solution of a deterministic mathematical model, and that measurement errors are additive and normally distributed. While this assumption of additive Gaussian noise is extremely common and simple to implement and interpret, it is often unjustified and can lead to poor parameter estimates and non-physical predictions. One way to overcome this challenge is to implement a different measurement error model. In this review, we demonstrate how to implement a range of measurement error models in a likelihood-based framework for estimation, identifiability analysis and prediction, called profile-wise analysis. This frequentist approach to uncertainty quantification for mechanistic models leverages the profile likelihood for targeting parameters and understanding their influence on predictions. Case studies, motivated by simple caricature models routinely used in systems biology and mathematical biology literature, illustrate how the same ideas apply to different types of mathematical models. Open-source Julia code to reproduce results is available on GitHub.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Funções Verossimilhança , Biologia de Sistemas/métodos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA