Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7237, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174543

RESUMO

Existing strategies use bifunctional chimaeras to mediate extracellular protein degradation. However, these strategies rely on specific lysosome-trafficking receptors to facilitate lysosomal delivery, which may raise resistance concerns due to intrinsic cell-to-cell variation in receptor expression and mutations or downregulation of the receptors. Another challenge is establishing a universal platform applicable in multiple scenarios. Here, we develop MONOTAB (MOdified NanOparticle with TArgeting Binders), a plug-and-play monofunctional degradation platform that can drag extracellular targets into lysosomes for degradation. MONOTAB harnesses the inherent lysosome-targeting ability of certain nanoparticles to obviate specific receptor dependency and the hook effect. To achieve high modularity and programmable target specificity, we utilize the streptavidin-biotin interaction to immobilize antibodies or other targeting molecules on nanoparticles, through an antibody mounting approach or by direct binding. Our study reveals that MONOTAB can induce efficient degradation of diverse therapeutic targets, including membrane proteins, secreted proteins, and even extracellular vesicles.


Assuntos
Vesículas Extracelulares , Lisossomos , Nanopartículas , Proteólise , Vesículas Extracelulares/metabolismo , Humanos , Lisossomos/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Estreptavidina/metabolismo , Estreptavidina/química , Animais , Biotina/metabolismo , Biotina/química , Células HEK293
2.
Anal Chem ; 96(33): 13447-13454, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39119849

RESUMO

Small-molecule fluorescent probes have emerged as potential tools for cancer cell imaging-based diagnostic and therapeutic applications, but their limited selectivity and poor imaging contrast hinder their broad applications. To address these problems, we present the design and construction of a novel near-infrared (NIR) biotin-conjugated and viscosity-activatable fluorescent probe, named as QL-VB, for selective recognition and imaging of cancer cells. The designed probe exhibited a NIR emission at 680 nm, with a substantial Stokes shift of 100 nm and remarkably sensitive responses toward viscosity changes in solution. Importantly, QL-VB provided an evidently enhanced signal-to-noise ratio (SNR: 6.2) for the discrimination of cancer cells/normal cells, as compared with the control probe without biotin conjugation (SNR: 1.8). Moreover, we validated the capability of QL-VB for dynamic monitoring of stimulated viscosity changes within cancer cells and employed QL-VB for distinguishing breast cancer tissues from normal tissues in live mice with improved accuracy (SNR: 2.5) in comparison with the control probe (SNR: 1.8). All these findings indicated that the cancer-targeting and viscosity-activatable NIR fluorescent probe not only enables the mechanistic investigations of mitochondrial viscosity alterations within cancer cells but also holds the potential as a robust tool for cancer cell imaging-based applications.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Viscosidade , Animais , Camundongos , Imagem Óptica , Feminino , Raios Infravermelhos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Biotina/química
3.
Mikrochim Acta ; 191(9): 522, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112842

RESUMO

An ultrasensitive photothermal assay was designed for point-of-care testing (POCT) of tumor markers based on a filter membrane. Firstly, Cu2-xSe was successfully encapsulated in liposome spheres with biotin on the surface and connected to carcinoembryonic antigen (CEA) aptamer with 3'end modified biotin by streptavidin. Secondly, the CEA antibody was successfully modified on the surface of the nitrocellulose membrane through simple incubation. Finally, the assay process was completed using a disposable syringe, and the temperature was recorded using a handheld infrared temperature detector. In the range 0-50 ng mL-1, the temperature change of the nitrocellulose membrane has a strong linear relationship with CEA concentration, and the detection limit is 0.097 ng mL-1. It is worth noting that the entire testing process can be easily performed in 10 min, much shorter than traditional clinical methods. In addition, this method was successfully applied to the quantitative determination of CEA levels in human serum samples with a recovery of 96.2-103.3%. This rapid assay can be performed by "one suction and one push" through a disposable syringe, which is simple to operate, and the excellent sensitivity reveals the great potential of the proposed strategy in the POCT of tumor biomarkers.


Assuntos
Aptâmeros de Nucleotídeos , Biomarcadores Tumorais , Antígeno Carcinoembrionário , Cobre , Limite de Detecção , Humanos , Antígeno Carcinoembrionário/sangue , Cobre/química , Aptâmeros de Nucleotídeos/química , Biomarcadores Tumorais/sangue , Lipossomos/química , Técnicas Biossensoriais/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Temperatura , Biotina/química , Testes Imediatos , Colódio/química
4.
Methods Mol Biol ; 2816: 161-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977598

RESUMO

G-protein-coupled receptors (GPCRs) are hepta-helical transmembrane proteins that mediate various intracellular signaling events in response to their specific ligands including many lipid mediators. Although analyses of GPCR molecular interactions are pivotal to understanding diverse intracellular signaling events, affinity purification of interacting proteins by a conventional co-immunoprecipitation method is challenging due to the hydrophobic nature of GPCRs and their dynamic molecular interactions. Proximity labeling catalyzed by a TurboID system is a powerful technique for defining the molecular interactions of target proteins in living cells. TurboID and miniTurbo (a modified version of TurboID) are engineered biotin ligases that biotinylate neighboring proteins in a promiscuous manner. When fused with a target protein and expressed in living cells, TurboID or miniTurbo mediates the biotin labeling of the proteins with close proximity to the target protein, allowing efficient purification of the biotinylated proteins followed by a shot-gun proteomic analysis. In this chapter, we describe a step-by-step protocol for the labeling of GPCR neighboring proteins by TurboID or miniTurbo, purification of the biotin-labeled proteins, and subsequent sample preparation for proteomic analysis. We utilized S1PR1 as a model GPCR, a receptor for a bioactive lipid molecule sphingosine 1-phosphate (S1P) that plays various roles in physiological and pathological conditions. This analysis pipeline enables the mapping of interacting proteins of lipid GPCRs in living cells.


Assuntos
Biotinilação , Proteômica , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Proteômica/métodos , Biotina/metabolismo , Biotina/química , Células HEK293 , Ligação Proteica , Coloração e Rotulagem/métodos , Receptores de Esfingosina-1-Fosfato/metabolismo , Lipídeos/química
5.
Biomolecules ; 14(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39062499

RESUMO

Chemical proteomics using biotin probes of natural products have significantly advanced our understanding of molecular targets and therapeutic potential. This review highlights recent progress in the application of biotin probes of homoisoflavonoids for identifying binding proteins and elucidating mechanisms of action. Notably, homoisoflavonoids exhibit antiangiogenic, anti-inflammatory, and antidiabetic effects. A combination of biotin probes, pull-down assays, mass spectrometry, and molecular modeling has revealed how natural products and their derivatives interact with several proteins such as ferrochelatase (FECH), soluble epoxide hydrolase (sEH), inosine monophosphate dehydrogenase 2 (IMPDH2), phosphodiesterase 4 (PDE4), and deoxyhypusine hydroxylase (DOHH). These target identification approaches pave the way for new therapeutic avenues, especially in the fields of oncology and ophthalmology. Future research aimed at expanding the repertoire of target identification using biotin probes of homoisoflavonoids promises to further elucidate the complex mechanisms and develop new drug candidates.


Assuntos
Inibidores da Angiogênese , Anti-Inflamatórios , Biotina , Humanos , Biotina/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Animais , Isoflavonas/farmacologia , Isoflavonas/química , Sondas Moleculares/química
6.
Int J Biol Macromol ; 275(Pt 1): 133580, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960227

RESUMO

Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and is responsible for acute invasive and non-invasive infections. Fight against pneumococcus is currently hampered by insufficient vaccine coverage and rising antimicrobial resistance, making the research necessary on novel drug targets. High-throughput mutagenesis has shown that acetyl-CoA carboxylase (ACC) is an essential enzyme in S. pneumoniae which converts acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis. ACC has four subunits; Biotin carboxyl carrier protein (BCCP), Biotin carboxylase (BC), Carboxyl transferase subunit α and ß. Biotinylation of S. pneumoniae BCCP (SpBCCP) is required for the activation of ACC complex. In this study, we have biophysically characterized the apo- and holo- biotinylating domain SpBCCP80. We have performed 2D and 3D NMR experiments to analyze the changes in amino acid residues upon biotinylation of SpBCCP80. Further, we used NMR backbone chemical shift assignment data for bioinformatical analyses to determine the secondary and tertiary structure of proteins. We observed major changes in AMKVM motif and thumb region of SpBCCP80 upon biotinylation. Overall, this work provides structural insight into the apo- to holo- conversion of SpBCCP80 which can be further used as a drug target against S. pneumoniae.


Assuntos
Biotinilação , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/genética , Biotina/química , Biotina/metabolismo , Modelos Moleculares , Ácido Graxo Sintase Tipo II
7.
Org Lett ; 26(31): 6771-6775, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39051841

RESUMO

Biotinylation is probably the most frequent and practically useful modification of molecules to facilitate selective and highly affine binding to (strept)avidin for immobilization, enrichment, and purification for further (bio)chemical or (bio)physical investigations. We present a protecting-group-free synthesis of a branched biotin bis-azide that enables dual-payload late-stage functionalization with arbitrary alkynes via click chemistry. Utility of the chassis is briefly showcased on the example of a valuable Pittsburgh B analogue, which binds pathological protein aggregates, commonly found in neurodegenerative diseases.


Assuntos
Alcinos , Biotina , Biotinilação , Química Click , Estrutura Molecular , Biotina/química , Alcinos/química , Tiazóis/química , Tiazóis/síntese química , Azidas/química
8.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969429

RESUMO

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Assuntos
Biotina , Glutationa , Técnicas Fotoacústicas , Fotoquimioterapia , Glutationa/química , Glutationa/metabolismo , Animais , Humanos , Camundongos , Biotina/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Feminino , Terapia Fototérmica , Camundongos Nus , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico
9.
Talanta ; 278: 126488, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955098

RESUMO

Fluorogenic RNA aptamers, which specifically bind to fluorogens and dramatically enhance their fluorescence, are valuable for imaging and detecting RNAs and metabolites in living cells. Most fluorogenic RNA aptamers have been identified and engineered through iterative rounds of in vitro selection based on their binding to target fluorogens. While such selection is an efficient approach for generating RNA aptamers, it is less efficient for isolating fluorogenic aptamers because it does not directly screen for fluorogenic properties. In this study, we combined a fluorescence-based in vitro selection technique using water-in-oil microdroplets with an affinity-based selection technique to obtain fluorogenic RNA aptamers. This approach allowed us to identify novel fluorogenic aptamers for a biotin-modified thiazole orange derivative. Our results demonstrate that our approach can expand the diversity of fluorogenic RNA aptamers, thus leading to new applications for the imaging and detection of biomolecules.


Assuntos
Aptâmeros de Nucleotídeos , Corantes Fluorescentes , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Técnica de Seleção de Aptâmeros/métodos , Benzotiazóis/química , Quinolinas/química , Biotina/química
10.
Talanta ; 277: 126436, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901192

RESUMO

Cancer cells have a high abundance of hypochlorite compared to normal cells, which can be used as the biomarker for imaging cancer cells and tumor. Developing the tumor-targeting fluorescent probe suitable for imaging hypochlorite in vivo is urgently demanded. In this article, based on xanthene dye with a two-photon excited far-red to NIR emission, a tumor-targeting two-photon fluorescent probe (Biotin-HClO) for imaging basal hypochlorite in cancer cells and tumor was developed. For ClO-, Biotin-HClO (20.0 µM) has a linear response range from 15.0 × 10-8 to 1.1 × 10-5 M with a high selectivity and a high sensitivity, a good detection limit of 50 nM and a 550-fold fluorescence enhancement with high signal-to-noise ratio (20 mM PBS buffer solution with 50 % DMF; pH = 7.4; λex = 605 nm; λem = 635 nm). Morover, Biotin-HClO exhibited excellent performance in monitoring exogenous and endogenous ClO- in cells, and has an outstanding tumor-targeting ability. Subsequently, Biotin-HClO has been applied for imaging ClO- in 4T1 tumor tissue to distinguish from normal tissue. Furthermore, Biotin-HClO was successfully employed for high-contrast imaging 4T1 tumor in mouse based on its tumor-targeting ability. All these results proved that Biotin-HClO is a useful analytical tool to detect ClO- and image tumor in vivo.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Fótons , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ácido Hipocloroso/análise , Animais , Humanos , Camundongos , Imagem Óptica , Biotina/química , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Raios Infravermelhos
11.
Nanoscale ; 16(27): 12750-12792, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38899396

RESUMO

Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.


Assuntos
Técnicas Biossensoriais , Biotina , Nanopartículas , Neoplasias , Humanos , Biotina/química , Neoplasias/diagnóstico , Técnicas Biossensoriais/métodos , Nanopartículas/química , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas , Avidina/química , Animais
12.
Anal Biochem ; 693: 115582, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38825160

RESUMO

Progress has been made studying cell-cell signaling communication processes. However, due to limitations of current sensors on time and spatial resolution, the role of many extracellular analytes is still unknown. A single walled carbon nanotube (SWNT) platform was previously developed based on the avidin-biotin immobilization of SWNT to a glass substrate. The SWNT platform provides real time feedback about analyte concentration and has a high concentration of evenly distributed sensors, both of which are essential for the study of extracellular analytes. Unfortunately, this initial SWNT platform is synthesized through unsterile conditions and cannot be sterilized post-production due to the delicate nature of the sensors, making it unsuitable for in vitro work. Herein the multiple-step process for SWNT immobilization is modified and the platform's biocompatibility is assessed in terms of sterility, cytotoxicity, cell proliferation, and cell morphology through comparison with non-sensors controls. The results demonstrate the SWNT platform's sterility and lack of toxicity over 72 h. The proliferation rate and morphology profiles for cells growing on the SWNT platform are similar to those grown on tissue culture substrates. This novel nano-sensor platform preserves cell health and cell functionality over time, offering opportunities to study extracellular analytes gradients in cellular communication.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Humanos , Proliferação de Células , Biotina/química , Técnicas Biossensoriais/métodos , Avidina/química
13.
Colloids Surf B Biointerfaces ; 241: 114028, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905811

RESUMO

Biotin receptors are overexpressed in various cancer cell types, essential in tumor development, metabolism, and metastasis. Chemotherapeutic agents may be more effective and have fewer adverse effects if they specifically target the biotin receptors on cancer cells. Polymeric micelles (PMs) with nanoscale size via the EPR effect to accumulate near tumor tissue. We utilized the solvent exchange technique to crate polymeric Biotin-PEG-SeSe-PBLA micelles. This underwent self-assembly to create uniformly dispersed PMs with a hydrodynamic diameter of 81.54 ± 0.23 nm. The resulting PMs characterized by 1HNMR, 13CNMR, FTIR, and Raman spectroscopy. PMs exhibited a high efficacy of Doxorubicin encapsulation (EE) and loading content (DLC), with values of 5.93 wt% and 74.32 %, respectively. DOX@Biotin-PEG-SeSe-PBLA micelles showed optimal DOX release, around 89 % and 74 % in 10 mM glutathione and 0.1 % H2O2, respectively, within 72 hours, in the simulated cancer redox pool. Fascinatingly, the blank Biotin-PEG-SeSe-PBLA micelles did not affect the HaCaT or HeLa cell lines; approximately 85 % of the cells were metabolically active. Contrarily, at a 5 µg/ml concentration, DOX@Biotin-PEG-SeSe-PBLA specifically inhibited the proliferation of roughly 76 % of HeLa cells and 11 % of HaCaT cells. The fluorescence microscopy results demonstrated that biotin-decorated micelles were more successfully internalized by HeLa cells, which overexpress the biotin receptor, than by non-targeted micelles in vitro. In summary, the diselenide-linked Biotin-PEGSeSe-PBLA formed smart PMs that could offer DOX specific to cancer cells with precision and are physiologically durable.


Assuntos
Biotina , Doxorrubicina , Liberação Controlada de Fármacos , Micelas , Oxirredução , Polietilenoglicóis , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Biotina/química , Polietilenoglicóis/química , Células HeLa , Propriedades de Superfície , Sistemas de Liberação de Medicamentos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Polímeros/química , Portadores de Fármacos/química
14.
Bioorg Chem ; 150: 107600, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945086

RESUMO

In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.


Assuntos
Biotina , Estreptavidina , Enxofre , Biotina/química , Estreptavidina/química , Estrutura Molecular , Enxofre/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Ligação de Hidrogênio
15.
Nucleic Acids Res ; 52(14): 8039-8051, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38945550

RESUMO

Fluorogenic RNA aptamer tags with high affinity enable RNA purification and imaging. The G-quadruplex (G4) based Mango (M) series of aptamers were selected to bind a thiazole orange based (TO1-Biotin) ligand. Using a chemical biology and reselection approach, we have produced a MII.2 aptamer-ligand complex with a remarkable set of properties: Its unprecedented KD of 45 pM, formaldehyde resistance (8% v/v), temperature stability and ligand photo-recycling properties are all unusual to find simultaneously within a small RNA tag. Crystal structures demonstrate how MII.2, which differs from MII by a single A23U mutation, and modification of the TO1-Biotin ligand to TO1-6A-Biotin achieves these results. MII binds TO1-Biotin heterogeneously via a G4 surface that is surrounded by a stadium of five adenosines. Breaking this pseudo-rotational symmetry results in a highly cooperative and homogeneous ligand binding pocket: A22 of the G4 stadium stacks on the G4 binding surface while the TO1-6A-Biotin ligand completely fills the remaining three quadrants of the G4 ligand binding face. Similar optimization attempts with MIII.1, which already binds TO1-Biotin in a homogeneous manner, did not produce such marked improvements. We use the novel features of the MII.2 complex to demonstrate a powerful optically-based RNA purification system.


Artificial RNA tags that tightly bind fluorogenic ligands have many RNA imaging and RNA-protein biomolecular purification applications. Here, we report and structurally characterize a very small (20-nt) biologically compatible G-quadruplex based aptamer that can be inserted into commonly found GNRA tetraloops. This aptamer binds its fluorogenic ligand with an unprecedented picomolar binding affinity and is very stable against thermal and chemical insults. As the ligand can be modified to include biotin, this RNA tag can also be bound to streptavidin magnetic beads. After washing, tagged RNA can be cleanly eluted by exposing the beads to intense green light, which photobleaches the bound fluorogenic ligand, triggering the release of the bound RNA complex.


Assuntos
Aptâmeros de Nucleotídeos , Corantes Fluorescentes , Quadruplex G , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Corantes Fluorescentes/química , Ligantes , Benzotiazóis/química , Quinolinas/química , Biotina/química , RNA/química , RNA/metabolismo , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios X , Conformação de Ácido Nucleico
16.
J Chem Theory Comput ; 20(12): 5058-5067, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865714

RESUMO

Understanding the dynamics of biomolecular complexes, e.g., of protein-ligand (un)binding, requires the comprehension of paths such systems take between metastable states. In MD simulations, paths are usually not observable per se, but they need to be inferred from simulation trajectories. Here, we present a novel approach to cluster trajectories based on a community detection algorithm that necessitates only the definition of a single parameter. The unbinding of the streptavidin-biotin complex is used as a benchmark system and the A2a adenosine receptor in complex with the inhibitor ZM241385 as an elaborate application. We demonstrate how such clusters of trajectories correspond to pathways and how the approach helps in the identification of reaction coordinates for a considered (un)binding process.


Assuntos
Simulação de Dinâmica Molecular , Receptor A2A de Adenosina , Ligantes , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/química , Biotina/química , Estreptavidina/química , Algoritmos , Ligação Proteica , Triazóis/química , Humanos
17.
Mikrochim Acta ; 191(7): 369, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834823

RESUMO

A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry. The operational functioning of the exhaustively optimized and characterized immunosensing bioplatform was highly convenient for the quantitative determination of ARA in serum samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-) and respiratory syncytial virus (RSV)-infected individuals in a rapid, affordable, trustful, and sensitive manner.


Assuntos
Ácido Araquidônico , Técnicas Biossensoriais , COVID-19 , SARS-CoV-2 , Humanos , Ácido Araquidônico/sangue , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Técnicas Biossensoriais/métodos , SARS-CoV-2/imunologia , Peroxidase do Rábano Silvestre/química , Vírus Sinciciais Respiratórios/imunologia , Imunoensaio/métodos , Estreptavidina/química , Biotina/química , Limite de Detecção
18.
Biomacromolecules ; 25(7): 4233-4245, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38838045

RESUMO

In the area of drug delivery aided by stimuli-responsive polymers, the biodegradability of nanocarriers is one of the major challenges that needs to be addressed with the utmost sincerity. Herein, a hydrogen sulfide (H2S) responsive hydrophobic dansyl-based trigger molecule is custom designed and successfully incorporated into the water-soluble polyurethane backbone, which is made of esterase enzyme susceptible urethane bonds. The amphiphilic polyurethanes, PUx (x = 2 and 3) with a biotin chain end, formed self-assembled nanoaggregates. A hemolysis and cytotoxicity profile of doxorubicin (DOX)-loaded biotinylated PU3 nanocarriers revealed that it is nonhemolytic and has excellent selectivity toward HeLa cells (biotin receptor-positive cell lines) causing ∼60% cell death while maintaining almost 100% cell viability for HEK 293T cells (biotin receptor-negative cell lines). Furthermore, better cellular internalization of DOX-loaded fluorescent nanocarriers in HeLa cells than in HEK 293T cells confirmed receptor-mediated endocytosis. Thus, this work ensures that the synthesized polymers serve as biodegradable nanocarriers for anticancer therapeutics.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Poliuretanos , Humanos , Poliuretanos/química , Células HeLa , Doxorrubicina/farmacologia , Doxorrubicina/química , Células HEK293 , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Nanomedicina Teranóstica/métodos , Biotinilação , Biotina/química , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/química
19.
Anal Chim Acta ; 1308: 342667, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740453

RESUMO

BACKGROUND: High-efficiency and highly reliable analysis of microRNAs (miRNAs) in bodily fluids highlights its significance to be extensively utilized as candidates for non-invasive "liquid biopsy" approaches. DNA biosensors based on strand displacement amplification (SDA) methods have been successfully designed to detect miRNAs given the efficiently amplified and recycled of the target sequences. However, the unpredictable DNA framework and heavy reliance on free diffusion or random reactant collisions in existing approaches lead to delayed reaction kinetics and inadequate amplification. Thus, it is crucial to create a modular probe with a controlled structure, high local concentration, and ease of synthesis. RESULTS: Inspired by the natural spatial-confinement effect based on a well-known streptavidin-biotin interaction, we constructed a protein-DNA hybrid, named protein-scaffolded DNA tetrads (PDT), which consists of four biotinylated Y-shaped DNA (Y-DNA) surrounding a streptavidin protein center via a streptavidin-biotin bridge. The streptavidin-biotin recognition system significantly increased the local concentration and intermolecular distance of the probes to achieve enhanced reaction efficiency and kinetics. The PDT-based assay starts with the target miRNA binding to Y-DNA, which disassembles the Y-DNA structures into three types of hairpin-shaped structures via self-primed strand displacement amplification (SPSDA) and generates remarkable fluorescence signal that is proportional to the miRNA concentration. Results demonstrated that PDT enabled a more efficient detection of miRNA-21 with a sensitivity of 1 fM. Moreover, it was proven reliable for the detection of clinical serum samples, suggesting great potential for advancing the development of rapid and robust signal amplification technologies for early diagnosis. SIGNIFICANCE: This simple yet robust system contributes to the early diagnosis of miR-21 with satisfactory sensitivity and specificity, and display a significantly improved nuclease resistance owing to their unique structure. The results suggested that the strategy is expected to provide a promising potential platform for tumor diagnosis, prognosis and therapy.


Assuntos
Biotina , DNA , MicroRNAs , Técnicas de Amplificação de Ácido Nucleico , Estreptavidina , MicroRNAs/sangue , Humanos , Estreptavidina/química , DNA/química , DNA/sangue , Biotina/química , Técnicas Biossensoriais/métodos , Limite de Detecção
20.
J Phys Chem B ; 128(22): 5327-5335, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38771940

RESUMO

Carboxy-biotin serves as a coenzyme in certain carboxylases, exhibiting the remarkable capability to transfer a carboxy group to specific substrates. This process is made possible by the presence of biotin, a unique molecule that consists of a sulfur-containing tetrahydrothiophene ring fused to a ureido group. It is covalently attached to the enzyme via a flexible linker, allowing for its functionality. Biotin-dependent carboxylases consist of two distinct domains. The first domain (BC) facilitates biotin carboxylation by utilizing ATP, while the second domain (CT) transfers CO2 to the substrate. The process of ATP-dependent carboxylation using bicarbonate in the biotin carboxylase domain (BC) is well-known. However, the precise mechanism by which CO2 is released in the carboxyltransferase domain (CT) is still not fully understood. We employed advanced computational chemistry methods to investigate the decarboxylation process of carboxy-biotin in various molecular environments and different protonation states. Regardless of the polarity of the molecular surroundings, decarboxylation only occurs spontaneously in the protonated form. To determine the protonation state of biotin in different environments, we established an accurate computational chemistry method for calculating the pKa value of carboxy-biotin, reaching sub-kcal/mol accuracy. Based on our findings, nonpolar environments, such as the active site of the carboxyltransferase domain, have the ability to cause the spontaneous release of CO2 from carboxy-biotin. The CO2 release takes place spontaneously from protonated carboxy-biotin, promoting the carboxylation of substrates.


Assuntos
Biotina , Dióxido de Carbono , Biotina/química , Biotina/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...