Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.656
Filtrar
1.
Sci Rep ; 14(1): 16092, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997408

RESUMO

Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 µM and 1.54 ± 0.28 µM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.


Assuntos
Peptídeos , Bloqueadores dos Canais de Potássio , Venenos de Escorpião , Escorpiões , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Escorpiões/química , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Animais , Peptídeos/química , Peptídeos/farmacologia , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/química , Proteólise , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.2/química , Estabilidade Proteica , Sequência de Aminoácidos , Técnicas de Patch-Clamp , Células HEK293
2.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931004

RESUMO

Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.


Assuntos
Química Farmacêutica , Epilepsia , Bloqueadores dos Canais de Potássio , Humanos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Química Farmacêutica/métodos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Relação Estrutura-Atividade , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio Ativados por Sódio
3.
Molecules ; 29(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893312

RESUMO

Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.


Assuntos
Bloqueadores dos Canais de Potássio , Relação Estrutura-Atividade , Humanos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Sódio , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Xantina/química , Xantina/farmacologia , Técnicas de Patch-Clamp , Células HEK293 , Estrutura Molecular , Xantinas/química , Xantinas/farmacologia
4.
Pediatr Neurol ; 157: 5-13, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833907

RESUMO

BACKGROUND: Congenital myasthenic syndromes (CMS) are a group of inherited neuromuscular junction (NMJ) disorders arising from gene variants encoding diverse NMJ proteins. Recently, the VAMP1 gene, responsible for encoding the vesicle-associated membrane protein 1 (VAMP1), has been associated with CMS. METHODS: This study presents a characterization of five new individuals with VAMP1-related CMS, providing insights into the phenotype. RESULTS: The individuals with VAMP1-related CMS exhibited early disease onset, presenting symptoms prenatally or during the neonatal period, alongside severe respiratory involvement and feeding difficulties. Generalized weakness at birth was a common feature, and none of the individuals achieved independent walking ability. Notably, all cases exhibited scoliosis. The clinical course remained stable, without typical exacerbations seen in other CMS types. The response to anticholinesterase inhibitors and salbutamol was only partial, but the addition of 3,4-diaminopyridine (3,4-DAP) led to significant and substantial improvements, suggesting therapeutic benefits of 3,4-DAP for managing VAMP1-related CMS symptoms. Noteworthy is the identification of the VAMP1 (NM_014231.5): c.340delA; p.Ile114SerfsTer72 as a founder variant in the Iberian Peninsula and Latin America. CONCLUSIONS: This study contributes valuable insights into VAMP1-related CMS, emphasizing their early onset, arthrogryposis, facial and generalized weakness, respiratory involvement, and feeding difficulties. Furthermore, the potential efficacy of 3,4-DAP as a useful therapeutic option warrants further exploration. The findings have implications for clinical management and genetic counseling in affected individuals. Additional research is necessary to elucidate the long-term outcomes of VAMP1-related CMS.


Assuntos
Amifampridina , Síndromes Miastênicas Congênitas , Fenótipo , Proteína 1 Associada à Membrana da Vesícula , Humanos , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Feminino , Masculino , Amifampridina/farmacologia , Proteína 1 Associada à Membrana da Vesícula/genética , Criança , Adolescente , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacologia , 4-Aminopiridina/uso terapêutico , Pré-Escolar , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Lactente
5.
Europace ; 26(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788213

RESUMO

AIMS: Human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCM) could be a helpful tool to study the physiology and diseases of the human atrium. To fulfil this expectation, the electrophysiology of hiPSC-aCM should closely resemble the situation in the human atrium. Data on the contribution of the slowly activating delayed rectifier currents (IKs) to repolarization are lacking for both human atrium and hiPSC-aCM. METHODS AND RESULTS: Human atrial tissues were obtained from patients with sinus rhythm (SR) or atrial fibrillation (AF). Currents were measured in human atrial cardiomyocytes (aCM) and compared with hiPSC-aCM and used to model IKs contribution to action potential (AP) shape. Action potential was recorded by sharp microelectrodes. HMR-1556 (1 µM) was used to identify IKs and to estimate IKs contribution to repolarization. Less than 50% of hiPSC-aCM and aCM possessed IKs. Frequency of occurrence, current densities, activation/deactivation kinetics, and voltage dependency of IKs did not differ significantly between hiPSC-aCM and aCM, neither in SR nor AF. ß-Adrenoceptor stimulation with isoprenaline did not increase IKs neither in aCM nor in hiPSC-aCM. In tissue from SR, block of IKs with HMR-1556 did not lengthen the action potential duration, even when repolarization reserve was reduced by block of the ultra-rapid repolarizing current with 4-aminopyridine or the rapidly activating delayed rectifier potassium outward current with E-4031. CONCLUSION: I Ks exists in hiPSC-aCM with biophysics not different from aCM. As in adult human atrium (SR and AF), IKs does not appear to relevantly contribute to repolarization in hiPSC-aCM.


Assuntos
Potenciais de Ação , Fibrilação Atrial , Canais de Potássio de Retificação Tardia , Átrios do Coração , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Átrios do Coração/fisiopatologia , Canais de Potássio de Retificação Tardia/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/metabolismo , Feminino , Células Cultivadas , Masculino , Pessoa de Meia-Idade , Cinética , Idoso , Diferenciação Celular , Modelos Cardiovasculares , Bloqueadores dos Canais de Potássio/farmacologia
6.
J Med Chem ; 67(11): 9731-9744, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38807539

RESUMO

Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound 28 (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.


Assuntos
Insuficiência Cardíaca , Bloqueadores dos Canais de Potássio , Animais , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Ratos , Bloqueadores dos Canais de Potássio/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacocinética , Bloqueadores dos Canais de Potássio/síntese química , Relação Estrutura-Atividade , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Descoberta de Drogas , Diurese/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/uso terapêutico , Piperazinas/síntese química , Piperazinas/farmacocinética , Masculino , Ratos Sprague-Dawley
7.
Chem Res Toxicol ; 37(6): 910-922, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38781421

RESUMO

The human Ether-à-go-go-Related Gene (hERG) is a transmembrane protein that regulates cardiac action potential, and its inhibition can induce a potentially deadly cardiac syndrome. In vitro tests help identify hERG blockers at early stages; however, the high cost motivates searching for alternative, cost-effective methods. The primary goal of this study was to enhance the Pred-hERG tool for predicting hERG blockage. To achieve this, we developed new QSAR models that incorporated additional data, updated existing classificatory and multiclassificatory models, and introduced new regression models. Notably, we integrated SHAP (SHapley Additive exPlanations) values to offer a visual interpretation of these models. Utilizing the latest data from ChEMBL v30, encompassing over 14,364 compounds with hERG data, our binary and multiclassification models outperformed both the previous iteration of Pred-hERG and all publicly available models. Notably, the new version of our tool introduces a regression model for predicting hERG activity (pIC50). The optimal model demonstrated an R2 of 0.61 and an RMSE of 0.48, surpassing the only available regression model in the literature. Pred-hERG 5.0 now offers users a swift, reliable, and user-friendly platform for the early assessment of chemically induced cardiotoxicity through hERG blockage. The tool provides versatile outcomes, including (i) classificatory predictions of hERG blockage with prediction reliability, (ii) multiclassificatory predictions of hERG blockage with reliability, (iii) regression predictions with estimated pIC50 values, and (iv) probability maps illustrating the contribution of chemical fragments for each prediction. Furthermore, we implemented explainable AI analysis (XAI) to visualize SHAP values, providing insights into the contribution of each feature to binary classification predictions. A consensus prediction calculated based on the predictions of the three developed models is also present to assist the user's decision-making process. Pred-hERG 5.0 has been designed to be user-friendly, making it accessible to users without computational or programming expertise. The tool is freely available at http://predherg.labmol.com.br.


Assuntos
Canais de Potássio Éter-A-Go-Go , Relação Quantitativa Estrutura-Atividade , Humanos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Medição de Risco , Análise de Regressão , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química
8.
J Med Chem ; 67(11): 9124-9149, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38782404

RESUMO

Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Relação Estrutura-Atividade , Células HEK293 , Simulação por Computador , Canais de Potássio Ativados por Sódio
9.
Mar Drugs ; 22(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786608

RESUMO

We identified a new human voltage-gated potassium channel blocker, NnK-1, in the jellyfish Nemopilema nomurai based on its genomic information. The gene sequence encoding NnK-1 contains 5408 base pairs, with five introns and six exons. The coding sequence of the NnK-1 precursor is 894 nucleotides long and encodes 297 amino acids containing five presumptive ShK-like peptides. An electrophysiological assay demonstrated that the fifth peptide, NnK-1, which was chemically synthesized, is an effective blocker of hKv1.3, hKv1.4, and hKv1.5. Multiple-sequence alignment with cnidarian Shk-like peptides, which have Kv1.3-blocking activity, revealed that three residues (3Asp, 25Lys, and 34Thr) of NnK-1, together with six cysteine residues, were conserved. Therefore, we hypothesized that these three residues are crucial for the binding of the toxin to voltage-gated potassium channels. This notion was confirmed by an electrophysiological assay with a synthetic peptide (NnK-1 mu) where these three peptides were substituted with 3Glu, 25Arg, and 34Met. In conclusion, we successfully identified and characterized a new voltage-gated potassium channel blocker in jellyfish that interacts with three different voltage-gated potassium channels. A peptide that interacts with multiple voltage-gated potassium channels has many therapeutic applications in various physiological and pathophysiological contexts.


Assuntos
Peptídeos , Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Cifozoários , Animais , Humanos , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos/química , Sequência de Aminoácidos , Venenos de Cnidários/farmacologia , Venenos de Cnidários/química , Alinhamento de Sequência
10.
Am J Emerg Med ; 80: 231.e1-231.e2, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693021

RESUMO

3,4-Aminopyridine or Amifampridine belongs to the aminopyridine class of drugs which is used to treat multiple sclerosis and Lambert-Eaton Myasthenic Syndrome (LEMS). Aminopyridine pharmaceuticals inhibit presynaptic potassium channels. This increases available acetylcholine in the nerve cleft which leads to improved strength in this patient population. While overdoses have been reported of 4-Aminopyridine, no case reports of acute 3.4-Aminopyridine overdose are currently available. A 67 year old man presented to the emergency department 30 min after ingesting 100 mg of amifampridine in a suicide attempt. Within an hour of ingestion he experienced tachycardia, tachypnea, hypertension and tremor. The patient then started to experience seizures and had a cardiac arrest 3 h after the ingestion. The patient achieved return of spontaneous circulation but proceeded to have refractory seizures. Despite significant and escalating doses of anti-epileptic medications, the patient continued to have seizures until 18 h after ingestion. His anti-epileptic medications were weaned over the following days and he had no more seizures. This is a report of a novel overdose of 3,4-Aminopyridine, a medication that belongs to the aminopyridine class of pharmaceuticals that have been well used for many years. Aminopyridine overdoses are commonly thought to carry low morbidity and mortality; however, our patient had both a cardiac arrest and refractory status epilepticus. Ultimately, this case suggests that patients who overdose on 3,4-Aminopyridine could become critically ill and their presentation may be far more severe than that of other medications of the same class.


Assuntos
Amifampridina , Overdose de Drogas , Bloqueadores dos Canais de Potássio , Estado Epiléptico , Humanos , Masculino , Idoso , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Bloqueadores dos Canais de Potássio/intoxicação , Tentativa de Suicídio , Anticonvulsivantes/intoxicação
11.
Biomed Pharmacother ; 175: 116651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692062

RESUMO

Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.


Assuntos
Canal de Potássio Kv1.3 , Neoplasias , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Terapia de Alvo Molecular , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo
12.
Sci Rep ; 14(1): 11105, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750155

RESUMO

4-aminopyridine (4AP) is a potassium (K+) channel blocker used clinically to improve walking in people with multiple sclerosis (MS). 4AP binds to exposed K+ channels in demyelinated axons, reducing the leakage of intracellular K+ and enhancing impulse conduction. Multiple derivatives of 4AP capable of blocking K+ channels have been reported including three radiolabeled with positron emitting isotopes for imaging demyelinated lesions using positron emission tomography (PET). However, there remains a demand for novel molecules with suitable physicochemical properties and binding affinity that can potentially be radiolabeled and used as PET radiotracers. In this study, we introduce 3-fluoro-5-methylpyridin-4-amine (5Me3F4AP) as a novel trisubstituted K+ channel blocker with potential application in PET. 5Me3F4AP has comparable potency to 4AP and the PET tracer 3-fluoro-4-aminopyridine (3F4AP). Compared to 3F4AP, 5Me3F4AP exhibits comparable basicity (pKa = 7.46 ± 0.01 vs. 7.37 ± 0.07, P-value = 0.08), greater lipophilicity (logD = 0.664 ± 0.005 vs. 0.414 ± 0.002, P-value < 0.0001) and higher permeability to an artificial brain membrane (Pe = 88.1 ± 18.3 vs. 31.1 ± 2.9 nm/s, P-value = 0.03). 5Me3F4AP is also more stable towards oxidation in vitro by the cytochrome P450 enzyme CYP2E1 (IC50 = 36.2 ± 2.5 vs. 15.4 ± 5.1, P-value = 0.0003); the enzyme responsible for the metabolism of 4AP and 3F4AP. Taken together, 5Me3F4AP has promising properties as a candidate for PET imaging warranting additional investigation.


Assuntos
Tomografia por Emissão de Pósitrons , Bloqueadores dos Canais de Potássio , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Humanos , Tomografia por Emissão de Pósitrons/métodos , 4-Aminopiridina/farmacologia , 4-Aminopiridina/química , 4-Aminopiridina/análogos & derivados , Amifampridina/metabolismo
13.
Eur J Pharmacol ; 973: 176610, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663541

RESUMO

Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 µM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.


Assuntos
Aripiprazol , Vasos Coronários , Miócitos de Músculo Liso , Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Aripiprazol/farmacologia , Coelhos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/citologia , Bloqueadores dos Canais de Potássio/farmacologia , Masculino , Antipsicóticos/farmacologia , Relação Dose-Resposta a Droga
14.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38677570

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Assuntos
Analgésicos , Gânglios Espinais , Dor , Zanthoxylum , Animais , Zanthoxylum/química , Humanos , Células HEK293 , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Camundongos , Masculino , Dor/tratamento farmacológico , Isoquinolinas/farmacologia , Isoquinolinas/isolamento & purificação , Isoquinolinas/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Alcaloides/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Inflamação/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Camundongos Endogâmicos C57BL , Cricetulus
15.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563123

RESUMO

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Assuntos
Arginina , Canal de Potássio ERG1 , Simulação de Dinâmica Molecular , Venenos de Escorpião , Animais , Humanos , Arginina/química , Arginina/metabolismo , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Mutação , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
16.
Cardiovasc Res ; 120(7): 735-744, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38442735

RESUMO

AIMS: While variants in KCNQ1 are the commonest cause of the congenital long QT syndrome, we and others find only a small IKs in cardiomyocytes from human-induced pluripotent stem cells (iPSC-CMs) or human ventricular myocytes. METHODS AND RESULTS: We studied population control iPSC-CMs and iPSC-CMs from a patient with Jervell and Lange-Nielsen (JLN) syndrome due to compound heterozygous loss-of-function (LOF) KCNQ1 variants. We compared the effects of pharmacologic IKs block to those of genetic KCNQ1 ablation, using JLN cells, cells homozygous for the KCNQ1 LOF allele G643S, or siRNAs reducing KCNQ1 expression. We also studied the effects of two blockers of IKr, the other major cardiac repolarizing current, in the setting of pharmacologic or genetic ablation of KCNQ1: moxifloxacin, associated with a very low risk of drug-induced long QT, and dofetilide, a high-risk drug. In control cells, a small IKs was readily recorded but the pharmacologic IKs block produced no change in action potential duration at 90% repolarization (APD90). In contrast, in cells with genetic ablation of KCNQ1 (JLN), baseline APD90 was markedly prolonged compared with control cells (469 ± 20 vs. 310 ± 16 ms). JLN cells displayed increased sensitivity to acute IKr block: the concentration (µM) of moxifloxacin required to prolong APD90 100 msec was 237.4 [median, interquartile range (IQR) 100.6-391.6, n = 7] in population cells vs. 23.7 (17.3-28.7, n = 11) in JLN cells. In control cells, chronic moxifloxacin exposure (300 µM) mildly prolonged APD90 (10%) and increased IKs, while chronic exposure to dofetilide (5 nM) produced greater prolongation (67%) and no increase in IKs. However, in the siRNA-treated cells, moxifloxacin did not increase IKs and markedly prolonged APD90. CONCLUSION: Our data strongly suggest that KCNQ1 expression modulates baseline cardiac repolarization, and the response to IKr block, through mechanisms beyond simply generating IKs.


Assuntos
Potenciais de Ação , Células-Tronco Pluripotentes Induzidas , Síndrome de Jervell-Lange Nielsen , Canal de Potássio KCNQ1 , Moxifloxacina , Miócitos Cardíacos , Fenetilaminas , Sulfonamidas , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Potenciais de Ação/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Moxifloxacina/farmacologia , Fenetilaminas/farmacologia , Sulfonamidas/farmacologia , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de Jervell-Lange Nielsen/metabolismo , Síndrome de Jervell-Lange Nielsen/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , Fluoroquinolonas/farmacologia
17.
J Biol Chem ; 300(4): 107155, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479597

RESUMO

Despite significant advances in the development of therapeutic interventions targeting autoimmune diseases and chronic inflammatory conditions, lack of effective treatment still poses a high unmet need. Modulating chronically activated T cells through the blockade of the Kv1.3 potassium channel is a promising therapeutic approach; however, developing selective Kv1.3 inhibitors is still an arduous task. Phage display-based high throughput peptide library screening is a rapid and robust approach to develop promising drug candidates; however, it requires solid-phase immobilization of target proteins with their binding site preserved. Historically, the KcsA bacterial channel chimera harboring only the turret region of the human Kv1.3 channel was used for screening campaigns. Nevertheless, literature data suggest that binding to this type of chimera does not correlate well with blocking potency on the native Kv1.3 channels. Therefore, we designed and successfully produced advanced KcsA-Kv1.3, KcsA-Kv1.1, and KcsA-Kv1.2 chimeric proteins in which both the turret and part of the filter regions of the human Kv1.x channels were transferred. These T+F (turret-filter) chimeras showed superior peptide ligand-binding predictivity compared to their T-only versions in novel phage ELISA assays. Phage ELISA binding and competition results supported with electrophysiological data confirmed that the filter region of KcsA-Kv1.x is essential for establishing adequate relative affinity order among selected peptide toxins (Vm24 toxin, Hongotoxin-1, Kaliotoxin-1, Maurotoxin, Stichodactyla toxin) and consequently obtaining more reliable selectivity data. These new findings provide a better screening tool for future drug development efforts and offer insight into the target-ligand interactions of these therapeutically relevant ion channels.


Assuntos
Canal de Potássio Kv1.3 , Bloqueadores dos Canais de Potássio , Proteínas Recombinantes de Fusão , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/química , Ligantes , Biblioteca de Peptídeos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Linhagem Celular
18.
Nat Chem Biol ; 20(7): 857-866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38355723

RESUMO

Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.


Assuntos
Antidepressivos , Canais de Potássio Corretores do Fluxo de Internalização , Antidepressivos/farmacologia , Antidepressivos/química , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Camundongos , Masculino , Ratos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química
19.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338871

RESUMO

Peripheral cytokine levels may serve as biomarkers for treatment response and disease monitoring in patients with multiple sclerosis (pwMS). The objectives were to assess changes in plasma biomarkers in PwMS after 14 days of fampridine treatment and to explore correlations between changes in performance measures and plasma biomarkers. We included 27 PwMS, 14 women and 13 men, aged 52.0 ± 11.6 years, with a disease duration of 17 ± 8.5 years, and an Expanded Disability Status Scale of 6 [IQR 5.0/6.5]. Gait and hand function were assessed using performance tests completed prior to fampridine and after 14 days of treatment. Venous blood was obtained, and chemiluminescence analysis conducted to assess plasma cytokines and neurodegenerative markers. All performance measures demonstrated improvements. Biomarkers showed decreased tumor necrosis factor (TNF) receptor-2 levels. Associations were found between change scores in (i) Six Spot Step Test and Interleukin (IL)-2, IL-8, and IL-17 levels; (ii) timed 25-foot walk and interferon-γ, IL-2, IL-8, TNF-α, and neurofilament light levels, and (iii) 12-Item Multiple Sclerosis Walking Scale and IL-17 levels. The associations may reflect increased MS-related inflammatory activity rather than a fampridine-induced response or that a higher level of inflammation induces a better response to fampridine.


Assuntos
Esclerose Múltipla , Masculino , Humanos , Feminino , Esclerose Múltipla/tratamento farmacológico , Interleucina-17 , Bloqueadores dos Canais de Potássio/uso terapêutico , Interleucina-8 , Resultado do Tratamento , 4-Aminopiridina/uso terapêutico
20.
Expert Opin Ther Targets ; 28(1-2): 67-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38316438

RESUMO

INTRODUCTION: Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED: This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION: Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.


Assuntos
Doenças Autoimunes , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Estudos Prospectivos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Transdução de Sinais , Canal de Potássio Kv1.3 , Bloqueadores dos Canais de Potássio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...