Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.929
Filtrar
1.
Stem Cell Res Ther ; 15(1): 245, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113095

RESUMO

BACKGROUND: The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS: We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS: The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS: These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.


Assuntos
Células-Tronco Embrionárias , Animais , Meios de Cultura Livres de Soro/farmacologia , Suínos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Diferenciação Celular , Células Alimentadoras/citologia , Células Alimentadoras/metabolismo , Técnicas de Cultura de Células/métodos , Proliferação de Células , Blastocisto/citologia , Blastocisto/metabolismo , Células Cultivadas
2.
Methods Mol Biol ; 2818: 81-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126468

RESUMO

Homologous recombination plays pivotal roles in physical attachments and genetic diversity. In the past, it was studied among individuals from different populations. However, only few gametes from individual could generate offspring, which limits its exploration in nature selection. In the last few years, preimplantation blastocysts based on trio SNP-chip data were available in individuals for preimplantation genetic testing (PGT). In this protocol, we demonstrate how to detect meiotic recombination events and construct the genetic map based on trio SNP-chip data, obtained from biopsied blastocysts and their related individuals in PGT cycles, which may allow better understanding of recombination events in nature selection.


Assuntos
Blastocisto , Meiose , Polimorfismo de Nucleotídeo Único , Humanos , Meiose/genética , Blastocisto/metabolismo , Blastocisto/citologia , Feminino , Diagnóstico Pré-Implantação/métodos , Mapeamento Cromossômico/métodos , Recombinação Homóloga , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Recombinação Genética
3.
BMC Endocr Disord ; 24(1): 142, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107770

RESUMO

BACKGROUND: Extensive research has been conducted on embryonic developmental disorders linked to Polycystic Ovary Syndrome (PCOS), a pathological condition that affects 5-10% of women and is characterized by irregularities in the menstrual cycle and infertility. By employing RNA sequencing (RNA-seq), we performed an in-depth investigation of PCOS-related changes in gene expression patterns at the mouse blastocyst stage. METHODS: The zygotes of female B6D2 mice were obtained and then differentiated into blastocysts in K + Simplex Optimised Medium (KSOM) cultures containing exo-NC (negative control for exosomes) or exo-LIPE-AS1 (a novel exosomal marker of PCOS). Subsequently, blastocysts were collected for RNA-seq. The bioinformatics was performed to analyze and compare the differences of gene expression profile between blastocysts of control and PCOS group. RESULTS: There were 1150 differentially expressed genes (DEGs) between the two groups of mouse blastocysts; 243 genes were upregulated and 907 downregulated in the blastocysts of the exo-LIPE-AS1 group compared to those of the exo-NC group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the genes involved in amino acid synthesis and glutathione metabolic pathways were down-regulated in exo-LIPE-AS1 group. CONCLUSION: This study has revealed that blastocyst developmental retardation may be associated with the downregulation of amino acid synthesis and glutathione metabolism, which may affect energy metabolism, biosynthesis, cellular osmotic pressure, antioxidant synthesis, ROS clearance or mitochondrial function, and ultimately cause blastocyst cell development abnormalities. Our research offers encouraging data on the mechanisms underlying aberrant embryonic development in patients with PCOS as well as potential treatment strategies.


Assuntos
Aminoácidos , Blastocisto , Desenvolvimento Embrionário , Glutationa , Síndrome do Ovário Policístico , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Feminino , Camundongos , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Glutationa/metabolismo , Aminoácidos/metabolismo , Análise de Sequência de RNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento
4.
Reprod Biol Endocrinol ; 22(1): 105, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164729

RESUMO

BACKGROUND: Obesity is a global health issue with detrimental effects on various human organs, including the reproductive system. Observational human data and several lines of animal experimental data suggest that maternal obesity impairs ovarian function and early embryo development, but the precise pathogenesis remains unclear. METHODS: We established a high-fat diet (HFD)-induced obese female mouse model to assess systemic metabolism, ovarian morphology, and oocyte function in mice. For the first time, this study employed single-cell RNA sequencing to explore the altered transcriptomic landscape of preimplantation embryos at different stages in HFD-induced obese mice. Differential gene expression analysis, enrichment analysis and protein-protein interactions network analysis were performed. RESULTS: HFD-induced obese female mice exhibited impaired glucolipid metabolism and insulin resistance. The ovaries of HFD mice had a reduced total follicle number, an increased proportion of atretic follicles, and irregular granulosa cell arrangement. Furthermore, the maturation rate of embryonic development by in vitro fertilization of oocytes was significantly decreased in HFD mice. Additionally, the transcriptional landscapes of preimplantation embryos at different stages in mice induced by different diets were significantly distinguished. The maternal-to-zygotic transition was also affected by the failure to remove maternal RNAs and to turn off zygotic genome expression. CONCLUSIONS: HFD-induced obesity impaired ovarian morphology and oocyte function in female mice and further led to alterations in the transcriptional landscape of preimplantation embryos at different stages of HFD mice.


Assuntos
Dieta Hiperlipídica , Desenvolvimento Embrionário , Obesidade , Oócitos , Análise de Sequência de RNA , Análise de Célula Única , Animais , Feminino , Dieta Hiperlipídica/efeitos adversos , Oócitos/metabolismo , Camundongos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Obesidade/genética , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Gravidez , Blastocisto/metabolismo
5.
BMC Genomics ; 25(1): 775, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118001

RESUMO

BACKGROUND: Appropriate regulation of genes expressed in oocytes and embryos is essential for acquisition of developmental competence in mammals. Here, we hypothesized that several genes expressed in oocytes and pre-implantation embryos remain unknown. Our goal was to reconstruct the transcriptome of oocytes (germinal vesicle and metaphase II) and pre-implantation cattle embryos (blastocysts) using short-read and long-read sequences to identify putative new genes. RESULTS: We identified 274,342 transcript sequences and 3,033 of those loci do not match a gene present in official annotations and thus are potential new genes. Notably, 63.67% (1,931/3,033) of potential novel genes exhibited coding potential. Also noteworthy, 97.92% of the putative novel genes overlapped annotation with transposable elements. Comparative analysis of transcript abundance identified that 1,840 novel genes (recently added to the annotation) or potential new genes were differentially expressed between developmental stages (FDR < 0.01). We also determined that 522 novel or potential new genes (448 and 34, respectively) were upregulated at eight-cell embryos compared to oocytes (FDR < 0.01). In eight-cell embryos, 102 novel or putative new genes were co-expressed (|r|> 0.85, P < 1 × 10-8) with several genes annotated with gene ontology biological processes related to pluripotency maintenance and embryo development. CRISPR-Cas9 genome editing confirmed that the disruption of one of the novel genes highly expressed in eight-cell embryos reduced blastocyst development (ENSBTAG00000068261, P = 1.55 × 10-7). CONCLUSIONS: Our results revealed several putative new genes that need careful annotation. Many of the putative new genes have dynamic regulation during pre-implantation development and are important components of gene regulatory networks involved in pluripotency and blastocyst formation.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Animais , Bovinos , Desenvolvimento Embrionário/genética , Oócitos/metabolismo , Blastocisto/metabolismo , Transcriptoma , Anotação de Sequência Molecular , Perfilação da Expressão Gênica , Feminino
6.
Am J Reprod Immunol ; 92(1): e13902, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39042556

RESUMO

PROBLEM: Lipopolysaccharide (LPS) from gram-negative bacteria has reportedly been associated with infectious diseases like metritis, which has a substantial adverse effect on animal reproductive performance and causes serious financial losses for the dairy sector. The current work aimed to establish the impact of LPS on in vitro oocyte maturation and subsequent in vitro developmental competence of oocytes, as well as to investigate the explanatory molecular mechanism underlying this effect. METHOD OF STUDY: Buffalo cumulus-oocyte complexes (COCs) were challenged with 0, 5, 10 and 20 µg/mL LPS during IVM followed by IVF and IVC. Cytoplasmic and nuclear maturation, cleavage and blastocyst rate, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP, ΔΨm) and transcript abundance of genes related to inflammation, antioxidation and apoptosis were evaluated. RESULTS: The maturation and subsequent embryonic development competency were found to be significantly (p ≤ 0.05) reduced with the addition of 10 and 20 µg/mL LPS to IVM media. ROS production accompanied by a decreased ΔΨm was recorded in LPS-treated oocytes in comparison to the control group (p ≤ 0.05). Our results were further supported by the transcriptional expression of proinflammatory (TLR4, CD14 and RPS27A) and apoptotic gene (Caspase 3) which were found to be significantly increased while antioxidant genes (SOD2 and GPX1) were decreased significantly in matured oocytes and blastocyst after LPS exposure. CONCLUSIONS: The deleterious effects of LPS are mediated through ROS generation, which triggers inflammatory processes via the TLR4 pathway and impairs oocyte maturation and subsequent embryonic development.


Assuntos
Búfalos , Desenvolvimento Embrionário , Técnicas de Maturação in Vitro de Oócitos , Lipopolissacarídeos , Mitocôndrias , Oócitos , Espécies Reativas de Oxigênio , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células Cultivadas , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos , Fertilização in vitro
7.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38991843

RESUMO

Pronuclear transfer has been successfully used in human-assisted reproduction to suppress the adverse effects of a defective oocyte cytoplasm or to bypass an idiopathic developmental arrest. However, the effects of the initial parental genome remodelling in a defective cytoplasm on the subsequent development after pronucleus transfer have not been systematically studied. By performing pronuclear transfer in pre-replication and post-replication mouse embryos, we show that the timing of the procedure plays a critical role. Although apparently morphologically normal blastocysts were obtained in both pre- and post-replication pronuclear transfer groups, post-replication pronuclear transfer led to a decrease in developmental competence and profound changes in embryonic gene expression. By inhibiting the replication in the abnormal cytoplasm before pronuclear transfer into a healthy cytoplasm, the developmental potential of embryos could be largely restored. This shows that the conditions under which the first embryonic replication occurs strongly influence developmental potential. Although pronuclear transfer is the method of choice for mitigating the impact of a faulty oocyte cytoplasm on early development, our results show that the timing of this intervention should be restricted to the pre-replication phase.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Técnicas de Transferência Nuclear , Animais , Camundongos , Feminino , Blastocisto/metabolismo , Blastocisto/citologia , Citoplasma/metabolismo , Oócitos/metabolismo , Oócitos/citologia , Núcleo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Tempo , Embrião de Mamíferos
8.
Tissue Cell ; 89: 102480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029316

RESUMO

Success of animal cloning is limited by oocyte quality, which is closely linked to reprogramming ability. The number of layers of cumulus cells is typically used to assess the quality of oocyte; a minimum of one-third of collected cumulus-oocyte complexes (COCs) are discarded as inferior oocytes because they have less cumulus cells. Melatonin, which has been recognised for its ability to sequester free radicals and perform multiple functions, has emerged as a potentially effective candidate for enhancing inferior oocytes quality and, consequently, embryo development competency. The current study investigates to improve the quality of inferior oocytes by supplementation of melatonin (10-9 M) during in vitro maturation (IVM) and subsequent cloned embryo production and its mechanism. The results indicate that melatonin supplementation significantly (p<0.05) enhances inferior oocytes maturation, reduces oxidative stress by reducing ROS levels, and improves mitochondrial function by boosting GSH levels. The melatonin treatment (10-9 M) enhances the expression of SOD, GPx1, GDF 9, BMP 15, ATPase 6, and ATPase 8 in inferior oocytes. Furthermore, melatonin treatment increases the total cell number in the treated groups, promoting cloned blastocyst formation rates derived from inferior oocytes. Furthermore, compared to the control, 10-9 M melatonin supplementation enhances H3K9ac acetylation and lowers H3K27me3 methylation in cloned blastocysts derived from inferior oocytes. In conclusion, 10-9 M melatonin supplementation during IVM increased inferior oocyte maturation and promoted cloned buffalo embryo development by lowering oxidative stress and promoting epigenetic alterations. These studies show that melatonin may improve the quality of poor oocytes and buffalo cloning.


Assuntos
Búfalos , Epigênese Genética , Técnicas de Maturação in Vitro de Oócitos , Melatonina , Oócitos , Melatonina/farmacologia , Animais , Búfalos/embriologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/citologia , Epigênese Genética/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Feminino , Técnicas de Transferência Nuclear , Desenvolvimento Embrionário/efeitos dos fármacos , Clonagem de Organismos , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/efeitos dos fármacos
9.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000535

RESUMO

The receptive phase of the uterus is marked by structural and functional maturation of the endometrium. During this limited time span, the blastocyst competency is superimposed on the receptive endometrium. It is a well-known fact that lipid signalling in early-stage pregnancy has a crucial role in successful embryogenesis. In our study, CD-1 mouse uteri after normal and in vitro fertilization (IVF) were investigated at 6.5, 8.5, and 10.5 days of pregnancy. Matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry and liquid chromatography coupled tandem mass spectrometry were used for identification of phosphatidylcholine (PC) lipid structures. In the embryonal tissues, PC 32:0 and PC 34:0 were increased, while in the antemesometrial (AM) decidua the two 20:4-containing PCs, PC 36:4 and PC 38:4 were increased. In transferred uterus samples, higher expressions of PC 34:0, PC 34:1, PC 34:2, PC 36:1, and PC 36:2 in mesometrial decidua were seen, whereas the two 20:4-containing PCs, PC 36:4 and PC 38:4 showed increased expression in the AM and lateral decidua. This paper shows a significant spatio-temporal change in lipid metabolism during IVF procedures for the first time.


Assuntos
Fertilização in vitro , Fosfatidilcolinas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Feminino , Animais , Camundongos , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/análise , Fertilização in vitro/métodos , Gravidez , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Útero/metabolismo , Blastocisto/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(28): e2315043121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968128

RESUMO

Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.


Assuntos
Blastocisto , Oócitos , Animais , Blastocisto/metabolismo , Camundongos , Oócitos/metabolismo , Feminino , Organelas/metabolismo , Imagem Óptica/métodos
11.
Nat Commun ; 15(1): 6418, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080296

RESUMO

Histone lysine crotonylation, an evolutionarily conserved modification differing from acetylation, exerts pivotal control over diverse biological processes. Among these are gene transcriptional regulation, spermatogenesis, and cell cycle processes. However, the dynamic changes and functions of histone crotonylation in preimplantation embryonic development in mammals remain unclear. Here, we show that the transcription coactivator P300 functions as a writer of histone crotonylation during embryonic development. Depletion of P300 results in significant developmental defects and dysregulation of the transcriptome of embryos. Importantly, we demonstrate that P300 catalyzes the crotonylation of histone, directly stimulating transcription and regulating gene expression, thereby ensuring successful progression of embryo development up to the blastocyst stage. Moreover, the modification of histone H3 lysine 18 crotonylation (H3K18cr) is primarily localized to active promoter regions. This modification serves as a distinctive epigenetic indicator of crucial transcriptional regulators, facilitating the activation of gene transcription. Together, our results propose a model wherein P300-mediated histone crotonylation plays a crucial role in regulating the fate of embryonic development.


Assuntos
Blastocisto , Proteína p300 Associada a E1A , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Histonas , Lisina , Histonas/metabolismo , Animais , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Blastocisto/metabolismo , Lisina/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Regiões Promotoras Genéticas , Epigênese Genética , Masculino
12.
Reprod Biol Endocrinol ; 22(1): 80, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997724

RESUMO

BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.


Assuntos
Criopreservação , Transferência Embrionária , Placenta , Criopreservação/métodos , Feminino , Gravidez , Animais , Camundongos , Transferência Embrionária/métodos , Placenta/metabolismo , Embrião de Mamíferos , Implantação do Embrião/genética , Desenvolvimento Fetal/genética , Blastocisto/metabolismo
13.
Reprod Domest Anim ; 59(7): e14663, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990011

RESUMO

The present study was conducted to investigate the global proteome of 8-day-old equine blastocysts. Follicular dynamics of eight adult mares were monitored by ultrasonography and inseminated 24 h after the detection of a preovulatory follicle. Four expanded blastocysts were recovered, pooled, and subjected to protein extraction and mass spectrometry. Protein identification was conducted based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, and PepExplorer). Enrichment analysis was performed using g:Profiler, Panther, and String platforms. After the elimination of identification redundancies among search tools (at three levels, based on identifiers, peptides, and cross-database mapping), 1977 proteins were reliably identified in the samples of equine embryos. Proteomic analysis unveiled robust metabolic activity in the 8-day equine embryo, highlighted by an abundance of proteins engaged in key metabolic pathways like the TCA cycle, ATP biosynthesis, and glycolysis. The prevalence of chaperones among highly abundant proteins suggests that regulation of protein folding, and degradation is a key process during embryo development. These findings pave the way for developing new strategies to improve equine embryo media and optimize in vitro fertilization techniques.


Assuntos
Blastocisto , Proteoma , Animais , Cavalos/embriologia , Feminino , Blastocisto/metabolismo , Desenvolvimento Embrionário , Estudos Prospectivos , Proteômica , Fertilização in vitro/veterinária
14.
Front Endocrinol (Lausanne) ; 15: 1428147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957445

RESUMO

Background: Amphiregulin (AR) is a growth factor that resembles the epidermal growth factor (EGF) and serves various functions in different cells. However, no systematic studies or reports on the role of AR in human oocytes have currently been performed or reported. This study aimed to explore the role of AR in human immature oocytes during in vitro maturation (IVM) and in vitro fertilization (IVF) in achieving better embryonic development and to provide a basis for the development of a pre-insemination culture medium specific for cumulus oocyte complexes (COCs). Methods: First, we examined the concentration of AR in the follicular fluid (FF) of patients who underwent routine IVF and explored the correlation between AR levels and oocyte maturation and subsequent embryonic development. Second, AR was added to the IVM medium to culture immature oocytes and investigate whether AR could improve the effects of IVM. Finally, we pioneered the use of a fertilization medium supplemented with AR for the pre-insemination culture of COCs to explore whether the involvement of AR can promote the maturation and fertilization of IVF oocytes, as well as subsequent embryonic development. Results: A total of 609 FF samples were examined, and a positive correlation between AR levels and blastocyst formation was observed. In our IVM study, the development potential and IVM rate of immature oocytes, as well as the fertilization rate of IVM oocytes in the AR-added groups, were ameliorated significantly compared to the control group (All P < 0.05). Only the IVM-50 group had a significantly higher blastocyst formation rate than the control group (P < 0.05). In the final IVF study, the maturation, fertilization, high-quality embryo, blastocyst formation, and high-quality blastocyst rates of the AR-added group were significantly higher than those of the control group (All P < 0.05). Conclusion: AR levels in the FF positively correlated with blastocyst formation, and AR involvement in pre-insemination cultures of COCs can effectively improve laboratory outcomes in IVF. Furthermore, AR can directly promote the in vitro maturation and developmental potential of human immature oocytes at an optimal concentration of 50 ng/ml.


Assuntos
Anfirregulina , Células do Cúmulo , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Humanos , Anfirregulina/metabolismo , Fertilização in vitro/métodos , Feminino , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Adulto , Células do Cúmulo/metabolismo , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/citologia , Líquido Folicular/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Gravidez , Meios de Cultura/química , Técnicas de Cultura Embrionária/métodos , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos
15.
Anal Chem ; 96(29): 11832-11844, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38979898

RESUMO

An effective tool to assess embryo quality in the assisted reproduction clinical practice will enhance successful implantation rates and mitigate high risks of multiple pregnancies. Potential biomarkers secreted into culture medium (CM) during embryo development enable rapid and noninvasive methods of assessing embryo quality. However, small volumes, low biomolecule concentrations, and impurity interference collectively preclude the identification of quality-related biomarkers in single blastocyst CM. Here, we developed a noninvasive trace multiomics approach to screen for potential markers in individual human blastocyst CM. We collected 84 CM samples and divided them into high-quality (HQ) and low-quality (LQ) groups. We evaluated the differentially expressed proteins (DEPs) and metabolites (DEMs) in HQ and LQ CM. A total of 504 proteins and 189 metabolites were detected in individual blastocyst CM. Moreover, 9 DEPs and 32 DEMs were identified in different quality embryo CM. We also categorized HQ embryos into positive implantation (PI) and negative implantation (NI) groups based on ultrasound findings on day 28. We identified 41 DEPs and 4 DEMs associated with clinical implantation outcomes in morphologically HQ embryos using a multiomics analysis approach. This study provides a noninvasive multiomics analysis technique and identifies potential biomarkers for clinical embryo developmental quality assessment.


Assuntos
Biomarcadores , Meios de Cultura , Metabolômica , Proteômica , Humanos , Biomarcadores/metabolismo , Biomarcadores/análise , Proteômica/métodos , Metabolômica/métodos , Meios de Cultura/química , Meios de Cultura/metabolismo , Blastocisto/metabolismo , Blastocisto/citologia , Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Multiômica
16.
Cell Mol Life Sci ; 81(1): 297, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992309

RESUMO

Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.


Assuntos
Blastocisto , Diferenciação Celular , Antígenos Embrionários Estágio-Específicos , Cordão Umbilical , Humanos , Antígenos Embrionários Estágio-Específicos/metabolismo , Cordão Umbilical/citologia , Blastocisto/citologia , Blastocisto/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única , Telomerase/metabolismo , Telomerase/genética , Feminino
17.
Theriogenology ; 226: 378-386, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972169

RESUMO

METTL3-mediated N6-methyladenosine (m6A) modification is critical for gametogenesis and early embryonic development. However, the function of METTL3-mediated m6A modification in the early development of somatic nuclear transfer embryos (SCNT) remains unclear. Here, we found that METTL3 mRNA and protein levels exhibit dynamic changes during the early development of porcine SCNT embryos. The levels of METTL3 mRNA and protein in SCNT embryos at specific developmental stages differ from those in parthenogenetic activation (PA) counterparts. SiRNA injection effectively reduced the levels of METTL3 mRNA and protein in 4-cell embryos and blastocysts. METTL3 knockdown significantly reduced the cleavage and blastocyst rates of SCNT embryos. METTL3 knockdown significantly reduced the number of total cells and trophectoderm (TE) cells in the resulting blastocysts and perturbed cell lineage allocation. In addition, METTL3 knockdown reduced the levels of m6A modification in 4-cell embryos and blastocysts. Importantly, METTL3 knockdown decreased the expression levels of CDX2, GATA3, NANOG and YAP, and increased the expression levels of SOX2 and OCT4. Taken together, these results demonstrate that METTL3-mediated m6A modification regulates early development and lineage differentiation of porcine SCNT embryos.


Assuntos
Clonagem de Organismos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Metiltransferases , Animais , Suínos/embriologia , Suínos/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Clonagem de Organismos/veterinária , Clonagem de Organismos/métodos , Técnicas de Transferência Nuclear/veterinária , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilação , Técnicas de Silenciamento de Genes , Blastocisto/metabolismo , Embrião de Mamíferos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
18.
Gene ; 927: 148667, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857715

RESUMO

An improved understanding of the cfDNA fragmentomics has proved it as a promising biomarker in clinical applications. However, biological characteristics of cfDNA in spent embryos culture medium (SECM) remain unsolved obstacles before the application in non-invasive in-vitro embryo selection. In this study, we developed a Tn5 transposase and ligase integrated dual-library construction sequencing strategy (TDual-Seq) and revealed the fragmentomic profile of cfDNA of all sizes in early embryonic development. The detected ratio of long cfDNA (>500 bp) was improved from 4.23 % by traditional NGS to 12.80 % by TDual-Seq. End motif analysis showed long cfDNA molecules have a more dominance of fragmentation intracellularly in apoptotic cells with higher predominance of G-end, while shorter cfDNA undergo fragmentation process both intracellularly and extracellularly. Moreover, the mutational pattern of cfDNA and the correlated GO biological process were well differentiated in cleavage and blastocyst embryos. Finally, we developed a multiparametric index (TQI) that employs the fragmentomic profiles of cfDNA, and achieved an area under the ROC curve of 0.927 in screening top quality embryos. TDual-Seq strategy has facilitated characterizing the fragmentomic profile of cfDNA of all sizes in SECM, which are served as a class of non-invasive biomarkers in the evaluation of embryo quality in in-vitro fertilization. And this improved strategy has opened up potential clinical utilities of long cfDNA analysis.


Assuntos
Biomarcadores , Ácidos Nucleicos Livres , Meios de Cultura , Técnicas de Cultura Embrionária , Ácidos Nucleicos Livres/genética , Animais , Técnicas de Cultura Embrionária/métodos , Blastocisto/metabolismo , Feminino , Desenvolvimento Embrionário/genética , Fertilização in vitro/métodos , Camundongos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Embrião de Mamíferos/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(27): e2317316121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917013

RESUMO

A dispersed cytoplasmic distribution of mitochondria is a hallmark of normal cellular organization. Here, we have utilized the expression of exogenous Trak2 in mouse oocytes and embryos to disrupt the dispersed distribution of mitochondria by driving them into a large cytoplasmic aggregate. Our findings reveal that aggregated mitochondria have minimal impact on asymmetric meiotic cell divisions of the oocyte. In contrast, aggregated mitochondria during the first mitotic division result in daughter cells with unequal sizes and increased micronuclei. Further, in two-cell embryos, microtubule-mediated centering properties of the mitochondrial aggregate prevent nuclear centration, distort nuclear shape, and inhibit DNA synthesis and the onset of embryonic transcription. These findings demonstrate the motor protein-mediated distribution of mitochondria throughout the cytoplasm is highly regulated and is an essential feature of cytoplasmic organization to ensure optimal cell function.


Assuntos
Blastocisto , Núcleo Celular , Mitocôndrias , Oócitos , Animais , Mitocôndrias/metabolismo , Blastocisto/metabolismo , Blastocisto/citologia , Camundongos , Núcleo Celular/metabolismo , Oócitos/metabolismo , Oócitos/citologia , Feminino , Desenvolvimento Embrionário/fisiologia , Microtúbulos/metabolismo , Mitose , Meiose/fisiologia
20.
Reproduction ; 168(3)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917030

RESUMO

In brief: In the present study the sustainable effect of L-carnitine during the culture period on the post-transfer development was investigated. Taken together, we uncovered direct effects of L-carnitine on the bioenergetic profile of day 7 blastocysts along with sustainable effects on mtDNA copy numbers and transcriptome profile of bovine day 14 embryos. Abstract: L-Carnitine (LC) is known to play key roles in lipid metabolism and antioxidative activity, implicating enhanced cryotolerance of bovine blastocysts. However, sustainability of LC supplementation during culture period on preimplantation development beyond the blastocyst stage has not been investigated so far. Therefore, all embryos were cultured under fatty acid-free conditions, one group with LC (LC embryos) and the control group without LC (control) supplementation. Transfer to recipients was conducted on day 6. Elongation-stage embryos were recovered on day 14; metrics of embryo recollection, developmental rates as regards early elongation-stage as well as mean embryo length did not differ between the groups. Gene expression analyses via NGS revealed 341 genes to be differentially regulated between elongation-stage embryos derived from LC supplementation compared to controls. These played mainly a role in molecular functions and biological processes like oxidoreductase activity, ATP-dependent activity, cellular stress, and respiration. Pathways like oxidative phosphorylation and thermogenesis, extracellular matrix receptor signaling, PI3K-Akt, and focal adhesion were affected by differentially regulated genes. Moreover, all DEGs located on the mitochondria were significantly downregulated in LC embryos, being in line with lower mitochondrial copy number and mtDNA integrity compared to the control group. Finally, we uncovered alterations of the bioenergetic profile on day 7 as a consequence of LC supplementation for the first time, revealing significantly higher oxygen consumption rates, ATP linked respiration and spare capacity for LC embryos. In summary, we uncovered direct effects of LC supplementation during the culture period on the bioenergetic profile along with sustainable effects on mtDNA copy numbers and transcriptome profile of bovine day 14 embryos.


Assuntos
Blastocisto , Carnitina , Desenvolvimento Embrionário , Metabolismo Energético , Transcriptoma , Animais , Bovinos , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos , Carnitina/farmacologia , Transcriptoma/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gravidez , Perfilação da Expressão Gênica , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Transferência Embrionária/veterinária , Fertilização in vitro/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...