Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.690
Filtrar
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 272-278, 2024 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-38952313

RESUMO

OBJECTIVE: To investigate the origin of Biomphalaria straminea in China, so as to provide insights into assessment of schistosomiasis mansoni transmission risk and B. straminea control. METHODS: Guanlan River, Dasha River, Shenzhen Reservoir, upper and lower reaches of Kuiyong River, and Xinzhen River in Shenzhen, China, were selected as sampling sites. Ten Biomphalaria samples were collected from each site, and genomic DNA was extracted from Biomphalaria samples. DNA samples were obtained from 15 B. straminea sampled from 5 sampling sites in Minas Gerais State, Pará State, Federal District, Pernambuco State, and Sao Paulo State in Brazil, South America. Cytochrome c oxidase I (COI) and mitochondrial 16S ribosomal RNA (16S rRNA) genes were sampled using the above DNA templates, and the amplified products were sequenced. The COI and 16S rRNA gene sequences were downloaded from GenBank, and the sampling sites were acquired. All COI and 16S rRNA gene sequences were aligned and evolutionary trees of B. straminea were created based on COI and 16S rRNA gene sequences to identify the genetic similarity and evolutionary relationship between B. straminea samples from China and South America. RESULTS: A total of 60 COI gene sequences with a length of 529 bp and 3 haplotypes were obtained from B. straminea sampled from China. There were 165 COI gene sequences of B. straminea retrieved from GenBank, and following alignment with the above 60 gene sequences, a total of 33 haplotypes were obtained. Phylogenetic analysis showed that the three haplotypes of B. straminea from China were clustered into one clade, among which the haplotype China11 and three B. straminea samples from Brazil retrieved from GenBank belonged to the same haplotype. Geographical evolution analysis showed that the B. straminea samples from three sampling sites along eastern coasts of Brazil had the same haplotype with China11, and B. straminea samples from other two sampling sites were closely, genetically related to China11. A total of 60 16S rDNA gene sequences with approximately 322 bp in length were amplified from B. straminea in China, with 2 haplotypes identified. A total of 70 16S rDNA gene sequences of B. straminea were captured from GenBank. Phylogenetic analysis showed that Biomphalaria snails collected from China were clustered into a clade, and the haplotype China64 and the haplotype 229BS from Brazil shared the same haplotype. The 49 16S rDNA gene sequences of B. straminea from 25 sampling sites in southern Brazil, which were captured from GenBank, were included in the present analysis, and the B. straminea from 3 sampling sites shared the same haplotype with China64 in China. Geographical evolution analysis based on COI and 16S rRNA gene sequences showed that B. straminea sampled from eastern coastal areas of Brazil shared the same haplotypes in two gene fragment sequences with Biomphalaria snails collected from China. CONCLUSIONS: The Biomphalaria snails in China are characterized as B. straminea, which have a low genetic diversity. The Biomphalaria snails in China have a high genetic similarity with B. straminea sampled from eastern coastal areas of Brazil, which may have originated from the eastern coastal areas of Brazil.


Assuntos
Biomphalaria , Filogenia , RNA Ribossômico 16S , Animais , China , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Biomphalaria/genética , Biomphalaria/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/análise , Haplótipos
2.
Exp Parasitol ; 263-264: 108804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39019304

RESUMO

Research on the use of entomopathogenic nematodes (EPNs) as a potential tool for the biological control of invertebrates has been growing in recent years, including studies involving snails with One Health importance. In this study, the effect of exposure time (24 or 48 h) of Heterorhabditis bacteriophora HP88 on the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the concentration of total proteins, uric acid, and urea in the hemolymph of Biomphalaria glabrata, were investigated. The concentrations of these metabolic markers were measured weekly until the end of the third week after exposure. Along with a significant reduction in total protein levels, a significant increase (p < 0.01) in uric acid and urea contents in the hemolymph of B. glabrata exposed to H. bacteriophora was observed. The accumulation of urea in these mollusks could lead to deleterious effects due to its high toxicity, inducing significant cell damage. Variations in transaminase activities were also observed, with snails exposed to EPNs showing significantly higher values (p < 0.01) than individuals in the control group, both for ALT and AST. These results indicate that experimental exposure to infective juveniles of H. bacteriophora causes significant alterations in the metabolic pattern of B. glabrata, compromising the maintenance of its homeostasis. Finally, exposure for 48 h caused more damage to the planorbid in question compared to snails exposed for 24 h, suggesting that the exposure time may influence the intensity of the host's response.


Assuntos
Alanina Transaminase , Aspartato Aminotransferases , Biomphalaria , Hemolinfa , Controle Biológico de Vetores , Rhabditoidea , Ureia , Ácido Úrico , Animais , Biomphalaria/parasitologia , Hemolinfa/química , Hemolinfa/parasitologia , Hemolinfa/metabolismo , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Ácido Úrico/metabolismo , Ureia/metabolismo , Rhabditoidea/fisiologia , Proteínas/metabolismo , Rabditídios/fisiologia
3.
BMC Genomics ; 25(1): 608, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886647

RESUMO

BACKGROUND: Gastropods of the genus Biomphalaria (Family Planorbidae) are exploited as vectors by Schistosoma mansoni, the most common causative agent of human intestinal schistosomiasis. Using improved genomic resources, overviews of how Biomphalaria responds to S. mansoni and other metazoan parasites can provide unique insights into the reproductive, immune, and other systems of invertebrate hosts, and their responses to parasite challenges. RESULTS: Using Illumina-based RNA-Seq, we compared the responses of iM line B. glabrata at 2, 8, and 40 days post-infection (dpi) to single infections with S. mansoni, Echinostoma paraensei (both digenetic trematodes) or Daubaylia potomaca (a nematode parasite of planorbid snails). Responses were compared to unexposed time-matched control snails. We observed: (1) each parasite provoked a distinctive response with a predominance of down-regulated snail genes at all time points following exposure to either trematode, and of up-regulated genes at 8 and especially 40dpi following nematode exposure; (2) At 2 and 8dpi with either trematode, several snail genes associated with gametogenesis (particularly spermatogenesis) were down-regulated. Regarding the phenomenon of trematode-mediated parasitic castration in molluscs, we define for the first time a complement of host genes that are targeted, as early as 2dpi when trematode larvae are still small; (3) Differential gene expression of snails with trematode infection at 40dpi, when snails were shedding cercariae, was unexpectedly modest and revealed down-regulation of genes involved in the production of egg mass proteins and peptide processing; and (4) surprisingly, D. potomaca provoked up-regulation at 40dpi of many of the reproduction-related snail genes noted to be down-regulated at 2 and 8dpi following trematode infection. Happening at a time when B. glabrata began to succumb to D. potomaca, we hypothesize this response represents an unexpected form of fecundity compensation. We also document expression patterns for other Biomphalaria gene families, including fibrinogen domain-containing proteins (FReDs), C-type lectins, G-protein coupled receptors, biomphalysins, and protease and protease inhibitors. CONCLUSIONS: Our study is relevant in identifying several genes involved in reproduction that are targeted by parasites in the vector snail B. glabrata and that might be amenable to manipulation to minimize their ability to serve as vectors of schistosomes.


Assuntos
Biomphalaria , Schistosoma mansoni , Transcriptoma , Animais , Biomphalaria/parasitologia , Biomphalaria/genética , Schistosoma mansoni/genética , Schistosoma mansoni/fisiologia , Interações Hospedeiro-Parasita/genética , Trematódeos/fisiologia , Trematódeos/genética , Vetores de Doenças , Perfilação da Expressão Gênica
4.
Folia Parasitol (Praha) ; 712024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841845

RESUMO

Schistosomiasis is a snail-borne disease that has a considerable impact on human and animal health, particularly in sub-Saharan Africa. The intermediate hosts of the schistosome parasites are freshwater snails of the genera Biomphalaria Preston, 1910 and Bulinus Müller, 1781. In order to identify existing gaps in the spread of the disease in the Democratic Republic of Congo (DRC), this study compiled the available knowledge of the distribution, population dynamics and ecology of the intermediate hosts of schistosomiasis. A systematic literature search was conducted in PubMed, Embase and Scopus for all malacological studies on schistosoma intermediate hosts in DRC published between 1927 and October 2022. A total of 55 records were found, of which 31 met the inclusion criteria: these were published field and experimental studies conducted in the DRC and focused on snails as intermediate hosts of schistosomes. The analysis of these studies revealed that more up-to-date data on the distribution of snail intermediate hosts in the DRC are needed. Moreover, ecological factors have been less studied for Bulinus species than for Biomphalaria species. These factors play a crucial role in determining suitable snail habitats, and the lack of comprehensive information poses a challenge in snail control. This review makes it clear that there are no current malacological data in the DRC. There is a clear need for molecular and ecological research to update the exact species status and population dynamics of all potential intermediate host species. This will facilitate targeted snail control measures that complement drug treatment in the control of schistosomiasis in the country.


Assuntos
Biomphalaria , Esquistossomose , Animais , Humanos , Biomphalaria/parasitologia , Bulinus/parasitologia , República Democrática do Congo/epidemiologia , Schistosoma/fisiologia , Esquistossomose/epidemiologia , Esquistossomose/veterinária , Caramujos/parasitologia
5.
Parasit Vectors ; 17(1): 272, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937778

RESUMO

BACKGROUND: Along the southern shoreline of Lake Malawi, the incidence of schistosomiasis is increasing with snails of the genera Bulinus and Biomphalaria transmitting urogenital and intestinal schistosomiasis, respectively. Since the underlying distribution of snails is partially known, often being focal, developing pragmatic spatial models that interpolate snail information across under-sampled regions is required to understand and assess current and future risk of schistosomiasis. METHODS: A secondary geospatial analysis of recently collected malacological and environmental survey data was undertaken. Using a Bayesian Poisson latent Gaussian process model, abundance data were fitted for Bulinus and Biomphalaria. Interpolating the abundance of snails along the shoreline (given their relative distance along the shoreline) was achieved by smoothing, using extracted environmental rainfall, land surface temperature (LST), evapotranspiration, normalised difference vegetation index (NDVI) and soil type covariate data for all predicted locations. Our adopted model used a combination of two-dimensional (2D) and one dimensional (1D) mapping. RESULTS: A significant association between normalised difference vegetation index (NDVI) and abundance of Bulinus spp. was detected (log risk ratio - 0.83, 95% CrI - 1.57, - 0.09). A qualitatively similar association was found between NDVI and Biomphalaria sp. but was not statistically significant (log risk ratio - 1.42, 95% CrI - 3.09, 0.10). Analyses of all other environmental data were considered non-significant. CONCLUSIONS: The spatial range in which interpolation of snail distributions is possible appears < 10km owing to fine-scale biotic and abiotic heterogeneities. The forthcoming challenge is to refine geospatial sampling frameworks with future opportunities to map schistosomiasis within actual or predicted snail distributions. In so doing, this would better reveal local environmental transmission possibilities.


Assuntos
Biomphalaria , Bulinus , Lagos , Esquistossomose , Animais , Malaui/epidemiologia , Lagos/parasitologia , Biomphalaria/parasitologia , Bulinus/parasitologia , Esquistossomose/epidemiologia , Esquistossomose/transmissão , Esquistossomose/parasitologia , Análise Espacial , Humanos , Teorema de Bayes , Caramujos/parasitologia , Vetores de Doenças
6.
PLoS Negl Trop Dis ; 18(6): e0011836, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857289

RESUMO

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.


Assuntos
Schistosoma haematobium , Schistosoma mansoni , Temperatura , Animais , Humanos , Schistosoma haematobium/fisiologia , Schistosoma mansoni/fisiologia , África Subsaariana/epidemiologia , Biomphalaria/parasitologia , Esquistossomose/transmissão , Esquistossomose/epidemiologia , Esquistossomose mansoni/transmissão , Esquistossomose mansoni/epidemiologia , Bulinus/parasitologia , Esquistossomose Urinária/transmissão , Esquistossomose Urinária/epidemiologia , Prevalência
7.
Nat Commun ; 15(1): 4838, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898012

RESUMO

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change. Here, we used machine learning, remote sensing, and 30 years of snail occurrence records to map the historical and current distribution of forward-transmitting Biomphalaria hosts throughout Brazil. We identified key features influencing the distribution of suitable habitat and determined how Biomphalaria habitat has changed with climate and urbanization over the last three decades. Our models show that climate change has driven broad shifts in snail host range, whereas expansion of urban and peri-urban areas has driven localized increases in habitat suitability. Elucidating change in Biomphalaria distribution-while accounting for non-linearities that are difficult to detect from local case studies-can help inform schistosomiasis control strategies.


Assuntos
Biomphalaria , Mudança Climática , Ecossistema , Schistosoma mansoni , Esquistossomose mansoni , Urbanização , Animais , Brasil , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , Esquistossomose mansoni/transmissão , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Caramujos/parasitologia , Caramujos/fisiologia , Humanos
8.
Acta Trop ; 255: 107212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641222

RESUMO

Biomphalaria glabrata is a freshwater snail and the obligatory intermediate host of Schistosoma mansoni parasite, the etiologic agent of intestinal Schistosomiasis, in South America and Caribbean. Interestingly in such host-parasite interactions, compatibility varies between populations, strains or individuals. This observed compatibility polymorphism is based on a complex molecular-matching-phenotype, the molecular bases of which have been investigated in numerous studies, notably by comparing between different strains or geographical isolates or clonal selected snail lines. Herein we propose to decipher the constitutive molecular support of this interaction in selected non-clonal resistant and susceptible snail strain originating from the same natural population from Brazil and thus having the same genetic background. Thanks to a global RNAseq transcriptomic approach on whole snail, we identified a total of 328 differentially expressed genes between resistant and susceptible phenotypes among which 129 were up-regulated and 199 down-regulated. Metabolomic studies were used to corroborate the RNAseq results. The activation of immune genes and specific metabolic pathways in resistant snails might provide them with the capacity to better respond to parasite infection.


Assuntos
Biomphalaria , Interações Hospedeiro-Parasita , Metabolômica , Fenótipo , Schistosoma mansoni , Transcriptoma , Biomphalaria/parasitologia , Biomphalaria/genética , Animais , Schistosoma mansoni/genética , Interações Hospedeiro-Parasita/genética , Brasil , Perfilação da Expressão Gênica , Esquistossomose mansoni/parasitologia
9.
J Neurophysiol ; 131(5): 903-913, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478883

RESUMO

Neuronal signals mediated by the biogenic amine serotonin (5-HT) underlie critical survival strategies across the animal kingdom. This investigation examined serotonin-like immunoreactive neurons in the cerebral ganglion of the panpulmonate snail Biomphalaria glabrata, a major intermediate host for the trematode parasite Schistosoma mansoni. Five neurons comprising the cerebral serotonergic F (CeSF) cluster of B. glabrata shared morphological characteristics with neurons that contribute to withdrawal behaviors in numerous heterobranch species. The largest member of this group, designated CeSF-1, projected an axon to the tentacle, a major site of threat detection. Intracellular recordings demonstrated repetitive activity and electrical coupling between the bilateral CeSF-1 cells. In semi-intact preparations, the CeSF-1 cells were not responsive to cutaneous stimuli but did respond to photic stimuli. A large FMRF-NH2-like immunoreactive neuron, termed C2, was also located on the dorsal surface of each cerebral hemiganglion near the origin of the tentacular nerve. C2 and CeSF-1 received coincident bouts of inhibitory synaptic input. Moreover, in the presence of 5-HT they both fired rhythmically and in phase. As the CeSF and C2 cells of Biomphalaria share fundamental properties with neurons that participate in withdrawal responses in Nudipleura and Euopisthobranchia, our observations support the proposal that features of this circuit are conserved in the Panpulmonata.NEW & NOTEWORTHY Neuronal signals mediated by the biogenic amine serotonin underlie critical survival strategies across the animal kingdom. This investigation identified a group of serotonergic cells in the panpulmonate snail Biomphalaria glabrata that appear to be homologous to neurons that mediate withdrawal responses in other gastropod taxa. It is proposed that an ancient withdrawal circuit has been highly conserved in three major gastropod lineages.


Assuntos
Biomphalaria , Neurônios Serotoninérgicos , Serotonina , Animais , Biomphalaria/fisiologia , Biomphalaria/parasitologia , Serotonina/metabolismo , Neurônios Serotoninérgicos/fisiologia , Gânglios dos Invertebrados/fisiologia , Gânglios dos Invertebrados/citologia
10.
Int J Parasitol ; 54(7): 367-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492780

RESUMO

Lactate dehydrogenase (LDH) from Schistosoma mansoni has peculiar properties for a eukaryotic LDH. Schistosomal LDH (SmLDH) isolated from schistosomes, and the recombinantly expressed protein, are strongly inhibited by ATP, which is neutralized by fructose-1,6-bisphosphate (FBP). In the conserved FBP/anion binding site we identified two residues in SmLDH (Val187 and Tyr190) that differ from the conserved residues in LDHs of other eukaryotes, but are identical to conserved residues in FBP-sensitive prokaryotic LDHs. Three-dimensional (3D) models were generated to compare the structure of SmLDH with other LDHs. These models indicated that residues Val187, and especially Tyr190, play a crucial role in the interaction of FBP with the anion pocket of SmLDH. These 3D models of SmLDH are also consistent with a competitive model of SmLDH inhibition in which ATP (inhibitor) and FBP (activator) compete for binding in a well-defined anion pocket. The model of bound ATP predicts a distortion of the nearby key catalytic residue His195, resulting in enzyme inhibition. To investigate a possible physiological role of this allosteric regulation of LDH in schistosomes we made a kinetic model in which the allosteric regulation of the glycolytic enzymes can be varied. The model showed that inhibition of LDH by ATP prevents fermentation to lactate in the free-living stages in water and ensures complete oxidation via the Krebs cycle of the endogenous glycogen reserves. This mechanism of allosteric inhibition by ATP prevents the untimely depletion of these glycogen reserves, the only fuel of the free-living cercariae. Neutralization by FBP of this ATP inhibition of LDH prevents accumulation of glycolytic intermediates when S. mansoni schistosomula are confronted with the sudden large increase in glucose availability upon penetration of the final host. It appears that the LDH of S. mansoni is special and well suited to deal with the variations in glucose availability the parasite encounters during its life cycle.


Assuntos
Trifosfato de Adenosina , L-Lactato Desidrogenase , Modelos Moleculares , Schistosoma mansoni , Schistosoma mansoni/enzimologia , Schistosoma mansoni/metabolismo , Animais , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Cinética , Trifosfato de Adenosina/metabolismo , Frutosedifosfatos/metabolismo , Camundongos , Sequência de Aminoácidos , Biomphalaria/parasitologia , Sítios de Ligação
11.
Acta Parasitol ; 69(1): 648-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302641

RESUMO

BACKGROUND: Trematode infections of the genus Schistosoma can induce physiological and behavioral changes in intermediate snail hosts. This is because the parasite consumes essential resources necessary for the host's survival, prompting hosts to adapt their behavior to maintain some level of fitness before parasite-induced mortality occurs. METHODS: In this study, the reproductive and biochemical parameters of Biomphalaria alexandrina and Bulinus truncatus were examined during the cercareal shedding stage of infection with Schistosoma mansoni and Schistosoma haematobium, respectively, compared with controls. RESULTS: The study revealed an infection rate of 34.7% for S. mansoni and 30.4% for S. haematobium. In B. alexandrina infected with S. mansoni, a survival rate of 65.2% was recorded, along with a mean prepatent period of 30.3 ± 1.41 days, a mean shedding duration of 14.2 ± 0.16 days, and a mean lifespan of 44.1 ± 0.24 days. Meanwhile, in B. truncatus infected with S. haematobium, a survival rate of 56.4% was observed, with a mean prepatent period of 44.3 ± 1.41 days, a mean shedding duration of 22.6 ± 2.7 days, and a mean lifespan of 66.9 ± 1.6 days. Feeding increased in both infected species of snails, while the net reproductive rate (Ro) of the infected snails decreased. Total antioxidant (TAO) and lipid peroxidation activity increased in the two infected snail species during shedding, while Glutathione-S-transferase levels decreased. Lipid peroxidase activity and nitrogen oxide levels significantly decreased in infected B. alexandrina and increased in infected Bulinus. Steroid hormone levels were elevated in infected Biomphalaria, whereas they were reduced in infected Bulinus. Comet assay parameters showed an increase in the two infected genera after infection compared to control snails, indicating genotoxic damage and histopathological damage was observed. CONCLUSIONS: These findings demonstrate that infection with larva species diverse biochemical, hormonal, genotoxic, and histopathological changes in the tissues responsible for fecundity and reproduction in B. alexandrina and B. truncates comparing with controls.


Assuntos
Biomphalaria , Bulinus , Interações Hospedeiro-Parasita , Schistosoma mansoni , Animais , Biomphalaria/parasitologia , Schistosoma mansoni/fisiologia , Bulinus/parasitologia , Schistosoma haematobium/genética , Schistosoma haematobium/fisiologia , Comportamento Alimentar , Cercárias/fisiologia , Reprodução
12.
Sci Rep ; 14(1): 4274, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383705

RESUMO

Schistosomiasis, a prevalent water-borne disease second only to malaria, significantly impacts impoverished rural communities, primarily in Sub-Saharan Africa where over 90% of the severely affected population resides. The disease, majorly caused by Schistosoma mansoni and S. haematobium parasites, relies on freshwater snails, specifically Biomphalaria and Bulinus species, as crucial intermediate host (IH) snails. Targeted snail control is advisable, however, there is still limited knowledge about the community structure of the two genera especially in East Africa. Utilizing a machine learning approach, we employed random forest to identify key features influencing the distribution of both IH snails in this region. Our results reveal geography and climate as primary factors for Biomphalaria, while Bulinus occurrence is additionally influenced by soil clay content and nitrogen concentration. Favorable climate conditions indicate a high prevalence of IHs in East Africa, while the intricate connection with geography might signify either dispersal limitations or environmental filtering. Predicted probabilities demonstrate non-linear patterns, with Bulinus being more likely to occur than Biomphalaria in the region. This study provides foundational framework insights for targeted schistosomiasis prevention and control strategies in the region, assisting health workers and policymakers in their efforts.


Assuntos
Biomphalaria , Esquistossomose , Humanos , Animais , Esquistossomose/epidemiologia , Biomphalaria/parasitologia , Caramujos , Bulinus/parasitologia , África Oriental/epidemiologia
13.
Parasit Vectors ; 16(1): 453, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093363

RESUMO

Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human health and causes public health issues. The disease primarily affects populations in economically underdeveloped tropical regions, earning it the title of "neglected tropical disease". Schistosomiasis is difficult to eradicate globally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We believe that approaching it from the perspective of the intermediate host's immunity could be an environmentally friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequencing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like receptors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues for further in-depth research. Comparative immunological studies between them not only expand our understanding of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution with pathogenic organisms.


Assuntos
Biomphalaria , Schistosoma japonicum , Esquistossomose , Animais , Humanos , Schistosoma japonicum/genética , Esquistossomose/parasitologia , Biomphalaria/parasitologia , Bulinus , Schistosoma mansoni
14.
Front Immunol ; 14: 1293009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106408

RESUMO

Schistosomiasis is considered as a significant public health problem, imposing a deeper understanding of the intricate interplay between parasites and their hosts. Unfortunately, current invasive methodologies employed to study the compatibility and the parasite development impose limitations on exploring diverse strains under various environmental conditions, thereby impeding progress in the field. In this study, we demonstrate the usefulness for the trematode parasite Schistosma mansoni, leveranging a fluorescence-imaging-based approach that employs fluorescein 5-chloromethylfluorescein diacetate (CMFDA) and 5-chloromethylfluorescein diacetate (CMAC) as organism tracker for intramolluscan studies involving the host snail Biomphalaria glabrata. These probes represent key tools for qualitatively assessing snail infections with unmatched accuracy and precision. By monitoring the fluorescence of parasites within the snail vector, our method exposes an unprecedented glimpse into the host-parasite compatibility landscape. The simplicity and sensitivity of our approach render it an ideal choice for evolutionary studies, as it sheds light on the intricate mechanisms governing host-parasite interactions. Fluorescent probe-based methods play a pivotal role in characterizing factors influencing parasite development and phenotype of compatibility, paving the way for innovative, effective, and sustainable solutions to enhance our understanding host-parasite immunobiological interaction and compatibility.


Assuntos
Biomphalaria , Parasitos , Animais , Schistosoma mansoni/genética , Biomphalaria/parasitologia , Caramujos , Fenótipo
15.
PLoS Negl Trop Dis ; 17(6): e0011249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352363

RESUMO

The neglected tropical disease schistosomiasis impacts over 700 million people globally. Schistosoma mansoni, the trematode parasite that causes the most common type of schistosomiasis, requires planorbid pond snails of the genus Biomphalaria to support its larval development and transformation to the cercarial form that can infect humans. A greater understanding of neural signaling systems that are specific to the Biomphalaria intermediate host could lead to novel strategies for parasite or snail control. This study examined a Biomphalaria glabrata neural channel that is gated by the neuropeptide FMRF-NH2. The Biomphalaria glabrata FMRF-NH2 gated sodium channel (Bgl-FaNaC) amino acid sequence was highly conserved with FaNaCs found in related gastropods, especially the planorbid Planorbella trivolvis (91% sequence identity). In common with the P. trivolvis FaNaC, the B. glabrata channel exhibited a low affinity (EC50: 3 x 10-4 M) and high specificity for the FMRF-NH2 agonist. Its expression in the central nervous system, detected with immunohistochemistry and in situ hybridization, was widespread, with the protein localized mainly to neuronal fibers and the mRNA confined to cell bodies. Colocalization of the Bgl-FaNaC message with its FMRF-NH2 agonist precursor occurred in some neurons associated with male mating behavior. At the mRNA level, Bgl-FaNaC expression was decreased at 20 and 35 days post infection (dpi) by S. mansoni. Increased expression of the transcript encoding the FMRF-NH2 agonist at 35 dpi was proposed to reflect a compensatory response to decreased receptor levels. Altered FMRF-NH2 signaling could be vital for parasite proliferation in its intermediate host and may therefore present innovative opportunities for snail control.


Assuntos
Biomphalaria , Esquistossomose mansoni , Esquistossomose , Trematódeos , Animais , Masculino , Humanos , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , FMRFamida , Esquistossomose/parasitologia , Sistema Nervoso Central , Esquistossomose mansoni/parasitologia , Interações Hospedeiro-Parasita/fisiologia
16.
Braz J Biol ; 83: e266526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283371

RESUMO

Schistosomiasis is a neglected tropical disease caused by parasitic worms of several species of the genus Schistosoma. Transmission occurs by parasitic larvae that stay in freshwater snails of the genus Biomphalaria. Thus, the search for new products that are biodegradable has increased the interest in products of plant origin. The aim of this article is to review the isolated substances from natural products that showed molluscicidal activity against the species Biomphalaria glabrata in order to reevaluate the most promising prototypes and update the progress of research to obtain a new molluscicide. We perform searches using scientific databases, such as Scientific Electronic Library Online (SciELO), Google schoolar, PUBMED, Web of Science and Latin American and Caribbean Literature on Health Sciences (LILACS). From 2000 to 2022, using the keywords "isolated substances", "molluscicidal activity" and "Biomphalaria glabrata". In the present study, it was possible to observe 19 promising molluscicidal molecules with a lethal concentration below 20 µg/mL. Of these promising isolates, only 5 isolates had the CL90 calculated and within the value recommended by WHO: Benzoic acid, 2',4',6'-Trihydroxydihydrochalcone, Divaricatic acid, Piplartine and 2-hydroxy-1,4-naphthoquinone (Lapachol). We conclude that beyond a few results in the area, the researches don't follow the methodological pattern (exposure time and measure units, toxicity test), in this way, as they don't follow a pattern on the result's exposure (LC), not following, in sum, the recommended by WHO.


Assuntos
Produtos Biológicos , Biomphalaria , Moluscocidas , Animais , Biomphalaria/parasitologia , Produtos Biológicos/farmacologia , Caramujos , Moluscocidas/toxicidade
17.
Parasit Vectors ; 16(1): 132, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069704

RESUMO

BACKGROUND: The trematode parasite Schistosoma mansoni uses an aquatic snail intermediate and a vertebrate definitive host to complete its life cycle. We previously showed that a key transmission trait-the number of cercariae larvae shed from infected Biomphalaria spp. snails-varies significantly within and between different parasite populations and is genetically controlled by five loci. We investigated the hypothesis that the success of parasite genotypes showing high propagative fitness in the intermediate snail host may be offset by lower reproductive fitness in the definitive vertebrate host. METHODS: We investigated this trade-off hypothesis by selecting parasite progeny producing high or low number of larvae in the snail and then comparing fitness parameters and virulence in the rodent host. We infected inbred BALB/c mice using two Schistosoma mansoni parasite lines [high shedder (HS) and low shedder (LS) lines] isolated from F2 progeny generated by genetic crosses between SmLE (HS parent) and SmBRE (LS parent) parasites. We used the F3 progeny to infect two populations of inbred Biomphalaria glabrata snails. We then compared life history traits and virulence of these two selected parasite lines in the rodent host to understand pleiotropic effects of genes determining cercarial shedding in parasites infecting the definitive host. RESULTS: HS parasites shed high numbers of cercariae, which had a detrimental impact on snail physiology (measured by laccase-like activity and hemoglobin rate), regardless of the snail genetic background. In contrast, selected LS parasites shed fewer cercariae and had a lower impact on snail physiology. Similarly, HS worms have a higher reproductive fitness and produced more viable F3 miracidia larvae than LS parasites. This increase in transmission is correlated with an increase in virulence toward the rodent host, characterized by stronger hepato-splenomegaly and hepatic fibrosis. CONCLUSIONS: These experiments revealed that schistosome parasite propagative and reproductive fitness was positively correlated in intermediate and definitive host (positive pleiotropy). Therefore, we rejected our trade-off hypothesis. We also showed that our selected schistosome lines exhibited low and high shedding phenotype regardless of the intermediate snail host genetic background. ​.


Assuntos
Biomphalaria , Parasitos , Trematódeos , Camundongos , Animais , Interações Hospedeiro-Parasita/fisiologia , Schistosoma mansoni/fisiologia , Biomphalaria/parasitologia , Caramujos , Cercárias/genética
18.
PLoS Negl Trop Dis ; 17(3): e0011208, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961841

RESUMO

BACKGROUND: Biomphalaria pfeifferi is the world's most widely distributed and commonly implicated vector snail species for the causative agent of human intestinal schistosomiasis, Schistosoma mansoni. In efforts to control S. mansoni transmission, chemotherapy alone has proven insufficient. New approaches to snail control offer a way forward, and possible genetic manipulations of snail vectors will require new tools. Towards this end, we here offer a diverse set of genomic resources for the important African schistosome vector, B. pfeifferi. METHODOLOGY/PRINCIPAL FINDINGS: Based largely on PacBio High-Fidelity long reads, we report a genome assembly size of 772 Mb for B. pfeifferi (Kenya), smaller in size than known genomes of other planorbid schistosome vectors. In a total of 505 scaffolds (N50 = 3.2Mb), 430 were assigned to 18 large linkage groups inferred to represent the 18 known chromosomes, based on whole genome comparisons with Biomphalaria glabrata. The annotated B. pfeifferi genome reveals a divergence time of 3.01 million years with B. glabrata, a South American species believed to be similar to the progenitors of B. pfeifferi which undertook a trans-Atlantic colonization < five million years ago. CONCLUSIONS/SIGNIFICANCE: The genome for this preferentially self-crossing species is less heterozygous than related species known to be preferential out-crossers; its smaller genome relative to congeners may similarly reflect its preference for selfing. Expansions of gene families with immune relevance are noted, including the FReD gene family which is far more similar in its composition to B. glabrata than to Bulinus truncatus, a vector for Schistosoma haematobium. Provision of this annotated genome will help better understand the dependencies of trematodes on snails, enable broader comparative insights regarding factors contributing to susceptibility/ resistance of snails to schistosome infections, and provide an invaluable resource with respect to identifying and manipulating snail genes as potential targets for more specific snail control programs.


Assuntos
Biomphalaria , Parasitos , Esquistossomose mansoni , Animais , Humanos , Schistosoma mansoni/genética , Biomphalaria/parasitologia , Esquistossomose mansoni/parasitologia , Schistosoma haematobium
19.
Exp Parasitol ; 247: 108481, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780972

RESUMO

Schistosomiasis is a parasitic infection of great prevalence worldwide, affecting 250 million people in 78 countries. Faced with this problem, studies that seek to analyze molluscicidal activity from plant extracts have stood out. The present work aimed to obtain the phytochemical characterization and investigate the molluscicidal activity in the hydroalcoholic extract of Ricinus communis leaves on Biomphalaria glabrata. The hydroalcoholic extract was prepared by macerated with solvent ethanol P.A 96%, followed by filtration and concentration in rotary evaporator. Next, five groups of snails with 10 animals each, one being the negative control group, were submitted to treatments with four concentrations of 25, 50, 75 and 100 mg/L of hydroalcoholic extract of R. communis. The parameters mortality, physiological and behavioral aspects of mollusks were analyzed during 96h. The chemical characterization of the extract was performed by high-performance liquid chromatography coupled to mass spectrometry (LC-MS). Chemical characterization revealed the presence of tannins, flavonoids and ricinin alkaloid, but under the conditions analyzed, the presence of saponins was not observed. There was no significant molluscicidal activity of the extract. However, a greater influence was observed in the diet, in addition to the motility and physiological state of the snails (alteration of cephalopodal mass and oviposition). The toxicity test was performed with Artemia salina and no toxicity was observed for this microcrustacean. It is expected that the results obtained contribute to the fight against the expansion of schistosomiasis and that they make room for other studies that investigate the molluscicidal action of plant extracts.


Assuntos
Biomphalaria , Euphorbiaceae , Moluscocidas , Esquistossomose , Animais , Feminino , Biomphalaria/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Moluscocidas/farmacologia , Compostos Fitoquímicos/farmacologia , Ricinus
20.
Trans R Soc Trop Med Hyg ; 117(5): 401-402, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36594275

RESUMO

The interaction between snails and species of Schistosoma results from an evolutionary process with an intrinsic host-parasite specificity to the snail genus. Faced with this fact, the recent molecular-based report on the potential infection of the thiarid Melanoides tuberculata with human schistosome should be cautiously interpreted. The high sensibility of molecular tools can result in false positives, perhaps by amplifying DNA from an external (contaminant) or invasive stage of schistosome found in this non-permissive snail host. Thus, parasitological data are mandatory to extrapolate the importance of the finding for the epidemiology and control of schistosomiasis.


Assuntos
Biomphalaria , Esquistossomose , Animais , Humanos , Biomphalaria/genética , Biomphalaria/parasitologia , Caramujos , Schistosoma/genética , Esquistossomose/epidemiologia , Schistosoma mansoni
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...