Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.806
Filtrar
1.
Environ Geochem Health ; 46(11): 447, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316304

RESUMO

Tilapia is a model fish species used as a pollution biomonitor due to its tolerance and availability in many contaminated sites. Blue tilapia Oreochromis aureus specimens (n = 320) were collected in eleven dams influenced by mining in the SE Gulf of California region (dams 1, 2 and, 3 comprise 55 mining sites; dam 4 comprises 8; dams 6, 8, 10, and 11, ≤ 6; and dams 5, 7, and 9 include 19, 20, and 16 mining sites, respectively). Cadmium, Cu, Pb, and Zn concentrations were analyzed in the muscle, liver, gills, and guts to identify metal pollution and evaluate risks and seasonal changes. The distinct tissues exhibited different metal accumulation capacities, therefore allowed develop a diagnosis comparative between the eleven dams. In general, metal concentrations were higher in dams 1, 2, 5, and 9, which are associated with more mining sites in their sub-basins. The four metals exhibited the highest levels in the tilapia liver in dams 1 and 2, which can be related to the present and past mining activity in the lower watershed (55 sites) and the geothermal activity in these dams. In general, Zn exhibited the highest level in the tilapia livers from dams 1, 2, 3, 4, 5, and 10 compared to the maximum mean (220 µg/g) concentrations previously recorded. The non-carcinogenic risks indicated that the Pb risk was enhanced when the intake was ≥ 231.5 g week-1 of tilapia muscle, indicating a potential risk of adverse health effects for the entire population.


Assuntos
Metais Pesados , Mineração , Tilápia , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Poluentes Químicos da Água/análise , Medição de Risco , Metais Pesados/análise , Fígado/metabolismo , Fígado/química , Monitoramento Biológico , Músculos/química , Músculos/metabolismo , Monitoramento Ambiental/métodos , Brânquias/metabolismo , Brânquias/química
2.
Sci Total Environ ; 953: 175984, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39244042

RESUMO

Alkyldimethylbenzylammonium chlorides (ADBACs), classified as second-generation quaternary ammonium compounds, are extensively employed across various sectors, encompassing veterinary medicine, food production, pharmaceuticals, cosmetics, ophthalmology, and agriculture. Consequently, significant volumes of ADBAC C12-C16 are discharged into the environment, posing a threat to aquatic organisms. Regrettably, comprehensive data regarding the toxicological characteristics of these compounds remain scarce. This research aimed to determine whether or not ADBAC C12-C16, at environmentally relevant concentrations (0.4, 0.8, and 1.6 µg/L), may instigate oxidative stress and alter the expression of apoptosis-related genes in the liver, brain, gut, and gills of Danio rerio adults (5-6 months). The findings revealed that ADBAC C12-C16 elicited an oxidative stress response across all examined organs following 96 h of exposure. Nonetheless, the magnitude of this response varied among organs, with the gills exhibiting the highest degree of susceptibility, followed by the gut, liver, and brain, in descending order. Only the gut and gills of the examined organs displayed a concentration-dependent reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Akin to the oxidative stress response, all organs exhibited a marked increase in bax, blc2, casp3, and p53 expression levels. However, the gills and gut manifested a distinctive suppression in the expression of nrf1 and nrf2. Our Principal Component Analysis (PCA) confirmed that SOD, CAT, nrf1, and nrf2 were negatively correlated to oxidative damage biomarkers and apoptosis-related genes in the gills and gut; meanwhile, in the remaining organs, all biomarkers were extensively correlated. From the above, it can be concluded that ADBAC C12-C16 in low and environmental concentrations may threaten the health of freshwater fish.


Assuntos
Estresse Oxidativo , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Compostos de Benzalcônio/toxicidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-39218132

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE), are common pollutants found in coastal areas where shrimp farming is developed. Even though PAHs can have adverse effects on physiology, shrimp can detoxify and metabolize toxic compounds and neutralize the reactive oxygen species (ROS) produced during this process. This requires the activation of multiple antioxidant enzymes, including peroxiredoxin 6 (Prx6). Prx6 uses glutathione (GSH) to reduce phospholipid hydroperoxides, a function shared with GSH peroxidase 4 (GPx4). Prx6 has been scarcely studied in crustaceans exposed to pollutants. Herein, we report a novel Prx6 from the shrimp Penaeus vannamei that is abundantly expressed in gills and hepatopancreas. To elucidate the involvement of Prx6 in response to PAHs, we analyzed its expression in the hepatopancreas of shrimp sub-lethally exposed to PHE (3.3 µg/L) and acetone (control) for 24, 48, 72, and 96 h, along with GPx4 expression, GSH-dependent peroxidase activity, and lipid peroxidation (indicated by TBARS). We found that GPx4 expression is not affected by PHE, but Prx6 expression and peroxidase activity decreased during the trial. This might contribute to the rise of TBARS found at 48 h of exposure. However, maintaining GPx4 expression could aid to minimize lipid damage during longer periods of exposure to PHE.


Assuntos
Glutationa Peroxidase , Peroxidação de Lipídeos , Penaeidae , Peroxirredoxina VI , Fenantrenos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Fenantrenos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Penaeidae/metabolismo , Penaeidae/efeitos dos fármacos , Penaeidae/genética , Penaeidae/enzimologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxirredoxina VI/metabolismo , Peroxirredoxina VI/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Poluentes Químicos da Água/toxicidade , Hepatopâncreas/metabolismo , Hepatopâncreas/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética
4.
Nat Commun ; 15(1): 7626, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227584

RESUMO

Lymphocyte receptors independently evolved in both jawed and jawless vertebrates with similar adaptive immune responses. However, the diversity of functional subtypes and molecular architecture in jawless vertebrate lymphocytes, comparable to jawed species, is not well defined. Here, we profile the gills, intestines, and blood of the lamprey, Lampetra morii, with single-cell RNA sequencing, using a full-length transcriptome as a reference. Our findings reveal higher tissue-specific heterogeneity among T-like cells in contrast to B-like cells. Notably, we identify a unique T-like cell subtype expressing a homolog of the nonlymphoid hematopoietic growth factor receptor, MPL-like (MPL-L). These MPL-L+ T-like cells exhibit features distinct from T cells of jawed vertebrates, particularly in their elevated expression of hematopoietic genes. We further discovered that MPL-L+ VLRA+ T-like cells are widely present in the typhlosole, gill, liver, kidney, and skin of lamprey and they proliferate in response to both a T cell mitogen and recombinant human thrombopoietin. These findings provide new insights into the adaptive immune response in jawless vertebrates, shedding new light on the evolution of adaptive immunity.


Assuntos
Imunidade Adaptativa , Linhagem da Célula , Lampreias , Animais , Lampreias/imunologia , Lampreias/genética , Imunidade Adaptativa/genética , Linhagem da Célula/genética , Evolução Biológica , Transcriptoma , Linfócitos T/imunologia , Brânquias/imunologia , Brânquias/metabolismo , Linfócitos/imunologia , Análise de Célula Única , Humanos
5.
Aquat Toxicol ; 275: 107075, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244834

RESUMO

This study investigated the toxicological effects and mechanisms of cadmium (Cd) (5 and 50 µg/L) and selenium (Se) (3 and 30 µg/L) at environmentally relevant concentrations on the gills and digestive glands of clams Ruditapes philippinarum. Results indicated that Cd and Se could tissue-specifically impact osmoregulation, energy metabolism, and synaptic transmission in the gills and digestive glands of clams. After exposure to 50 µg/L Cd, the digestive glands of clams up-regulated the expression of methionine-gamma-lyase and metallothionein for detoxification. Clam digestive glands exposed to 3 µg/L Se up-regulated the expression of catalase and glutathione peroxidase to alleviate oxidative stress, and down-regulated the expression of selenide-water dikinase to reduce the conversion of inorganic Se. Additionally, the interaction mode between Cd and Se largely depended on their molar ratio, with a ratio of 11.71 (50 µg/L Cd + 3 µg/L Se) demonstrated to be particularly harmful, as manifested by significantly more lesions, oxidative stress, and detoxification demand in clams than those exposed to Cd or Se alone. Collectively, this study revealed the complex interaction patterns and mechanisms of Cd and Se on clams, providing a reference for exploring their single and combined toxicity.


Assuntos
Bivalves , Cádmio , Estresse Oxidativo , Selênio , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Bivalves/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Selênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Inativação Metabólica , Estresse Fisiológico/efeitos dos fármacos
6.
Genes (Basel) ; 15(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39336811

RESUMO

The smoltification of farmed Atlantic salmon is commonly associated with mild immunosuppression. However, B cells may deviate from this trend, showing increased proliferation and migration during this period. This study assessed the effects of smoltification and adaptation to seawater in a controlled experiment. Analyses were conducted on the head kidney, spleen, gill, and both visceral and subcutaneous fat (VAT, SAT) across four time points: parr, early and complete smoltification, and twelve weeks post-seawater transfer. Gene expression analysis was performed to track the distribution and developmental changes in their B cells. Expression profiles of three types of immunoglobulins (ig), including membrane-bound and secreted forms of igm, as well as B cell-specific markers pax1 and cd79, showed strong correlations and contrasted with profiles of other immune cell markers. The highest levels of expression were observed in the lymphatic tissue, followed by the VAT. Enhanced expression in the gill and adipose tissues of smolts suggested an increase in B cell populations. Parallel sequencing of the variable region of the IgM heavy chain was used to track B cell traffic, assessed by the co-occurrence of the most abundant sequences (clonotypes) across different tissues. Smoltification markedly enhanced traffic between all tissues, which returned to initial levels after twelve weeks in the sea. The preferred migration between the head kidney, spleen, and VAT supports the role of abdominal fat as a reservoir of lymphocytes. These findings are discussed in the context of recent studies that suggested the functional significance of B cell traffic in Atlantic salmon. Specifically, the migration of B cells expressing secreted immunoglobulins to virus-infected hearts has been identified as a key factor in the disease recovery and survival of fish challenged with salmon alphavirus (SAV); this process is accelerated by vaccination. Additionally, the study of melanized foci in the skeletal muscles revealed an association between antigen-dependent differentiation and the migration of B cells, indicating a transfer from local to systemic immune responses. Updating the antibody repertoire in the lymphatic and peripheral tissues of smolts may assist in their adaptation to the marine environment and in encountering new pathogens. Emerging evidence highlights B cell migration as an important and previously unrecognized immune mechanism in salmonids.


Assuntos
Linfócitos B , Salmo salar , Animais , Salmo salar/genética , Salmo salar/imunologia , Salmo salar/crescimento & desenvolvimento , Linfócitos B/imunologia , Linfócitos B/metabolismo , Água do Mar , Baço/imunologia , Baço/metabolismo , Baço/citologia , Brânquias/metabolismo , Brânquias/citologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunoglobulina M/genética
7.
J Aquat Anim Health ; 36(3): 265-274, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39152670

RESUMO

OBJECTIVE: Metals have been reported to alter the oxidative status of both redox-active and redox-inactive metals accompanying oxidative stress induction. In aquatic ecosystems, metal contamination is regarded as serious pollutants and bioaccumulation, especially when aquatic seafood products are involved, which results in human risk. The blue swimming crab Portunus pelagicus is a highly popular crab species for consumption as seafood in Thailand. The meat parts and the hepatopancreas (HP) together with gonad are consumed and in high demand. Therefore, the present study aimed to investigate bioaccumulation of cadmium (Cd) and lead (Pb) along with tissue oxidative responses in P. pelagicus. METHODS: Sixty-seven samples of P. pelagicus were obtained from small-scale fishers along the coastline of Trang Province. Bioaccumulation of Cd and Pb and oxidative response in gill, muscle, and HP + gonad were evaluated. RESULT: Cadmium and Pb accumulation levels were highest in the HP and gonad, followed by the gill and then muscle, indicating that Cd and Pb have a high affinity to be concentrated in the HP and gonad. An organ-specific oxidative response to Cd and Pb accumulation was demonstrated in which Cd significantly activated superoxide dismutase (SOD) activity in the gills and muscle tissue, while Pb significantly activated the SOD activity only in the HP and gonad. Only Cd accumulation in gill tissue represented a significant activation of lipid peroxidation, as indicated by the malondialdehyde level. CONCLUSION: This study implied that P. pelagicus exhibits an "adaptive stage" in the oxidative response of tissue due to metal accumulation. Additionally, the data presented here further indicate that the consumption of only the meat parts and removal of the HP and gonad would reduce human exposure to metal toxicity.


Assuntos
Braquiúros , Cádmio , Chumbo , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Chumbo/metabolismo , Braquiúros/efeitos dos fármacos , Braquiúros/metabolismo , Tailândia , Estresse Oxidativo/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Bioacumulação , Brânquias/metabolismo , Brânquias/efeitos dos fármacos
8.
Sci Total Environ ; 951: 175625, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163933

RESUMO

The toxic effects of tire wear particles (TWPs) in the environment are a growing concern for a variety of aquatic organisms. However, studies about TWPs toxicity on aquatic organisms are limited. This study investigated the accumulation and depuration of TWPs in zebrafish at three different concentrations (5 mg/L, 10 mg/L, and 20 mg/L), as well as the toxic effects on the gill, liver, and gut. We found that TWPs could accumulate in the gill and gut for a long time, and the number of TWPs at the high-concentration (20 mg/L) was higher than at the low-concentration (5 mg/L). TWPs induced oxidative stress in the gill and liver. The liver transcriptome profiles indicated that the high concentration of TWPs tended to up-regulate metabolic processes, whereas the low concentration of TWPs was inclined to down-regulate cellular processes. The high-concentration treatment significantly increased xenobiotic biodegradation and metabolism, and lipid metabolism-related pathways, whereas the low-concentration treatment distinctly altered amino acid metabolism-related pathways. The expression of gstt1b, ugt1a1, mgst3b, miox, hsd17b3, and cyp8b1 gene was up-regulated in all TWPs treatments. In addition, Gemmobacter and Shinella enriched in the high-concentration treatment were closely correlated with the degradation of TWPs. These findings provided objective evidence for the toxicity evaluation of TWPs on zebrafish.


Assuntos
Brânquias , Fígado , Poluentes Químicos da Água , Peixe-Zebra , Animais , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/efeitos dos fármacos
9.
Sci Total Environ ; 951: 175623, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163942

RESUMO

Butyl benzyl phthalate (BBP), a common phthalate plasticizer, is frequently detected in aquatic environments. However, there has been relatively little research on its effects on gill-related responses. This study exposed adult zebrafish to BBP concentrations ranging from 5 to 500 µg/L for 28 days, specifically investigating its toxicity in the gills. Assessment of oxidative stress biomarkers and gene expression related to apoptosis and mitochondria was conducted. Results demonstrated that exposure to 500 µg/L of BBP disrupted the antioxidant defense system, leading to lipid peroxidation and DNA damage. Moreover, the expression level of the caspase-3 gene exhibited an approximate two-fold increase, whereas the expression of 18rs-rrn decreased by 50 % on day 28. Gene Ontology enrichment analysis indicated suppressed expression of antioxidant and metabolic process terms, alongside inhibition of metabolism, immune, and signal transduction-related pathways. This study offers novel insights into the toxic effects and mechanisms of BBP on fish, providing valuable data for assessing environmental risks linked to BBP contamination and advocating for its management in aquatic ecosystems.


Assuntos
Brânquias , Estresse Oxidativo , Ácidos Ftálicos , Transcriptoma , Poluentes Químicos da Água , Peixe-Zebra , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Ácidos Ftálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Plastificantes/toxicidade , Perfilação da Expressão Gênica , Biomarcadores/metabolismo
10.
Sci Total Environ ; 951: 175519, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168342

RESUMO

The antiepileptic drug carbamazepine (CBZ) has been widely detected in freshwater, yet its toxic actions in fish at multiple endpoints and the subsequent recovery patterns of the impacted are less discussed. This study investigated the bioaccumulation, physiological and behavioral changes of crucian carp (Carassius carassius) following CBZ exposure (G1 = 6.15 µg/L, G2 = 61.5 µg/L, G3 = 615 µg/L, G4 = 6150 µg/L) and subsequent recovery. Our results showed that CBZ was more likely to accumulate in the liver and brain than in the gills. A concentration-dependent phenomenon was observed; however, the residual CBZ decreased to similar levels after recovery. The behavioral indicators (i.e. feeding, social and spontaneous swimming) were significantly inhibited after 7-days of CBZ exposure, and only recovered at low concentration treatment (G1) after 7-days recovery in CBZ-free water. The acetylcholinesterase (AChE) activity in the brain and superoxide dismutase (SOD) activity in the liver and gills were induced after CBZ exposure and returned to normal levels after 7-days of recovery. In contrast, the inhibition of catalase (CAT) activity caused by CBZ exposure persisted in the high concentration treatment (G4) after recovery. Furthermore, correlation analysis indicated that changes in feeding behavior were closely related to the variation of CBZ concentrations in tissues, and the persistence of abnormal swimming and social behavior was closely related to gill CAT activity. These findings contribute to explore the toxic mechanisms of CBZ and highlight the recovery process and connections between various endpoints.


Assuntos
Bioacumulação , Carbamazepina , Carpas , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Carpas/fisiologia , Poluentes Químicos da Água/toxicidade , Carbamazepina/toxicidade , Comportamento Animal/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Anticonvulsivantes , Fígado/metabolismo , Fígado/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
11.
Gene ; 930: 148802, 2024 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-39094712

RESUMO

The African sharptooth catfish (Clarias gariepinus) assumes significance in aquaculture, given its role as a farmed freshwater species with modified gill structures functioning as an air-breathing organ (ABO). To provide a scientific basis for further elucidating the air-breathing formation mechanism and deeply utilizing the genetic resources of Clarias gariepinus, we utilized the PacBio sequencing platform to acquire a comprehensive full-length transcriptome from five juvenile developmental stages and various adult tissues, including the ABO, gills, liver, skin, and muscle. We generated 25,766,688 high-quality reads, with an average length of 2,006 bp and an N50 of 2,241 bp. Following rigorous quality control, 34,890 (97.7 %) of the high-quality isoforms were mapped to the reference genome for gene and transcript annotation, yielding 387 novel isoforms and 14,614 new isoforms. Additionally, we identified 28,582 open reading frames, 48 SNPs, 5,464 variable splices, and 6,141 variable polyadenylation sites, along with 475 long non-coding RNAs. Many DEGs were involved with low oxygen GO terms and KEGG pathways, such as response to stimulus, biological regulation and catalytic activities. Furthermore, it was found that transcription factors such as zf-C2H2, Homeobox, bHLH, and MYB could underpin the African sharptooth catfish's developmental plasticity and its capacity to adapt its morphology and function to its environment. Through the comprehensive analysis of its genomic characteristics, it was found that the African sharptooth catfish has developed a series of unique respiratory adaptive mechanisms during the evolutionary process, These results not only advances the understanding of genetic adaptations to hypoxia in Clarias fish but also provides a valuable framework for future studies aimed at improving aquaculture practices,besides provide important references and inspirations for the evolution of aquatic organisms.


Assuntos
Peixes-Gato , Isoformas de Proteínas , Transcriptoma , Animais , Peixes-Gato/genética , Isoformas de Proteínas/genética , Brânquias/metabolismo , Brânquias/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/métodos , Anotação de Sequência Molecular
12.
Sci Rep ; 14(1): 19484, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174601

RESUMO

The aim of this work is to examine the effects of vitamin E addition to water on the structure of the gill tissue and energy metabolism of crucian carp (Carassius auratus) under cooling stress. The crucian carp were chilled using a cold acclimation intelligent chilling equipment from 20 °C to 5 °C. They were divided into three groups: the control group (E1), the negative control group (E2), and the 100 mg/L vitamin E (E3) solution. Three different temperature points (20 °C, 10 °C, and 5 °C) were used to collect, test, and analyze the samples. The findings demonstrated that in the E3 treatment group, phosphoenolpyruvate carboxykinase, acetyl coenzyme A carboxylase, total cholesterol, urea nitrogen, triglyceride, and fatty acid synthase contents were significantly lower under cooling stress than those in the E1 and E2 treatment groups (P < 0.05). The E3 therapy group had significantly greater blood glucose, glycogen, and glycogen synthase levels than the E1 and E2 treatment groups (P < 0.05). The levels of pyruvate kinase in the E1, E2, and E3 treatment groups did not differ significantly. Crucian carp's gill tissue changed under cooling stress, including capillary dilatation, and the E3 treatment group experienced less damage overall than the E1 and E2 treatment groups. In conclusion, supplementing water with vitamin E to treat crucian carp can decrease damage, improve the body's ability to withstand cold, and slow down the stress response brought on by cooling stress. This provides a theoretical basis for supplementing water with vitamin E to fish stress relief.


Assuntos
Carpas , Metabolismo Energético , Brânquias , Vitamina E , Animais , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Vitamina E/farmacologia , Vitamina E/metabolismo , Metabolismo Energético/efeitos dos fármacos , Carpas/metabolismo , Carpas/fisiologia , Temperatura Baixa , Estresse Fisiológico/efeitos dos fármacos , Carpa Dourada/metabolismo , Carpa Dourada/fisiologia , Glicogênio/metabolismo , Resposta ao Choque Frio/efeitos dos fármacos , Glicemia/metabolismo
13.
Chemosphere ; 364: 143005, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121965

RESUMO

Graphene oxide (GO) is a very attractive material for use in a vast number of applications. However, before its widespread use, it is important to consider potential issues related to environmental safety to support its safe application. The aim of this study was to investigate effects on fish (rainbow trout) following GO exposure. Using both an in vitro approach with the RTL W1 rainbow trout liver cell line, and in vivo exposures, following OECD TG 203, disturbances at the cellular level as well as in the gills and liver tissue of juvenile trout were assessed. In RTL W1 cells, a time and concentration-dependent loss in cell viability, specifically plasma membrane integrity and lysosomal function, was observed after 96 h of exposure to GO at concentrations ≥18.75 mg/L. Additionally, increased reactive oxygen species (ROS) levels were evidenced at concentrations ≥18.75 mg/L, and an enhancement of metabolic activity was noted with concentrations ≥4.68 mg/L. In vivo exposures to GO did not provoke mortality in rainbow trout juveniles following 96 h exposure but led to histological alterations in gills and liver tissues, induction of enzymatic detoxification activities in the liver, as well as aryl hydrocarbon receptor (ahr)-cytochrome P450 1a (cyp1a) gene expression downregulation, and upregulation of pro-inflammatory cytokines il1b and il8 at GO concentrations ≥9.89 mg/L.


Assuntos
Citocromo P-450 CYP1A1 , Brânquias , Grafite , Fígado , Oncorhynchus mykiss , Estresse Oxidativo , Espécies Reativas de Oxigênio , Receptores de Hidrocarboneto Arílico , Poluentes Químicos da Água , Animais , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Grafite/toxicidade , Poluentes Químicos da Água/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Espécies Reativas de Oxigênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Inflamação , Inativação Metabólica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos
14.
Physiol Genomics ; 56(10): 661-671, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39158560

RESUMO

Marine fishes excrete excess H+ using basolateral Na+-K+-ATPase (NKA) and apical Na+/H+ exchanger 3 (NHE3) in gill ionocytes. However, the mechanisms that regulate H+ excretion during exposure to environmentally relevant hypercapnia (ERH) remain poorly understood. Here, we explored transcriptomic, proteomic, and cellular responses in gills of juvenile splitnose rockfish (Sebastes diploproa) exposed to 3 days of ERH conditions (pH ∼7.5, ∼1,600 µatm Pco2). Blood pH was fully regulated at ∼7.75 despite a lack of significant changes in gill 1) mRNAs coding for proteins involved in blood acid-base regulation, 2) total NKA and NHE3 protein abundance, and 3) ionocyte density. However, ERH-exposed rockfish demonstrated increased NKA and NHE3 abundance on the ionocyte plasma membrane coupled with wider apical membranes and greater extension of apical microvilli. The observed gill ionocyte remodeling is consistent with enhanced H+ excretion that maintains blood pH homeostasis during exposure to ERH and does not necessitate changes at the expression or translation levels. These mechanisms of phenotypic plasticity may allow fishes to regulate blood pH during environmentally relevant acid-base challenges and thus have important implications for both understanding how organisms respond to climate change and for selecting appropriate metrics to evaluate its impact on marine ecosystems.NEW & NOTEWORTHY Splitnose rockfish exposed to environmentally relevant hypercapnia utilize existing proteins (rather than generate additional machinery) to maintain homeostasis.


Assuntos
Brânquias , Hipercapnia , Animais , Brânquias/metabolismo , Concentração de Íons de Hidrogênio , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Peixes/metabolismo , Peixes/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Transcriptoma/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Perciformes/metabolismo
15.
Ecotoxicol Environ Saf ; 284: 116873, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39151369

RESUMO

Sessile intertidal organisms live in a harsh environment with challenging environmental conditions and increasing anthropogenic pressure such as microplastic (MP) pollution. This study focused on effects of environmentally relevant MP concentrations on the metabolism of intertidal Pacific oyster Crassostrea gigas, and its potential MP-induced vulnerability to warming during midday low tide. Oysters experienced a simulated semidiurnal tidal cycle based on their natural habitat, and were exposed to a mixture of polystyrene microbeads (4, 7.5 and 10 µm) at two environmentally relevant concentrations (0.025 µg L-1 and 25 µg L-1) for 16 days, with tissue samplings after 3 and 12 days to address dose-dependent effects over time. On the last day of exposure, the remaining oysters were additionally exposed to low tide warming (3 °C h-1) to investigate possible MP-induced susceptibility to aerial warming. Metabolites of digestive gland and gill tissues were analysed by using untargeted 1H nuclear magnetic resonance (NMR) based metabolomics. For the digestive gland metabolite profiles were comparable to each other independent of MP concentration, exposure time, or warming. In contrast, gill metabolites were significantly affected by high MP exposure and warming irrespective of MP, initiating the same cellular stress response to counteract induced oxidative stress. The activated cascade of antioxidant defence mechanisms required energy on top of the general energy turnover to keep up homeostasis, which in turn may lead to subtle, and likely sub-lethal, effects within intertidal oyster populations. Present results underline the importance of examining the effects of environmentally relevant MP concentrations not only alone but in combination with other environmental stressors.


Assuntos
Crassostrea , Microplásticos , Poluentes Químicos da Água , Animais , Crassostrea/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Ondas de Maré , Monitoramento Ambiental , Metabolômica
16.
Ecotoxicol Environ Saf ; 284: 116930, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205351

RESUMO

The rapid temperature changes caused by global warming significantly challenge fish survival by affecting various biological processes. Fish generally mitigate stress through physiological plasticity, but when temperature changes exceed their tolerance limits, even adaptable species like Siluriformes can experience internal disruptions. This study investigates the effects of extreme thermal climate on Hong Kong catfish (Clarias fuscus), native to tropical and subtropical regions. C. fuscus were exposed to normal temperature (NT, 26 ℃) or high temperature (HT, 34 ℃) condition for 90 days. Subsequently, histological, biochemical, and transcriptomic changes in gill tissue were observed after exposure to acute high temperatures (34 ℃) and subsequent temperature recovery (26 ℃). Histological analysis revealed that C. fuscus in the HT group exhibited less impact from sudden temperature shifts compared to the NT group, as they adapted by reducing the interlamellar cell mass (ILCM) and lamellae thickness (LT) of gill tissue, thereby mitigating the aftermath of acute heat shock. Biochemical analysis showed that catalase (CAT) activity in the high temperature group continued to increase, while malondialdehyde (MDA) levels decreased, suggesting establishment of a new oxidative balance and enhanced environmental adaptability. Transcriptome analysis identified 520 and 463 differentially expressed genes in the NT and HT groups, respectively, in response to acute temperature changes. Enrichment analysis highlighted that in response to acute temperature changes, the NT group inhibited apoptosis and ferroptosis by regulating the activity of alox12, gclc, and hmox1a, thereby attenuating the adverse effects of heat stress. Conversely, the HT group increased the activity of pfkma and pkma to provide sufficient energy for tissue repair. The higher degree of heat shock protein (Hsp) response in NT group also indicated more severe heat stress injury. These findings demonstrate alterations in gill tissue structure, regulation of oxidative balance, and the response of immune metabolic pathways to acute temperature fluctuations in C. fuscus following thermal exposure, suggesting potential avenues for further exploration into the thermal tolerance plasticity of fish adapting to global warming.


Assuntos
Antioxidantes , Peixes-Gato , Brânquias , Animais , Peixes-Gato/fisiologia , Brânquias/metabolismo , Antioxidantes/metabolismo , Termotolerância , Hong Kong , Temperatura Alta/efeitos adversos , Aclimatação , Resposta ao Choque Térmico , Redes e Vias Metabólicas , Estresse Oxidativo , Transcriptoma
17.
Sci Rep ; 14(1): 19130, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160258

RESUMO

Increasing seawater temperatures coupled with more intense and frequent heatwaves pose an increasing threat to marine species. In this study, the New Zealand green-lipped mussel, Perna canaliculus, was used to investigate the effect of genetics and ontogeny on thermal resilience. The culturally and economically significant mussel P. canaliculus (Gmelin, 1971) has been selectively-bred in New Zealand for two decades, making it a unique biological resource to investigate genetic interactions in a temperate bivalve species. Six selectively-bred full sibling families and four different ages, from early juveniles (6, 8, 10 weeks post-fertilisation) to sub-adults (52 weeks post-fertilisation), were used for experimentation. At each age, each family was exposed to a three-hour heat challenge, followed by recovery, and survival assessments. The shell lengths of live and dead juvenile mussels were also measured. Gill tissue samples from sub-adults were collected after the thermal challenge to quantify the 70 kDa heat shock protein gene (hsp70). Results showed that genetics, ontogeny and size influence thermal resilience in P. canaliculus, with LT50 values ranging between 31.3 and 34.4 °C for all studied families and ages. Juveniles showed greater thermotolerance compared to sub-adults, while the largest individuals within each family/age class tended to be more heat sensitive than their siblings. Sub-adults differentially upregulated hsp70 in a pattern that correlated with net family survival following heat challenge, reinforcing the perceived role of inducible HSP70 protein in molluscs. This study provides insights into the complex interactions of age and genotype in determining heat tolerance of a key mussel species. As marine temperatures increase, equally complex selection pressure responses may therefore occur. Future research should focus on transcriptomic and genomic approaches for key species such as P. canaliculus to further understand and predict the effect of genetic variation and ontogeny on their survival in the context of climate change.


Assuntos
Perna (Organismo) , Animais , Perna (Organismo)/genética , Perna (Organismo)/fisiologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Termotolerância/genética , Bivalves/genética , Bivalves/fisiologia , Nova Zelândia , Temperatura Alta , Brânquias/metabolismo
18.
PLoS One ; 19(8): e0308609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121037

RESUMO

Current prophylactic and disease control measures in aquaculture highlight the need of alternative strategies to prevent disease and reduce antibiotic use. Mucus covered mucosal surfaces are the first barriers pathogens encounter. Mucus, which is mainly composed of highly glycosylated mucins, has the potential to contribute to disease prevention if we can strengthen this barrier. Therefore, aim of this study was to develop and characterize fish in vitro mucosal surface models based on commercially available cell lines that are functionally relevant for studies on mucin regulation and host-pathogen interactions. The rainbow trout (Oncorhynchus mykiss) gill epithelial cell line RTgill-W1 and the embryonic cell line from Chinook salmon (Oncorhynchus tshawytscha) CHSE-214 were grown on polycarbonate membrane inserts and chemically treated to differentiate the cells into mucus producing cells. RTGill-W1 and CHSE-214 formed an adherent layer at two weeks post-confluence, which further responded to treatment with the γ-secretase inhibitor DAPT and prolonged culture by increasing the mucin production. Mucins were metabolically labelled with N-azidoacetylgalactosamine 6 h post addition to the in vitro membranes. The level of incorporated label was relatively similar between membranes based on RTgill-W1, while larger interindividual variation was observed among the CHSE in vitro membranes. Furthermore, O-glycomics of RTgill-W1 cell lysates identified three sialylated O-glycans, namely Galß1-3(NeuAcα2-6)GalNAcol, NeuAcα-Galß1-3GalNAcol and NeuAcα-Galß1-3(NeuAcα2-6)GalNAcol, resembling the glycosylation present in rainbow trout gill mucin. These glycans were also present in CHSE-214. Additionally, we demonstrated binding of the fish pathogen A. salmonicida to RTgill-W1 and CHSE-214 cell lysates. Thus, these models have similarities to in vivo mucosal surfaces and can be used to investigate the effect of pathogens and modulatory components on mucin production.


Assuntos
Interações Hospedeiro-Patógeno , Mucinas , Oncorhynchus mykiss , Animais , Mucinas/metabolismo , Oncorhynchus mykiss/metabolismo , Linhagem Celular , Mucosa/metabolismo , Salmão/metabolismo , Brânquias/metabolismo , Células Epiteliais/metabolismo , Muco/metabolismo
19.
BMC Genomics ; 25(1): 765, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107708

RESUMO

Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.


Assuntos
Álcalis , Brânquias , Palaemonidae , Animais , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Palaemonidae/genética , Palaemonidae/efeitos dos fármacos , Palaemonidae/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos
20.
Aquat Toxicol ; 274: 107049, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39159590

RESUMO

In this study, the impact of ammonia nitrogen stress on juvenile four-finger threadfin in pond culture was examined. The 96-hour median lethal concentration (LC50-96h) and safe concentration of ammonia nitrogen were assessed in juveniles with a body weight of 7.4 ± 0.6 g using ecotoxicological methods. The study design included a stress group exposed to LC50-96h levels of ammonia nitrogen and a control group without ammonia nitrogen exposure. To examine the physiological, biochemical, and metabolic effects of ammonia nitrogen on gill tissue, gill tissue samples were collected after 12, 24, 48, and 96 h of stress, with a resumption of treatment after 48 h. Compared to the control group, ammonia nitrogen adversely affected juvenile four-finger threadfin, with LC50-96h and safe concentration values of 20.70 mg/L and 2.07 mg/L, respectively. Exposure to ammonia nitrogen resulted in substantial gill damage, including fusion of lamellae, epithelial cell loss, and proliferation of chlorine-secreting cells. This tissue damage persisted even after a 48-h recovery period. Ammonia nitrogen stress triggered an increase in antioxidant enzyme activity (superoxide dismutase, catalase, and glutathione peroxidase) and malondialdehyde levels in gills, indicating oxidative stress from 12 h onwards. Although enzyme activity decreased over time, oxidative stress persisted even after recovery, suggesting an ongoing need for antioxidant defense. Metabolomics analysis showed significant alterations in 423 metabolites under ammonia nitrogen stress. Key metabolites such as L-arginine, taurine, 20-hydroxyarachidonic acid, 11,12-dihydroxy-5Z, 8Z, and 14Z eicosotrienic acid followed an increasing trend; uridine, adenosine, L-glutathione, and thymidine 5'-triphosphate followed a decreasing trend. These changes reflect metabolic adaptations to stress. In enriched metabolic pathways, the main differential pathways are membrane transport, lipid metabolism, and amino acid metabolism. After 48 h, significant differences were observed in 396 metabolites compared to the control group. Notably, L-arginine, choline, and L-histidine increased, while linoleic acid, adenosine, and glutathione decreased. Amino acid and lipid metabolism pathways were key affected pathways. Under ammonia nitrogen stress, juvenile four-finger threadfin increased the synthesis of unsaturated and saturated fatty acids to cope with low temperatures and bolster immune function by consuming spermidine. This adaptation helps to clear peroxides generated during fatty acid synthesis, thereby protecting cells from oxidative damage. This study provides insights for pond aquaculture and breeding of ammonia nitrogen-tolerant fish strains.


Assuntos
Amônia , Brânquias , Poluentes Químicos da Água , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Amônia/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Peixes/fisiologia , Peixes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Nitrogênio/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...