Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
J Genet Genomics ; 51(9): 957-969, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097227

RESUMO

Maintaining chromosome euploidy in zebrafish embryonic cells is challenging because of the degradation of genomic integrity during cell passaging. In this study, we report the derivation of zebrafish cell lines from single blastomeres. These cell lines have a stable chromosome status attributed to BMP4 and exhibit continuous proliferation in vitro. Twenty zebrafish cell lines are successfully established from single blastomeres. Single-cell transcriptome sequencing analysis confirms the fidelity of gene expression profiles throughout long-term culturing of at least 45 passages. The long-term cultured cells are specialized into epithelial cells, exhibiting similar expression patterns validated by integrative transcriptomic analysis. Overall, this work provides a protocol for establishing zebrafish cell lines from single blastomeres, which can serve as valuable tools for in vitro investigations of epithelial cell dynamics in terms of life-death balance and cell fate determination during normal homeostasis.


Assuntos
Blastômeros , Perfilação da Expressão Gênica , Peixe-Zebra , Animais , Peixe-Zebra/genética , Blastômeros/citologia , Blastômeros/metabolismo , Linhagem Celular , Transcriptoma/genética , Análise de Célula Única , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/citologia
2.
Cells Dev ; 179: 203935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914137

RESUMO

Human embryonic stem cells (hESCs) derived from blastocyst stage embryos present a primed state of pluripotency, whereas mouse ESCs (mESCs) display naïve pluripotency. Their unique characteristics make naïve hESCs more suitable for particular applications in biomedical research. This work aimed to derive hESCs from single blastomeres and determine their pluripotency state, which is currently unclear. We derived hESC lines from single blastomeres of 8-cell embryos and from whole blastocysts, and analysed several naïve pluripotency indicators, their transcriptomic profile and their trilineage differentiation potential. No significant differences were observed between blastomere-derived hESCs (bm-hESCs) and blastocyst-derived hESCs (bc-hESCs) for most naïve pluripotency indicators, including TFE3 localization, mitochondrial activity, and global DNA methylation and hydroxymethylation, nor for their trilineage differentiation potential. Nevertheless, bm-hESCs showed an increased single-cell clonogenicity and a higher expression of naïve pluripotency markers at early passages than bc-hESCs. Furthermore, RNA-seq revealed that bc-hESCs overexpressed a set of genes related to the post-implantational epiblast. Altogether, these results suggest that bm-hESCs, although displaying primed pluripotency, would be slightly closer to the naïve end of the pluripotency continuum than bc-hESCs.


Assuntos
Blastômeros , Embrião de Mamíferos , Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Blastômeros/citologia , Blastômeros/metabolismo , Masculino , Feminino , Cariotipagem , Células Cultivadas , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular , Metilação de DNA , Mitocôndrias/genética , Mitocôndrias/metabolismo
3.
Hum Reprod ; 39(9): 1889-1898, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38926157

RESUMO

In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.


Assuntos
Blastocisto , Linhagem da Célula , Desenvolvimento Embrionário , Animais , Humanos , Blastocisto/citologia , Blastocisto/fisiologia , Desenvolvimento Embrionário/fisiologia , Camundongos , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/fisiologia , Massa Celular Interna do Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Blastômeros/citologia , Blastômeros/fisiologia , Blastômeros/metabolismo , Mamíferos , Embrião de Mamíferos/citologia
4.
Reprod Fertil Dev ; 362024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38902907

RESUMO

Context Current methods to obtain bovine embryos of high genetic merit include approaches that require skilled techniques for low-efficiency cloning strategies. Aims The overall goal herein was to identify the efficacy of alternative methods for producing multiple embryos through blastomere complementation while determining maintenance of cell pluripotency. Methods Bovine oocytes were fertilised in vitro to produce 4-cell embryos from which blastomeres were isolated and cultured as 2-cell aggregates using a well-of-the-well system. Aggregates were returned to incubation up to 7days (Passage 1). A second passage of complement embryos was achieved by splitting 4-cell Passage 1 embryos. Passaged embryos reaching the blastocyst stage were characterised for cell number and cell lineage specification in replicate with non-reconstructed zona-intact embryos. Key results Passage 1 and 2 embryo complements yielded 29% and 25% blastocyst development, respectively. Passage 1 embryos formed blastocysts, but with a reduction in expression of SOX2 and decreased size compared to non-reconstructed zona-intact embryos. Passage 2 embryos had a complete lack of SOX2 expression and a reduction in transcript abundance of SOX2 and SOX17, suggesting loss of pluripotency markers that primarily affected inner cell mass (ICM) and hypoblast formation. Conclusions In vitro fertilised bovine embryos can be reconstructed with multiple passaging to generate genetically identical embryos. Increased passaging drives trophectoderm cell lineage specification while compromising ICM formation. Implications These results may provide an alternative strategy for producing genetically identical bovine embryos through blastomere complementation with applications towards the development of trophoblast and placental models of early development.


Assuntos
Blastocisto , Blastômeros , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Fertilização in vitro , Animais , Bovinos , Blastocisto/metabolismo , Fertilização in vitro/veterinária , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/fisiologia , Blastômeros/metabolismo , Blastômeros/citologia , Feminino , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Clonagem de Organismos/métodos , Clonagem de Organismos/veterinária , Linhagem da Célula , Embrião de Mamíferos/metabolismo
5.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38843832

RESUMO

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Assuntos
Diferenciação Celular , Spliceossomos , Animais , Humanos , Camundongos , Blastocisto/metabolismo , Blastocisto/citologia , Blastômeros/metabolismo , Blastômeros/citologia , Reprogramação Celular , Desenvolvimento Embrionário/genética , Camadas Germinativas/metabolismo , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Splicing de RNA , Spliceossomos/metabolismo , Células-Tronco Totipotentes/metabolismo , Células-Tronco Totipotentes/citologia , Zigoto/metabolismo , Células Cultivadas , Modelos Moleculares , Estrutura Terciária de Proteína , Genoma Humano , Análise de Célula Única , Fator 15 de Diferenciação de Crescimento/química , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Epigenômica , Linhagem da Célula
6.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38940293

RESUMO

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Cílios/metabolismo , Cílios/efeitos dos fármacos , Blastômeros/citologia , Blastômeros/metabolismo , Blastômeros/efeitos dos fármacos , Células Cultivadas
7.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38744282

RESUMO

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Assuntos
Blastômeros , Linhagem da Célula , Embrião de Mamíferos , Feminino , Humanos , Blastômeros/citologia , Blastômeros/metabolismo , Divisão Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Masculino , Animais , Camundongos
8.
In Vitro Cell Dev Biol Anim ; 60(7): 708-715, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38379097

RESUMO

The generation of genetically engineered pig models that develop pancreas-specific tumors has the potential to advance studies and our understanding of pancreatic cancer in humans. TP53 mutation causes organ-nonspecific cancers, and PDX1-knockout results in the loss of pancreas development. The aim of the present study was to generate a PDX1-knockout pig chimera carrying pancreas complemented by TP53 mutant cells via phytohemagglutinin (PHA)-mediated blastomere aggregation using PDX1 and TP53 mutant blastomeres, as a pig model for developing tumors in the pancreas with high frequency. First, the concentration and exposure time to PHA to achieve efficient blastomere aggregation were optimized. The results showed that using 300 µg/mL PHA for 10 min yielded the highest rates of chimeric blastocyst formation. Genotyping analysis of chimeric blastocysts derived from aggregated embryos using PDX1- and TP53-edited blastomere indicated that approximately 28.6% carried mutations in both target regions, while 14.3-21.4% carried mutations in one target. After the transfer of the chimeric blastocysts into one recipient, the recipient became pregnant with three fetuses. Deep sequencing analysis of the PDX1 and TP53 regions using ear and pancreas samples showed that one fetus carried mutations in both target genes, suggesting that the fetus was a chimera derived from embryo-aggregated PDX1 and TP53 mutant blastomeres. Two out of three fetuses carried only the PDX1 mutation, indicating that the fetuses developed from embryos not carrying TP53-edited blastomeres. The results of the present study could facilitate the further improvement and design of high-frequency developing pancreatic tumor models in pigs.


Assuntos
Blastômeros , Proteínas de Homeodomínio , Mutação , Fito-Hemaglutininas , Transativadores , Proteína Supressora de Tumor p53 , Animais , Blastômeros/metabolismo , Blastômeros/citologia , Transativadores/genética , Transativadores/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação/genética , Suínos , Fito-Hemaglutininas/farmacologia , Quimera/genética , Blastocisto/metabolismo , Feminino
9.
Sci Rep ; 13(1): 13050, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567923

RESUMO

Single-cell-specific delivery of small RNAs, such as short hairpin RNA (shRNA) and small noncoding RNAs, allows us to elucidate the roles of specific upregulation of RNA expression and RNAi-mediated gene suppression in early embryo development. The photoinduced cytosolic dispersion of RNA (PCDR) method that we previously reported can introduce small RNAs into the cytosol of photoirradiated cells and enable RNA delivery into a single-cell in a spatiotemporally specific manner. However, the PCDR method has only been applied to planer cultured cells and not to embryos. This study demonstrated that the PCDR method can be utilized for photo-dependent cytosolic shRNA delivery into a single blastomere and for single blastomere-specific RNA interference in mouse embryos. Our results indicate that PCDR is a promising approach for studying the developmental process of early embryogenesis.


Assuntos
Blastômeros , Embrião de Mamíferos , Animais , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Blastômeros/metabolismo , Citosol/metabolismo , Interferência de RNA , Embrião de Mamíferos/metabolismo
10.
Theriogenology ; 210: 42-52, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473595

RESUMO

One of the most typical abnormal cleavage patterns during early embryonic development is uneven division, but the first uneven division of pig zygote is common. Uneven division results in different daughter cell sizes and an uneven distribution of organelles such as lipid droplet, mitochondria, but the developmental capacity of daughter cells and proteomic changes of daughter cells are still unclear. Therefore, the developmental ability and proteomic quantification were investigated on blastomeres from even division (ED) or uneven division (UD) embryos at 2-cell stage in the present study. Firstly, the developmental ability was affected by the blastomeric size, when compared with medium blastomeres (MBs), the large blastomeres (LBs) with the higher cleavage rate but the small blastomeres (SBs) with the lower rate was observed. Subsequently, proteomic analysis was performed on blastomeres of LBs, MBs and SBs, a total of 109 DEPs were detected, which were involved in protein metabolism and processing, energy metabolism and ribosome. In particular, DEPs in LBs vs. SBs were focused on RNA binding and actin cytoskeletal tissue. Two protein-dense networks associated with RNA binding and cytoskeleton were revealed by further protein-protein interaction (PPI) analysis of DEPs in LBs vs. SBs, that DDX1 related to RNA binding and ACTB related to cytoskeleton were confirmed in UD embryos. Therefore, a briefly information of DEPs in blastomeres of 2-cell stage pig embryos was described in the present study, and it further confirmed that the formation of uneven division of the first cell cycle of pig embryos might be controlled by the cytoskeleton; the developmental capacity of daughter cells might be affected by the energy metabolism, RNA binding and ribosome, and further account for the developmental potential of the whole embryo.


Assuntos
Desenvolvimento Embrionário , Proteômica , Gravidez , Feminino , Animais , Suínos , Blastômeros/metabolismo , Embrião de Mamíferos , RNA/metabolismo
11.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36988082

RESUMO

Whereas both sperm and egg contribute nuclear genetic material to the zygote in metazoan organisms, the inheritance of other cellular constituents is unequal between the 2 gametes. Thus, 2 copies of the centriole are contributed solely by the sperm to the zygote in most species. Centrioles can have a stereotyped distribution in some asymmetric divisions, but whether sperm-contributed centrioles are distributed in a stereotyped manner in the resulting embryo is not known. Here, we address this question in Caenorhabditis elegans using marked mating experiments, whereby the presence of the 2 sperm-contributed centrioles is monitored in the embryo using the stable centriolar component SAS-4::GFP, as well as GFP::SAS-7. Our analysis demonstrates that the distribution of sperm-contributed centrioles is stochastic in 4-cell stage embryos. Moreover, using sperm from zyg-1 mutant males that harbor a single centriole, we show that the older sperm-contributed centriole is likewise distributed stochastically in the resulting embryo. Overall, we conclude that, in contrast to the situation during some asymmetric cell divisions, centrioles contributed by the male germ line are distributed stochastically in embryos of C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Centríolos , Masculino , Animais , Centríolos/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Blastômeros/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas Quinases/genética
12.
Stem Cell Reports ; 17(7): 1743-1756, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35777358

RESUMO

Embryonic genome activation (EGA) is critical for embryonic development. However, our understanding of the regulatory mechanisms of human EGA is still incomplete. Human embryonic stem cells (hESCs) are an established model for studying developmental processes, but they resemble epiblast and are sub-optimal for modeling EGA. DUX4 regulates human EGA by inducing cleavage-stage-specific genes, while it also induces cell death. We report here that a short-pulsed expression of DUX4 in primed hESCs activates an EGA-like gene expression program in up to 17% of the cells, retaining cell viability. These DUX4-induced cells resembled eight-cell stage blastomeres and were named induced blastomere-like (iBM) cells. The iBM cells showed marked reduction of POU5F1 protein, as previously observed in mouse two-cell-like cells. Finally, the iBM cells were successfully enriched using an antibody against NaPi2b (SLC34A2), which is expressed in human blastomeres. The iBM cells provide an improved model system to study human EGA transcriptome.


Assuntos
Blastômeros , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas , Animais , Blastômeros/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Genes Homeobox , Genoma Humano , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Gravidez , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
13.
Reprod Biol Endocrinol ; 20(1): 52, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300691

RESUMO

Embryo transfer is a crucial step in IVF cycle, with increasing trend during the last decade of transferring a single embryo, preferably at the blastocyst stage. Despite increasing evidence supporting Day 5 blastocyst-stage transfer, the optimal day of embryo transfer remains controversial. The crucial questions are therefore, whether the mechanisms responsible to embryos arrest are embryo aneuploidy or others, and whether those embryos arrested in-vitro between the cleavage to the blastocyst stage would survive in-vivo if transferred on the cleavage-stage. We therefore aim to explore whether aneuploidy can directly contribute to embryo development to the blastocyst stage. Thirty Day-5 embryos, that their Day-3 blastomere biopsy revealed a single-gene defect, were donated by 10 couples undergoing preimplantation genetic testing treatment at our center. Affected high quality Day-3 embryos were cultured to Day-5, and were classified to those that developed to the blastocyst-stage and those that were arrested. Each embryo underwent whole genome amplification. Eighteen (60%) embryos were arrested, did not develop to the blastocyst stage and 12 (40%) have developed to the blastocyst stage. Nineteen embryos (63.3%) were found to be euploid. Of them, 12 (66.6%) were arrested embryos and 7 (58.3%) were those that developed to the blastocyst-stage. These figures were not statistically different (p = 0.644). Our observation demonstrated that the mechanism responsible to embryos arrest in vitro is not embryo aneuploidy, but rather other, such as culture conditions. If further studies will confirm that Day-5 blastocyst transfer might cause losses of embryos that would have been survived in vivo, cleavage-stage embryo transfer would be the preferred timing. This might reduce the cycle cancellations due to failure of embryo to develop to the blastocyst stage and will provide the best cumulative live birth-rate per started cycle.


Assuntos
Blastocisto/metabolismo , Fase de Clivagem do Zigoto/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Trofoblastos/metabolismo , Adulto , Aneuploidia , Blastocisto/citologia , Blastômeros/citologia , Blastômeros/metabolismo , Células Cultivadas , Fase de Clivagem do Zigoto/citologia , Hibridização Genômica Comparativa/métodos , Transferência Embrionária , Embrião de Mamíferos/citologia , Feminino , Fertilização in vitro , Testes Genéticos/métodos , Humanos , Nascido Vivo , Gravidez , Taxa de Gravidez , Trofoblastos/citologia
14.
PLoS Biol ; 20(3): e3001593, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324889

RESUMO

Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-µm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis.


Assuntos
Blastômeros , Desenvolvimento Embrionário , Animais , Blastômeros/metabolismo , Embrião de Mamíferos , Feminino , Camundongos , Morfogênese , Gravidez , Zigoto
15.
Dev Biol ; 483: 58-65, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34965385

RESUMO

The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 is required for gametogenesis, brain development, erythropoiesis and blood cell enhancer function. The human ortholog is essential for mitosis in cultured cancer cells. Little is known, however, about the role of Exosc10 during embryo development and organogenesis. We generated an Exosc10 knockout model and find that Exosc10-/- mice show an embryonic lethal phenotype. We demonstrate that Exosc10 maternal wild type mRNA is present in mutant oocytes and that the gene is expressed during all stages of early embryogenesis. Furthermore, we observe that EXOSC10 early on localizes to the periphery of nucleolus precursor bodies in blastomeres, which is in keeping with the protein's role in rRNA processing and may indicate a function in the establishment of chromatin domains during initial stages of embryogenesis. Finally, we infer from genotyping data for embryonic days e7.5, e6.5 and e4.5 and embryos cultured in vitro that Exosc10-/- mutants arrest at the eight-cell embryo/morula transition. Our results demonstrate a novel essential role for Exosc10 during early embryogenesis, and they are consistent with earlier work showing that impaired ribosome biogenesis causes a developmental arrest at the morula stage.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Mórula/metabolismo , Transdução de Sinais/genética , Animais , Blastômeros/metabolismo , Nucléolo Celular/metabolismo , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Fenótipo , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo
16.
Semin Cancer Biol ; 81: 132-144, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34670140

RESUMO

Recent data suggest that most genotoxic agents in cancer therapy can lead to shock of genome and increase in cell size, which leads whole genome duplication or multiplication, formation of polyploid giant cancer cells, activation of an early embryonic program, and dedifferentiation of somatic cells. This process is achieved via the giant cell life cycle, a recently proposed mechanism for malignant transformation of somatic cells. Increase in both cell size and ploidy allows cells to completely or partially restructures the genome and develop into a blastocyst-like structure, similar to that observed in blastomere-stage embryogenesis. Although blastocyst-like structures with reprogrammed genome can generate resistant or metastatic daughter cells or benign cells of different lineages, they also acquired ability to undergo embryonic diapause, a reversible state of suspended embryonic development in which cells enter dormancy for survival in response to environmental stress. Therapeutic agents can activate this evolutionarily conserved developmental program, and when cells awaken from embryonic diapause, this leads to recurrence or metastasis. Understanding of the key mechanisms that regulate the different stages of the giant cell life cycle offers new opportunities for therapeutic intervention.


Assuntos
Neoplasias , Animais , Blastômeros/metabolismo , Feminino , Células Gigantes/metabolismo , Humanos , Estágios do Ciclo de Vida , Neoplasias/tratamento farmacológico , Neoplasias/genética , Poliploidia , Gravidez
17.
Zygote ; 30(2): 213-216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34315559

RESUMO

In this work, the presence of calcium-dependent calcium channels and their receptors (RyR) has been investigated in Paracentrotus lividus eggs and early embryos, from unfertilized egg to four-blastomere stages. Electrophysiological recordings of RyR single-channel current fluctuations showed that RyRs are functional during the first developmental events with a maximum at zygote stage, c. 40 min after fertilization, corresponding to the first cleavage. The nature of vertebrate-like RyRs active at this stage was established by specific activation/blockade experiments.


Assuntos
Paracentrotus , Zigoto , Animais , Blastômeros/metabolismo , Cálcio/metabolismo , Fertilização/fisiologia , Oócitos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Ouriços-do-Mar/metabolismo , Zigoto/metabolismo
18.
Biochem Biophys Res Commun ; 584: 1-6, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34741809

RESUMO

GATA factors are essential transcription factors for embryonic development that broadly control the transcription of other genes. This study aimed to examine GATA2 protein localization in mouse embryos at the 2-cell stage, when drastic transformation in gene expression occurs for subsequent development in early embryos. We first analyzed GATA2 localization in 2-cell embryos at the interphase and mitotic phases by immunofluorescence analysis. In the interphase, GATA2 protein was localized in the nucleus, as a common transcription factor. In the mitotic phase, GATA2 protein was observed as a focally-aggregated spot around the nucleus of each blastomere. To explore the relationship between GATA2 protein localization and cell cycle progression in mouse 2-cell stage embryos, GFP-labeled GATA2 protein was overexpressed in the blastomere of 2-cell embryos. Overexpression of GFP-labeled GATA2 protein arrested cellular mitosis, focally aggregated GATA2 protein expression was not observed. This mitotic arrest by GATA2 overexpression was not accompanied with the upregulation of a 2-cell stage specific gene, murine endogenous retrovirus-L. These results suggest that GATA2 protein localization changes dynamically depending on cell cycle progression in mouse 2-cell embryos; in particular, focally aggregated localization of GATA2 in the mitotic phase requires appropriate cell cycle progression.


Assuntos
Blastocisto/metabolismo , Ciclo Celular/genética , Núcleo Celular/genética , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Blastocisto/citologia , Blastômeros/citologia , Blastômeros/metabolismo , Núcleo Celular/metabolismo , Feminino , Fator de Transcrição GATA2/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interfase/genética , Camundongos Endogâmicos ICR , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
19.
Sci Rep ; 11(1): 21245, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711892

RESUMO

We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário , Metabolismo Energético , Oócitos/metabolismo , Oxigênio/metabolismo , Animais , Biomarcadores , Blastômeros/metabolismo , Bovinos , Desenvolvimento Embrionário/genética , Feminino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oócitos/citologia , Fosforilação Oxidativa , Gravidez
20.
Mol Hum Reprod ; 27(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34264319

RESUMO

Investigations of genes required in early mammalian development are complicated by protein deposits of maternal products, which continue to operate after the gene locus has been disrupted. This leads to delayed phenotypic manifestations and underestimation of the number of genes known to be needed during the embryonic phase of cellular totipotency. Here we expose a critical role of the gene Cops3 by showing that it protects genome integrity during the 2-cell stage of mouse development, in contrast to the previous functional assignment at postimplantation. This new role is mediated by a substantial deposit of protein (94th percentile of the proteome), divided between an exceptionally stable cortical rim, which is prevalent in oocytes, and an ancillary deposit in the embryonic nuclei. Since protein abundance and stability defeat prospects of DNA- or RNA-based gene inactivation in oocytes, we harnessed a classical method next to an emerging method for protein inactivation: antigen masking (for functional inhibition) versus TRIM21-mediated proteasomal degradation, also known as 'Trim away' (for physical removal). Both resulted in 2-cell embryo lethality, unlike the embryos receiving anti-green fluorescent protein. Comparisons between COPS3 protein-targeted and non-targeted embryos revealed large-scale transcriptome differences, which were most evident for genes associated with biological functions critical for RNA metabolism and for the preservation of genome integrity. The gene expression abnormalities associated with COPS3 inactivation were confirmed in situ by the occurrence of DNA endoreduplication and DNA strand breaks in 2-cell embryos. These results recruit Cops3 to the small family of genes that are necessary for early embryo survival. Overall, assigning genes with roles in embryogenesis may be less safe than assumed, if the protein products of these genes accumulate in oocytes: the inactivation of a gene at the protein level can expose an earlier phenotype than that identified by genetic techniques such as conventional gene silencing.


Assuntos
Blastômeros/metabolismo , Complexo do Signalossomo COP9/fisiologia , Desenvolvimento Embrionário , Oócitos/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Animais , Blastômeros/ultraestrutura , Complexo do Signalossomo COP9/biossíntese , Complexo do Signalossomo COP9/genética , Sobrevivência Celular , Quebras de DNA , Transferência Embrionária , Desenvolvimento Embrionário/genética , Endorreduplicação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Histonas/biossíntese , Histonas/genética , Proteínas Luminescentes/análise , Camundongos , Microinjeções , Oócitos/ultraestrutura , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/genética , Gravidez , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Proteínas Recombinantes/análise , Ribonucleoproteínas/fisiologia , Transcriptoma , Zigoto/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...