Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
1.
Ecotoxicol Environ Saf ; 280: 116523, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850707

RESUMO

In recent years micro- and nanoplastics and metal-oxide nanomaterials have been found in several environmental compartments. The Antarctic soft clam Laternula elliptica is an endemic Antarctic species having a wide distribution in the Southern Ocean. Being a filter-feeder, it could act as suitable bioindicator of pollution from nanoparticles also considering its sensitivity to various sources of stress. The present study aims to assess the impact of polystyrene nanoparticles (PS-NP) and the nanometal titanium-dioxide (n-TiO2) on genome-wide transcript expression of L. elliptica either alone and in combination and at two toxicological relevant concentrations (5 and 50 µg/L) during 96 h exposure. Transcript-target qRT-PCR was performed with the aim to identify suitable biomarkers of exposure and effects. As expected, at the highest concentration tested, the clustering was clearer between control and exposed clams. A total of 221 genes resulted differentially expressed in exposed clams and control ones, and 21 of them had functional annotation such as ribosomal proteins, antioxidant, ion transport (osmoregulation), acid-base balance, immunity, lipid metabolism, cell adhesion, cytoskeleton, apoptosis, chromatin condensation and cell signaling. At functional level, relevant transcripts were shared among some treatments and could be considered as general stress due to nanoparticle exposure. After applying transcript-target approach duplicating the number of clam samples, four ecologically relevant transcripts were revealed as biomarkers for PS-NP, n-TiO2 and their combination at 50 µg/L, that could be used for monitoring clams' health status in different Antarctic localities.


Assuntos
Bivalves , Nanopartículas , Titânio , Transcriptoma , Poluentes Químicos da Água , Animais , Bivalves/efeitos dos fármacos , Bivalves/genética , Titânio/toxicidade , Regiões Antárticas , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Poliestirenos/toxicidade , Monitoramento Ambiental/métodos
2.
Aquat Toxicol ; 272: 106971, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843741

RESUMO

Bisphenol A (BPA), a common industrial chemical with estrogenic activity, has recently gained attention due to its well-documented negative effects on humans and other organisms in the environment. The potential immunotoxicity and neurotoxicity of BPA remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA on a series of behaviours, immune responses, oxidative stress, neural biomarkers, histology, and the ultrastructure of gills were investigated in the date mussel, Lithophaga lithophaga. After 28 days of exposure to 0.25, 1, 2, and 5 µg/L BPA, hemolymphs from controls and exposed date mussels were collected, and the effects of BPA on immunological parameters were evaluated. Moreover, oxidative stress and neurochemical levels were measured in the gills of L. lithophaga. BPA reduced filtration rates and burrowing behaviour, whereas a 2 µg/L BPA resulted in an insignificant increase after 24 h. The exposure of date mussels to BPA significantly increased total hemocyte counts, a significant reduction in the diameter and phagocytosis of hemocytes, as well as gill lysozyme level. BPA increased lipid peroxidation levels and SOD activity in gills exposed to 2 and 5 µg/L BPA, but decreased GSH levels and SOD activity in 0.25 and 1 µg/L BPA-treated date mussels. Dose-dependent dynamics were observed in the inhibition of acetylcholinesterase activity and dopamine levels. Histological and scanning electron microscope examination revealed cilia erosion, necrosis, inflammation, and hyperplasia formation in the gills. Overall, our findings suggest a relationship between BPA exposure and changes in the measured immune parameters, oxidative stress, and neurochemical disturbances, which may be factored into the mechanisms underlying BPA toxicity in marine molluscs, providing a scientific foundation for marine BPA risk assessment and indicating immunosuppression in BPA-exposed date mussels.


Assuntos
Acetilcolinesterase , Compostos Benzidrílicos , Dopamina , Brânquias , Hemócitos , Estresse Oxidativo , Fenóis , Poluentes Químicos da Água , Animais , Brânquias/efeitos dos fármacos , Fenóis/toxicidade , Hemócitos/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Dopamina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos
3.
Mar Pollut Bull ; 205: 116648, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917499

RESUMO

Over a reproductive cycle, the prevalence and intensity of degeneration of testicular follicles in Megapitaria squalida collected from the mining port of Santa Rosalia (a highly metal-polluted area), and San Lucas (a less polluted site), Gulf of California, Mexico, were evaluated. At San Lucas, most individuals had a typical testicular structure, and degeneration of testicular follicles was present in 9.5 % of spawning organisms. In contrast, at Santa Rosalia, 68 % of males, mainly in the ripe stage, had testicular degeneration (72 % severe intensity, mostly in medium and large-sized). Degeneration was characterized by intense hemocyte infiltration, identified as dense masses with numerous melanized cells in the follicle lumen. In both sites, males with testicular follicles degeneration had a lower condition index compared to males without degeneration. Degeneration of testicular follicles before spawning compromises and decreases the reproductive activity of M. squalida males at Santa Rosalia, which may ultimately affect the population sustainability.


Assuntos
Bivalves , Reprodução , Testículo , Poluentes Químicos da Água , Animais , Masculino , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Bivalves/efeitos dos fármacos , México , Monitoramento Ambiental , Metais/toxicidade
4.
Environ Res ; 257: 119331, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851371

RESUMO

Toxicological stress in aquatic organisms is caused by the discharge of hundreds of toxic pollutants and contaminants among which the current study concentrates on the toxic effect of non-steroidal anti-inflammatory drug ibuprofen (IBF) and the trace element selenium (Se). In this study, IBF and Se toxicity on freshwater mussel Lamellidens marginalis was studied for 14 days, and in silico predictions for their degradation were made using Molecular modelling and Quantum Mechanical approaches. The degrading propensity of cytochrome c oxidase proteins from Trametes verticillatus and Thauera selenatis (Turkey tail fungi and Gram-negative bacteria) is examined into atom level. The results of molecular modelling study indicate that ionic interactions occur in the T. selenatis-HEME bound complex by Se interacting directly with HEME, and in the T. versicolor-HEME bound complex by IBF bound to a nearby region of HEME. Experimental and theoretical findings suggest that, the toxicological effects of Se and IBF pollution can be reduced by bioremediation with special emphasis on T. versicolor, and T. selenatis, which can effectively interact with Se and IBF present in the environment and degrade them. Besides, this is the first time in freshwater mussel L. marginalis that ibuprofen and selenium toxicity have been studied utilizing both experimental and computational methodologies for their bioremediation study.


Assuntos
Ibuprofeno , Selênio , Poluentes Químicos da Água , Animais , Ibuprofeno/toxicidade , Ibuprofeno/metabolismo , Ibuprofeno/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Selênio/toxicidade , Selênio/química , Selênio/metabolismo , Biodegradação Ambiental , Anti-Inflamatórios não Esteroides/toxicidade , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/química , Teoria Quântica , Unionidae/metabolismo , Bivalves/efeitos dos fármacos , Bivalves/metabolismo , Modelos Moleculares , Água Doce/química
5.
ACS Nano ; 18(26): 17228-17239, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38877988

RESUMO

Nanoplastics (NPs) represent a growing concern for global environmental health, particularly in marine ecosystems where they predominantly accumulate. The impact of NPs on marine benthic organisms, such as bivalves, raises critical questions regarding ecological integrity and food safety. Traditional methods for assessing NP toxicity are often limited by their time-intensive nature and ethical considerations. Herein, we explore the toxicological effects of NPs on the marine bivalve Ruditapes philippinarum, employing a combination of in vitro cellular assays and advanced modeling techniques. Results indicate a range of adverse effects at the organismal level, including growth inhibition (69.5-108%), oxidative stress, lipid peroxidation, and DNA damage in bivalves, following exposure to NPs at concentrations in the range of 1.6 × 109-1.6 × 1011 particles/mL (p/mL). Interestingly, the growth inhibition predicted by models (54.7-104%), based on in vitro cellular proliferation assays, shows strong agreement with the in vivo outcomes of NP exposure. Furthermore, we establish a clear correlation between cytotoxicity observed in vitro and the toxicological responses at the organismal level. Taken together, this work suggests that the integration of computational modeling with in vitro toxicity assays can predict the detrimental effects of NPs on bivalves, offering insightful references for assessing the environmental risk assessment of NPs in marine benthic ecosystems.


Assuntos
Bivalves , Animais , Bivalves/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Microplásticos/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-38852914

RESUMO

The intertidal organism Tegillarca granosa can survive under frequent hypoxia/reoxygenation (H/R) exposure. Sulfides as accompanying products in benthic hypoxic environments, may play an important regulatory role, but the mechanisms are not well understood. This article investigated the physiological and molecular changes of T. granosa after adding different concentrations of sulfides (0.1, 0.5, 1 mM) at 72 h into a 120-h exposure to hypoxia, as well as the recovery state of 24 h of reoxygenation. The results indicated that H/R stress induces ROS production and mild mitochondrial depolarization in clams, and sulfide can participate in its regulation. Among them, a low concentration of sulfide up-regulated glutathione content and alternative oxidase activity, maintained the stability of antioxidant enzymes, and up-regulated the expression of the survival genes XIAP/BCL-xl which mediate cell survival via the NFκB signaling pathway. High concentrations of sulfide had a significant inhibitory effect on the p38/MPAK pathway and inhibited intrinsic apoptosis caused by ROS accumulation during reoxygenation. Taken together, our study suggested that different concentrations of sulfides are involved in regulating the endogenous apoptosis of clams during H/R.


Assuntos
Apoptose , Espécies Reativas de Oxigênio , Sulfetos , Animais , Apoptose/efeitos dos fármacos , Sulfetos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Arcidae/efeitos dos fármacos , Arcidae/metabolismo , Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo
7.
Mar Environ Res ; 198: 106561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788476

RESUMO

Ocean acidity extremes (OAX) events are becoming more frequent and intense in coastal areas in the context of climate change, generating widespread consequences on marine calcifying organisms and ecosystems they support. While transgenerational exposure to end-of-century scenario of ocean acidification (i.e., at pH 7.7) can confer calcifiers resilience, whether and to what extent such resilience holds true under OAX conditions is still poorly understood. Here, we found that transgenerational exposure of Ruditapes philippinarum to OAX resulted in cessation of embryonic development at the trochophore stage, implying devastating consequences of OAX on marine bivalves. We identified a large number of differentially expressed genes in embryos following transgenerationally exposed to OAX, which were mainly significantly enriched in KEGG pathways related to energy metabolism, immunity and apoptosis. These pathways were significantly activated, and genes involved in these processes were up-regulated, indicating strong cellular stress responses to OAX. These findings demonstrate that transgenerational exposure to OAX can result in embryonic developmental cessation by severe cellular damages, implying that transgenerational acclimation maybe not a panacea for marine bivalves to cope with OAX, and hence urgent efforts are required to understand consequences of intensifying OAX events in coastal ecosystems.


Assuntos
Bivalves , Mudança Climática , Desenvolvimento Embrionário , Água do Mar , Transcriptoma , Animais , Água do Mar/química , Transcriptoma/efeitos dos fármacos , Bivalves/genética , Bivalves/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Oceanos e Mares
8.
J Hazard Mater ; 473: 134612, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761766

RESUMO

Metal pollution caused by deep-sea mining activities has potential detrimental effects on deep-sea ecosystems. However, our knowledge of how deep-sea organisms respond to this pollution is limited, given the challenges of remoteness and technology. To address this, we conducted a toxicity experiment by using deep-sea mussel Gigantidas platifrons as model animals and exposing them to different copper (Cu) concentrations (50 and 500 µg/L) for 7 days. Transcriptomics and LC-MS-based metabolomics methods were employed to characterize the profiles of transcription and metabolism in deep-sea mussels exposed to Cu. Transcriptomic results suggested that Cu toxicity significantly affected the immune response, apoptosis, and signaling processes in G. platifrons. Metabolomic results demonstrated that Cu exposure disrupted its carbohydrate metabolism, anaerobic metabolism and amino acid metabolism. By integrating both sets of results, transcriptomic and metabolomic, we find that Cu exposure significantly disrupts the metabolic pathway of protein digestion and absorption in G. platifrons. Furthermore, several key genes (e.g., heat shock protein 70 and baculoviral IAP repeat-containing protein 2/3) and metabolites (e.g., alanine and succinate) were identified as potential molecular biomarkers for deep-sea mussel's responses to Cu toxicity. This study contributes novel insight for assessing the potential effects of deep-sea mining activities on deep-sea organisms.


Assuntos
Biomarcadores , Cobre , Metabolômica , Transcriptoma , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Transcriptoma/efeitos dos fármacos , Mytilidae/genética , Mytilidae/efeitos dos fármacos , Mytilidae/metabolismo , Bivalves/efeitos dos fármacos , Bivalves/genética , Bivalves/metabolismo
9.
Sci Total Environ ; 933: 173184, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750754

RESUMO

Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 µg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.


Assuntos
Bivalves , Cádmio , Mineração , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Cádmio/toxicidade , Bivalves/efeitos dos fármacos , Bivalves/fisiologia , Brânquias/efeitos dos fármacos , Monitoramento Ambiental/métodos , Cobre/toxicidade , Biomarcadores/metabolismo
10.
Chemosphere ; 358: 142195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692368

RESUMO

Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 µg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 µg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.


Assuntos
Organismos Aquáticos , Compostos de Ferro , Compostos de Magnésio , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/metabolismo , Organismos Aquáticos/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Compostos de Magnésio/química , Compostos de Ferro/química , Bioacumulação , Metais/metabolismo , Silicatos , Invertebrados/efeitos dos fármacos , Invertebrados/metabolismo , Dióxido de Silício/química , Poliquetos/metabolismo , Poliquetos/efeitos dos fármacos , Poliquetos/fisiologia , Bivalves/metabolismo , Bivalves/efeitos dos fármacos
11.
Mar Environ Res ; 198: 106539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718522

RESUMO

Nanoplastics and engineering nanomaterials (ENMs) are contaminants of emerging concern (CECs), increasingly being detected in the marine environment and recognized as a potential threat for marine biota at the global level including in polar areas. Few studies have assessed the impact of these anthropogenic nanoparticles in the microbiome of marine invertebrates, however combined exposure resembling natural scenarios has been overlooked. The present study aimed to evaluate the single and combined effects of polystyrene nanoparticles (PS NP) as proxy for nanoplastics and nanoscale titanium dioxide (nano-TiO2) on the prokaryotic communities associated with the gill tissue of the Antarctic soft-shell clam Laternula elliptica, a keystone species of marine benthos Wild-caught specimens were exposed to two environmentally relevant concentrations of carboxylated PS NP (PS-COOH NP, ∼62 nm size) and nano-TiO2 (Aeroxide P25, ∼25 nm) as 5 and 50 µg/L either single and combined for 96h in a semi-static condition.Our findings show a shift in microbiome composition in gills of soft-shell clams exposed to PS NP and nano-TiO2 either alone and in combination with a decrease in the relative abundance of OTU1 (Spirochaetaceae). In addition, an increase of gammaproteobacterial OTUs affiliated to MBAE14 and Methylophagaceae (involved in ammonia denitrification and associated with low-quality water), and the OTU Colwellia rossensis (previously recorded in polluted waters) was observed. Our results suggest that nanoplastics and nano-TiO2 alone and in combination induce alterations in microbiome composition by promoting the increase of negative taxa over beneficial ones in the gills of the Antarctic soft-shell clam. An increase of two low abundance OTUs in PS-COOH NPs exposed clams was also observed. A predicted gene function analysis revealed that sugar, lipid, protein and DNA metabolism were the main functions affected by either PS-COOH NP and nano-TiO2 exposure. The molecular functions involved in the altered affiliated OTUs are novel for nano-CEC exposures.


Assuntos
Bivalves , Brânquias , Microbiota , Poluentes Químicos da Água , Animais , Microbiota/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/microbiologia , Bivalves/efeitos dos fármacos , Bivalves/microbiologia , Poluentes Químicos da Água/toxicidade , Regiões Antárticas , Nanoestruturas/toxicidade , Titânio/toxicidade , Nanopartículas/toxicidade
12.
Harmful Algae ; 134: 102609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705612

RESUMO

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Assuntos
Hidróxido de Alumínio , Dinoflagellida , Proliferação Nociva de Algas , Toxinas Marinhas , Animais , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/fisiologia , Dinoflagellida/química , Argila/química , Bivalves/fisiologia , Bivalves/efeitos dos fármacos , Ouriços-do-Mar/fisiologia , Ouriços-do-Mar/efeitos dos fármacos , Florida , Braquiúros/fisiologia , Braquiúros/efeitos dos fármacos , Mercenaria/efeitos dos fármacos , Mercenaria/fisiologia , Silicatos de Alumínio/farmacologia , Silicatos de Alumínio/química
13.
Environ Toxicol Chem ; 43(6): 1423-1430, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634767

RESUMO

The risk of lampricide applications (such as 4-nitro-3-[trifluoromethyl]phenol [TFM]) to nontarget fauna continues to be a concern within the Great Lakes Fishery Commission Sea Lamprey Control Program, especially among imperiled aquatic species-such as native freshwater mussels. The Grand River (Ohio, USA) is routinely treated for larval sea lampreys (Petromyzon marinus), and this river contains populations of the federally threatened mussel Obovaria subrotunda. Given this spatial overlap, information on the sensitivity of O. subrotunda to TFM is needed. Our objectives were to assess the toxicity of TFM to (1) adult Obovaria olivaria (a surrogate for O. subrotunda), (2) glochidial larvae of O. olivaria and O. subrotunda, (3) juveniles of O. olivaria and O. subrotunda, and (4) adult Percina maculata (host for O. subrotunda glochidia). In acute toxicity tests, TFM was not toxic to glochidia and adult mussels at exposure concentrations that exceed typical treatment rates. Although significant dose-response relationships were observed in hosts and juveniles, survival was ≥95% (Percina maculata), ≥93% (O. olivaria), and ≥74% (O. subrotunda) at typical treatment rates. However, the steep slope of these dose-response relationships indicates that an approximately 20% difference in the treatment level can result in nearly an order of magnitude difference in survival. Collectively, these data indicate that routine sea lamprey control operations are unlikely to acutely affect these species or their host. However, given that many mussel species are long-lived (30-100 years), the risks posed by lampricide treatments in the Great Lakes would be further informed by research on the potential long-term effects of lampricides on imperiled species. Environ Toxicol Chem 2024;43:1423-1430. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Fenóis/toxicidade , Bivalves/efeitos dos fármacos , Testes de Toxicidade Aguda , Petromyzon , Perciformes , Mytilidae/efeitos dos fármacos
14.
Environ Pollut ; 351: 124058, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685557

RESUMO

(Eco)toxicological studies frequently evaluate the effects of chemicals in one life stage of organisms, but the use of these outcomes can only partially estimate populational effects. In this regard, multi- and/or transgenerational studies should be performed in order to provide information on contaminant effects in a populational functioning context. The present review aimed to summarize and critically evaluate the current knowledge regarding multi- and/or transgenerational effects of traditional and emerging environmental chemicals on mollusks. Results showed that these kinds of studies were performed in aquatic mollusks (bivalve and gastropod), being Gastropoda the mollusk Class most frequently studied. Additionally, freshwater species and multigenerational studies were more common for this class. For the Bivalvia class, only marine species were evaluated, and transgenerational exposure was more commonly assessed. The effects were reported for 15 species, highlighting the marine bivalves Crassostrea gigas and Saccostrea glomerata, and the freshwater gastropod Lymnaea stagnalis. Multi- and transgenerational effects were described for 8 environmental chemical groups, mainly metals, pesticides, and pharmaceuticals. In general, multi- and transgenerational exposure induced biometric, developmental, and reproductive impairments in mollusks, indicating that environmental chemicals might lead to generational impairments, reduced population growth and reproductive capacity, and decreased fitness. The current study indicated that bivalves and gastropods are suitable organism models to assess the multi- and transgenerational adverse effects induced by traditional and emerging environmental chemicals.


Assuntos
Moluscos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Moluscos/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Ecotoxicologia
15.
Chemosphere ; 356: 141905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579946

RESUMO

Nonylphenol (NP) contamination in the coastal environment of China poses ecological risks to aquatic organisms. However, the endocrine disruptive impacts of NP on bivalves, particularly on ovarian development, remain poorly understood. In this study, Manila clams Ruditapes philippinarum at the developing stage of gonad were exposed to 1.0 µg/L NP for 21 days. Utilizing RNA interference (RNAi) to suppress ER gene expression, we observed a delay in ovarian development as evidenced by histological observations under both NP and NPRi (NP with ER-RNAi) treatment, with Vtg elevation exclusive to the NP group. Comprehensive analyses encompassing transcriptomics, real-time quantitative PCR, and steroid hormone measurement revealed significant alterations in aldosterone synthesis, estrogen signaling, and thyroid hormone synthesis. These pathways showed similar perturbations in both NP and NPRi groups compared to controls. Notably, the NPRi group exhibited distinct enrichment in PPAR and insulin signaling pathways, may implicating these in ER function suppression. Steroid hormone biosynthesis was notably reduced in both treatments, pointing to a profound impact on hormone synthesis. The contrast between in vivo and in vitro findings suggests that NP's detrimental effects on ovarian development may primarily involve neuroendocrine regulation of steroidogenesis. This investigation highlights the complex dynamics of NP-induced endocrine disruption in bivalves, emphasizing the pivotal role of ER and associated pathways.


Assuntos
Bivalves , Disruptores Endócrinos , Ovário , Fenóis , Interferência de RNA , Poluentes Químicos da Água , Animais , Fenóis/toxicidade , Feminino , Ovário/efeitos dos fármacos , Ovário/metabolismo , Bivalves/efeitos dos fármacos , Bivalves/genética , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , China , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética
16.
Sci Rep ; 14(1): 9369, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653774

RESUMO

Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.


Assuntos
Sistema Digestório , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Substâncias Macromoleculares , Carbamazepina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Bivalves/efeitos dos fármacos , Bivalves/química
17.
Environ Toxicol Chem ; 43(5): 1097-1111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488680

RESUMO

The ASTM International standard test method for freshwater mussels (E2455-13) recommends 4-week toxicity testing with juveniles to evaluate chronic effects on survival and growth. However, concerns remain that the method may not adequately address the sensitivity of mussels to longer term exposures (>4 weeks), particularly in relation to potential reproductive impairments. No standard method directly evaluates toxicant effects on mussel reproduction. The objectives of the present study were to (1) evaluate toxicity endpoints related to reproduction in fatmucket (Lampsilis siliquoidea) using two common reference toxicants, potassium chloride (KCl) and nickel (Ni); (2) evaluate the survival and growth of juvenile fatmucket in standard 4-week and longer term (12-week) KCl and Ni tests following a method refined from the standard method; and (3) compare the sensitivity of the reproductive endpoints with the endpoints obtained from the juvenile mussel tests. Reproductive toxicity tests were conducted by first exposing female fatmucket brooding mature larvae (glochidia) to five test concentrations of KCl and Ni for 6 weeks. Subsamples of the glochidia were then removed from the adults to determine three reproductive endpoints: (1) the viability of brooded glochidia; (2) the viability of free glochidia in a 24-h exposure to the same toxicant concentrations as their mother; and (3) the success of glochidia parasitism on host fish. Mean viability of brooded glochidia was significantly reduced in the high KCl concentration (26 mg K/L) relative to the control, with a 20% effect concentration (EC20) of 14 mg K/L, but there were no significant differences between the control and any Ni treatment (EC20 > 95 µg Ni/L). The EC20s for viability of free glochidia after the additional 24-h exposure and parasitism success were similar to the EC20s of brooded glochidia. The EC20s based on the most sensitive biomass endpoint in the 4-week juvenile tests were 15 mg K/L and 91 µg Ni/L, similar to or greater than the EC20s from the reproductive KCl and Ni tests, respectively. When exposure duration in the juvenile tests was extended from 4 to 12 weeks, the EC20s decreased by more than 50% in the KCl test but by only 8% in the Ni test. Overall, these results indicate that a standard 4-week test with juvenile mussels can prove effective for estimating effects in chronic exposures with different life stages although a longer term 12-week exposure with juvenile mussels may reveal higher sensitivity of mussels to some toxicants, such as KCl. Environ Toxicol Chem 2024;43:1097-1111. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Níquel , Cloreto de Potássio , Reprodução , Poluentes Químicos da Água , Animais , Níquel/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Cloreto de Potássio/toxicidade , Feminino , Bivalves/efeitos dos fármacos , Bivalves/crescimento & desenvolvimento , Unionidae/efeitos dos fármacos , Unionidae/crescimento & desenvolvimento
18.
Environ Toxicol Chem ; 43(5): 1112-1125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517160

RESUMO

Freshwater mussels provide invaluable ecological services but are threatened by habitat alteration, poor water quality, invasive species, climate change, and contaminants, including contaminants of emerging concern (CECs). Contaminants of emerging concerns are well documented in aquatic environments, including the Great Lakes Basin, but limited information is available on how environmentally relevant mixtures affect freshwater mussel biology throughout their varied life stages. Our main goal was to assess mussels' reproductive output in response to exposure to agricultural and urban CEC mixtures during glochidial development through juvenile transformation and excystment focusing on how exposure duration and treatment affect: (1) the number of glochidia prematurely released by brooding females, (2) glochidial transformation through host-fish excystment, and (3) the number of fully metamorphosed juveniles able to continue the lifecycle. Mussels and host fish were exposed to either a control water (CW), control ethanol (CE), agriculture CEC mixture (AM), or urban CEC mixture (UM) for 40 and 100 days. We found no effect from treatment or exposure duration on the number of glochidia prematurely released. Fewer partially and fully metamorphosed AM juveniles were observed during the 100-day exposure, compared with the 40-day. During the 40-day exposure, CW produced more fully metamorphosed individuals compared with CE and UM, but during the 100-day exposure AM produced more fully metamorphosed individuals compared with the CW. There was reduction in fully metamorphosed juveniles compared with partially metamorphosed for CE and UM during the 40-day exposure, as well as in the CW during the 100-day exposure. These results will be important for understanding how mussel populations are affected by CEC exposure. The experiments also yielded many insights for laboratory toxicology exposure studies. Environ Toxicol Chem 2024;43:1112-1125. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Água Doce , Agricultura , Bivalves/efeitos dos fármacos , Bivalves/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Etanol/toxicidade , Cidades , Feminino
19.
Environ Pollut ; 350: 123724, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462197

RESUMO

Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 µg L-1), MP (1 mg L-1, 2 µm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.


Assuntos
Microplásticos , Piranos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Piranos/toxicidade , Microplásticos/toxicidade , Bivalves/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rios/química , Glutationa/metabolismo , Zinco/toxicidade , Oxirredução , Apoptose/efeitos dos fármacos , Policetídeos de Poliéter
20.
ACS Appl Mater Interfaces ; 15(32): 38808-38820, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37526484

RESUMO

Cu2O is currently an important protective material for domestic engineering and equipment used to exploit marine resources. Cu+ is considered to have more effective antibacterial and antifouling activities than Cu2+. However, disproportionation of Cu+ in the natural environment leads to its reduced bioavailability and weakened reactivity. Novel and functionalized Cu2O composites could enable efficient and environmentally friendly applications of Cu+. To this end, a series of three-dimensional porous Cu2O nanoparticles (3DNP-Cu2O) functionalized by organic (redox gel, R-Gel)-inorganic (reduced graphene oxide, rGO) hybrids─3DNP-Cu2O/rGOx@R-Gel─at room temperature by immobilization-reduction method was prepared and applied for protection against marine biofouling. 3DNP-Cu2O/rGO1.76@R-Gel includes rGO and R-Gel shape 3D porous Cu2O nanoparticles with diameters ∼177 nm and strong dispersion and antioxidant stability. Compared with commercial Cu2O (Cu2O-0), 3DNP-Cu2O/rGO1.76@R-Gel exhibited an ∼50% higher bactericidal rate, ∼96.22% higher water content, and ∼75% lower adhesion of mussels and barnacles. Moreover, 3DNP-Cu2O/rGOx@R-Gel maintains the same excellent, stable, and long-lasting bactericidal performance as Cu2O-0@R-Gel while reducing the average copper ion release concentration by ∼56 to 76%. This was also confirmed by X-ray diffraction, X-ray photoelectric spectroscopy (XPS), atomic absorption spectroscopy, and antifouling tests. In addition, XPS tests of rGO-Cu2+ and R-Gel-Cu2+, photocurrent tests of 3DNP-Cu2O/rGO1.76@R-Gel, and energy-dispersive spectrometry pictures of bacteria confirm that R-Gel and rGO act as electron donors and transfer substrates driving the reduction of Cu2+ (Cu2+ → Cu+) and the diffusion of Cu+. Thus, a self-growing antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel was achieved. The mechanism of accelerated bacterial inactivation and resistance to mussel and barnacle adhesion by 3DNP-Cu2O/rGO1.76@R-Gel was interpreted. It is shown that rGO and R-Gel are important players in the antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel.


Assuntos
Nanopartículas Metálicas , Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Porosidade , Incrustação Biológica/prevenção & controle , Antioxidantes/química , Escherichia coli/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...