Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Fish Shellfish Immunol ; 151: 109739, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960108

RESUMO

Lauric acid (LA), a saturated fatty acid with 12 carbon atoms, is widely regarded as a healthy fatty acid that plays an important role in disease resistance and improving immune physiological function. The objective of this study was to determine the effects of dietary lauric acid on the growth performance, antioxidant capacity, non-specific immunity and intestinal microbiology, and evaluate the potential of lauric acids an environmentally friendly additive in swimming crab (Portunus trituberculatus) culture. A total of 192 swimming crabs with an initial body weight of 11.68 ± 0.02 g were fed six different dietary lauric acid levels, the analytical values of lauric acid were 0.09, 0.44, 0.80, 1.00, 1.53, 2.91 mg/g, respectively. There were four replicates per treatment and 8 juvenile swimming crabs per replicate. The results indicated that final weight, percent weight gain, specific growth rate, survival and feed intake were not significantly affected by dietary lauric acid levels; however, crabs fed diets with 0.80 and 1.00 mg/g lauric acid showed the lowest feed efficiency among all treatments. Proximate composition in hepatopancreas and muscle were not significantly affected by dietary lauric acid levels. The highest activities of amylase and lipase in hepatopancreas and intestine were found at crabs fed diet with 0.80 mg/g lauric acid (P < 0.05), the activity of carnitine palmityl transferase (CPT) in hepatopancreas and intestine significantly decreased with dietary lauric acid levels increasing from 0.09 to 2.91 mg/g (P < 0.05). The lowest concentration of glucose and total protein and the activity of alkaline phosphatase in hemolymph were observed at crabs fed diets with 0.80 and 1.00 mg/g lauric acid among all treatments. The activity of GSH-Px in hepatopancreas significantly increased with dietary lauric acid increasing from 0.09 to 1.53 mg/g, MDA in hepatopancreas and hemolymph was not significantly influenced by dietary lauric acid levels. The highest expression of cat and gpx in hepatopancreas were exhibited in crabs fed diet with 1.00 mg/g lauric acid, however, the expression of genes related to the inflammatory signaling pathway (relish, myd88, traf6, nf-κB) were up-regulated in the hepatopancreas with dietary lauric acid levels increasing from 0.09 to 1.00 mg/g, moreover, the expression of genes related to intestinal inflammatory, immune and antioxidant were significantly affected by dietary lauric acid levels (P < 0.05). Crabs fed diet without lauric acid supplementation exhibited higher lipid drop area in hepatopancreas than those fed the other diets (P < 0.05). The expression of genes related to lipid catabolism was up-regulated, however, and the expression of genes related to lipid synthesis was down-regulated in the hepatopancreas of crabs fed with 0.80 mg/g lauric acid. Lauric acid improved hepatic tubular integrity, and enhanced intestinal barrier function by increasing peritrophic membrane (PM) thickness and upregulating the expression of structural factors (per44, zo-1) and intestinal immunity-related genes. In addition, dietary 1.00 mg/g lauric acid significantly improved the microbiota composition of the intestinal, increased the abundance of Actinobacteria and Rhodobacteraceae, and decreased the abundance of Vibrio, thus maintaining the microbiota balance of the intestine. The correlation analysis showed that there was a relationship between intestinal microbiota and immune-antioxidant function. In conclusion, the dietary 1.00 mg/g lauric acid is beneficial to improve the antioxidant capacity and intestinal health of swimming crab.


Assuntos
Ração Animal , Antioxidantes , Braquiúros , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Ácidos Láuricos , Animais , Braquiúros/imunologia , Braquiúros/efeitos dos fármacos , Braquiúros/crescimento & desenvolvimento , Braquiúros/microbiologia , Ácidos Láuricos/farmacologia , Ácidos Láuricos/administração & dosagem , Ração Animal/análise , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Distribuição Aleatória , Relação Dose-Resposta a Droga
2.
Dev Comp Immunol ; 157: 105192, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714270

RESUMO

Toll-like receptor 4 (TLR4) plays an essential role in the activation of innate immunity by recognizing diverse pathogenic components of bacteria. Six Tolls were found in Eriocheir sinensis but have not yet been identified as mammalian TLR4 homolog. For this purpose, we predicted three-dimensional (3D) structures of EsTolls (EsToll1-6) with AlphaFold2. 3D structure of LRRs and TIR most had high accuracy (pLDDT >70). By structure analysis, 3D structures of EsToll6 had a high overlap with HsTLR4. Moreover, we also predicted potential 11 hydrogen bonds and 3 salt bridges in the 3D structure of EsToll6-EsML1 complex. 18 hydrogen bonds and 7 salt bridges were predicted in EsToll6-EsML2 complex. Co-immunoprecipitation assay showed that EsToll6 could interact with EsML1 and EsML2, respectively. Importantly, TAK242 (a mammalian TLR4-specific inhibitor) could inhibit the generation of ROS stimulated by lipopolysaccharides (LPS) in EsToll6-EsML2-overexpression Hela cells. Collectively, these results implied that EsToll6 was a mammalian TLR4 homolog and provided a new insight for researching mammalian homologs in invertebrates.


Assuntos
Braquiúros , Imunidade Inata , Lipopolissacarídeos , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Animais , Humanos , Braquiúros/imunologia , Células HeLa , Lipopolissacarídeos/imunologia , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Espécies Reativas de Oxigênio/metabolismo , Ligação Proteica , Sulfonamidas
3.
Dev Comp Immunol ; 157: 105194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38754572

RESUMO

In crustaceans, the steroid hormone 20-hydroxyecdysone (20E) initiates molting, and the molting process is also regulated by energy metabolism. AMPK is an energy sensor and plays a critical role in systemic energy balance. Here, the regulatory mechanism in the interaction between 20E and AMPK was investigated in Chinese mitten crab, Eriocheir sinensis. The results showed that the 20E concentration and the mRNA expression levels of 20E receptors in hepatopancreas were down-regulated post AMPK activator (AICAR) treatment, and were up-regulated after AMPK inhibitor (Compound C) injection in crabs. Besides, the molt-inhibiting hormone (MIH) gene expression in eyestalk showed the opposite patterns in response to the AICAR and Compound C treatment, respectively. Further investigation found that there was a significant reduction in 20E concentration post PI3K inhibitor (LY294002) treatment, and the phosphorylation level of PI3K was increased in hepatopancreas after AMPK inhibitor injection. On the other hand, the positive regulation of PI3K-mediated activation of AMPK was also observed, the phosphorylation levels of AMPKα, AMPKß and PI3K in hepatopancreas were significantly increased post 20E injection. In addition, the phosphorylation levels of AMPKα and AMPKß induced by 20E were decreased after the injection of PI3K inhibitor. Taken together, these results suggest that the regulatory cross-talk between 20E and AMPK is likely to act through PI3K pathway in E. sinensis, which appeared to be helpful for a better understanding in molting regulation.


Assuntos
Proteínas Quinases Ativadas por AMP , Braquiúros , Ecdisterona , Hepatopâncreas , Muda , Fosfatidilinositol 3-Quinases , Animais , Braquiúros/imunologia , Ecdisterona/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Hepatopâncreas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Hormônios de Invertebrado/metabolismo , Cromonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Ribonucleotídeos/farmacologia , Morfolinas/farmacologia , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Fosforilação , Metabolismo Energético
4.
J Invertebr Pathol ; 205: 108144, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810835

RESUMO

Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 µL of physiological crustacean (PS), while the rest received 10 µL of LPS [0.1 mg.kg-1]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS.


Assuntos
Braquiúros , Hemócitos , Temperatura Alta , Lipopolissacarídeos , Animais , Hemócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Braquiúros/imunologia , Braquiúros/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
J Agric Food Chem ; 72(23): 13402-13414, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38821040

RESUMO

Scy p 8 (triosephosphate isomerase) as a crab allergen in inducing distinct T-helper (Th) cell differentiation and a linear epitope associated with allergenicity remain elusive. In this study, mice sensitized with Scy p 8 exhibited significantly upregulated levels of IgE, IgG1, and IL-4 release, inducing a Th2 immune response. Moreover, the release of IFN-γ (Th1) and the levels of Treg cells were downregulated, while IL-17A (Th17) was upregulated, indicating that Scy p 8 disrupted the Th1/Th2 balance and Th17/Treg balance in mice. Furthermore, bioinformatics prediction and serum samples from crab-allergic patients and mice enabled the discovery of 8 linear epitopes of Scy p 8. Meanwhile, the analysis of peptide similarity and tertiary superposition revealed that 8 epitopes of Scy p 8 exhibited conservation across various species, potentially resulting in cross-reactivity. These findings possess the potential to enhance the comprehension of crab allergens, thereby establishing a foundation for investigating cross-reactivity.


Assuntos
Alérgenos , Braquiúros , Epitopos , Camundongos Endogâmicos BALB C , Animais , Braquiúros/imunologia , Braquiúros/genética , Braquiúros/química , Alérgenos/imunologia , Alérgenos/química , Alérgenos/genética , Humanos , Epitopos/imunologia , Epitopos/química , Camundongos , Feminino , Hipersensibilidade a Frutos do Mar/imunologia , Imunoglobulina E/imunologia , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/química , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Células Th2/imunologia , Reações Cruzadas , Masculino , Interleucina-4/imunologia , Interleucina-4/genética , Adulto , Células Th1/imunologia , Interferon gama/imunologia , Interferon gama/genética
6.
Fish Shellfish Immunol ; 150: 109648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777253

RESUMO

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Braquiúros , Regulação da Expressão Gênica , Imunidade Inata , Filogenia , Receptores de Laminina , Alinhamento de Sequência , Animais , Braquiúros/genética , Braquiúros/imunologia , Receptores de Laminina/genética , Receptores de Laminina/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
7.
Fish Shellfish Immunol ; 151: 109626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797334

RESUMO

In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.


Assuntos
Proteínas de Artrópodes , Braquiúros , Hemócitos , Imunidade Inata , Animais , Braquiúros/genética , Braquiúros/imunologia , Hemócitos/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/imunologia , Regulação da Expressão Gênica/imunologia , Proliferação de Células
8.
Fish Shellfish Immunol ; 149: 109609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705549

RESUMO

As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.


Assuntos
Proteínas de Artrópodes , Braquiúros , Imunidade Inata , Filogenia , Receptores Toll-Like , Vibrio parahaemolyticus , Animais , Braquiúros/imunologia , Braquiúros/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/química , Vibrio parahaemolyticus/fisiologia , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Alinhamento de Sequência , Perfilação da Expressão Gênica , Poli I-C/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38718732

RESUMO

A comprehensive bioinformatics analysis was conducted to elucidate the innate immune response of Charybdis japonica following exposure to Aeromonas hydrophila. This study integrated metabolomics, 16S rRNA sequencing, and enzymatic activity data to dissect the immune mechanisms activated in response to infection. Infection with A. hydrophila resulted in an increased abundance of beneficial intestinal genera such as Photobacterium spp., Rhodobacter spp., Polaribacter spp., Psychrilyobacter spp., and Mesoflavibacter spp. These probiotics appear to suppress A. hydrophila colonization by competitively dominating the intestinal microbiota. Key metabolic pathways affected included fatty acid biosynthesis, galactose metabolism, and nitrogen metabolism, highlighting their role in the crab's intestinal response. Enzymatic analysis revealed a decrease in activities of hexokinase, phosphofructokinase, and pyruvate kinase, which are essential for energy homeostasis and ATP production necessary for stress responses. Additionally, reductions were observed in the activities of acetyl-CoA carboxylase and fatty acid synthase. Gene expression analysis showed downregulation in Peroxiredoxin 1 (PRDX1), Peroxiredoxin 2 (PRDX2), glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH), with concurrent increases in malondialdehyde (MDA) levels, indicating severe oxidative stress. This study provides insights into the molecular strategies employed by marine crabs to counteract bacterial invasions in their natural habitat.


Assuntos
Aeromonas hydrophila , Braquiúros , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Aeromonas hydrophila/fisiologia , Animais , Braquiúros/microbiologia , Braquiúros/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Metabolômica , Microbioma Gastrointestinal , Microbiota
10.
J Invertebr Pathol ; 204: 108098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580075

RESUMO

The present investigation aims to substantiate that serum from the hemolymph of anomuran crab Albunea symmysta encompasses multiple immunological reactions in in vitro condition. The serum highly agglutinated human O erythrocytes in the presence of Ba2+. Distinct and unique sugar binding capacity of serum towards laminarin, N-acetyl sugars and higher binding specificity towards a glycoprotein, fetuin was inferred. In vitro enhancement of melanin synthesis due to enhanced oxidation of 3, 4-dihydroxy-dl-phenylalanine (dl-DOPA) by preincubation of nonself molecules with serum phenoloxidase (PO) was documented. Similarly, dl-DOPA oxidation by serum PO was reduced when preincubated with chemical inhibitors and copper chelators. Further, the crab serum lysed the vertebrate erythrocytes with maximum hemolysis against chicken and it unveiled dependency on divalent cation, serum concentration, ionic strength, pH, temperature and time interval. Occurrence of maximum hemolysis at a concentration of 30 µl, pH 8.0, temperature 37 °C and time interval of 60 min in the presence of Ba2+ were documented. Interestingly, serum hemolysis was reduced by different osmoprotectants suggesting a colloid-osmotic mechanism involving in hemolysis. It was observed that A. symmysta serum had antimicrobial activity against Gram-positive Staphylococcus aureus and fungal pathogen Candida albicans. The serum showed higher glycan content, potent lysozyme and free radical scavenging activity suggesting the existence of potential immune molecules of therapeutic use. These results clearly demonstrated the diversified immunogenicity of A. symmysta serum confirming a highly conserved non-specific immunity of crustaceans.


Assuntos
Braquiúros , Hemolinfa , Animais , Hemolinfa/imunologia , Braquiúros/imunologia , Hemólise , Humanos
11.
J Invertebr Pathol ; 204: 108120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679366

RESUMO

Shewanella putrefaciens is a vital bacterial pathogen implicated in serious diseases in Chinese mitten crab Eriocheir sinensis. Yet the use of probiotics to improve the defense ability of E. sinensis against S. putrefaciens infection remains poorly understood. In the present study, the protective effect of dietary R. sphaeroides against S. putrefaciens infection in E. sinensis was evaluated through antioxidant capability, immune response, and survival under bacterial challenge assays, and its protective mechanism was further explored using a combination of intestinal flora and metabolome assays. Our results indicated that dietary R. sphaeroides could significantly improve immunity and antioxidant ability of Chinese mitten crabs, thereby strengthening their disease resistance with the relative percentage survival of 81.09% against S. putrefaciens. In addition, dietary R. sphaeroides could significantly alter the intestinal microbial composition and intestinal metabolism of crabs, causing not only the reduction of potential threatening pathogen load but also the increase of differential metabolites in tryptophan metabolism, pyrimidine metabolism, and glycerophospholipid metabolism. Furthermore, the regulation of differential metabolites such as N-Acetylserotonin positively correlated with beneficial Rhodobacter could be a potential protection strategy for Shewanella infection. To the best of our knowledge, this is the first study to illustrate the protective effect and mechanism of R. sphaeroides supplementation to protect E. sinensis against S. putrefaciens infection.


Assuntos
Braquiúros , Microbioma Gastrointestinal , Rhodobacter sphaeroides , Shewanella putrefaciens , Animais , Braquiúros/microbiologia , Braquiúros/imunologia , Microbioma Gastrointestinal/fisiologia , Rhodobacter sphaeroides/metabolismo , Probióticos/farmacologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais
12.
Dev Comp Immunol ; 143: 104676, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889371

RESUMO

Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that plays a key role in antioxidant defense. In this study, a novel Grx2 gene (SpGrx2) was identified from the mud crab Scylla paramamosain, which consists of a 196 bp 5' untranslated region, a 357 bp open reading frame, and a 964 bp 3' untranslated region. The putative SpGrx2 protein has a typical single Grx domain with the active center sequence C-P-Y-C. The expression analysis revealed that the SpGrx2 mRNA was most abundant in the gill, followed by the stomach and hemocytes. Both mud crab dicistrovirus-1 and Vibrioparahaemolyticus infection as well as hypoxia could differentially induce the expression of SpGrx2. Furthermore, silencing SpGrx2 in vivo affected the expression of a series of antioxidant-related genes after hypoxia treatment. Additionally, SpGrx2 overexpression significantly increased the total antioxidant capacity of Drosophila Schneider 2 cells after hypoxia, resulting in a reduction of reactive oxygen species and malondialdehyde content. The subcellular localization results indicated that SpGrx2 was localized in both the cytoplasm and the nucleus of Drosophila Schneider 2 cells. These results indicate that SpGrx2 plays a crucial role as an antioxidant enzyme in the defense system of mud crabs against hypoxia and pathogen challenge.


Assuntos
Proteínas de Artrópodes , Braquiúros , Glutarredoxinas , Animais , Braquiúros/imunologia , Braquiúros/microbiologia , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas de Artrópodes/metabolismo , Drosophila , Especificidade de Órgãos , Sequência de Bases , Sequência de Aminoácidos , Oxigênio/metabolismo , Transcriptoma , Oxirredutases/metabolismo , Clonagem Molecular , Linhagem Celular
13.
Fish Shellfish Immunol ; 134: 108592, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746226

RESUMO

The Chinese mitten crab, Eriocheir sinensis, is a vital freshwater aquaculture species in China, however, is also facing various crab disease threats. In the present study, we identify three novel variable lymphocyte receptor-like (VLR-like) genes-VLR-like1, VLR-like3 and VLR-like4-from E. sinensis, which play vital roles in adaptive immune system of agnathan vertebrates. The bacterial challenge, bacterial binding and antibacterial-activity experiments were applied to study immune functions of VLR-likes, and the transcriptomic data from previous E. sinensis bacterial challenge experiments were analyzed to speculate the possible signaling pathway. VLR-like1 and VLR-like4 can respond to Staphylococcus aureus challenge and inhibit S. aureus specifically. VLR-like1 and VLR-like4 possess broad-spectrum bacteria-binding ability whereas VLR-like3 do not. VLR-likes in E. sinensis could associate with the Toll-like receptor (TLR) signaling pathway. The above results suggest that VLR-likes defend against bacteria invasion though exerting anti-bacteria activity, and probably connect with the TLR signaling pathway. Furthermore, studying the immune functions of these VLR-likes will provide a new insight into the disease control strategy of crustacean culture.


Assuntos
Proteínas de Artrópodes , Braquiúros , Braquiúros/imunologia , Braquiúros/microbiologia , Proteínas de Artrópodes/imunologia , Transcriptoma/imunologia , Staphylococcus aureus/fisiologia
14.
Fish Shellfish Immunol ; 132: 108454, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442704

RESUMO

Ubiquitination and deubiquitination of target proteins is an important mechanism for cells to rapidly respond to changes in the external environment. The deubiquitinase, cylindromatosis (CYLD), is a tumor suppressor protein. CYLD from Drosophila melanogaster participates in the antimicrobial immune response. In vertebrates, CYLD also regulates bacterial-induced apoptosis. However, whether CYLD can regulate the bacterial-induced innate immune response in crustaceans is unknown. In the present study, we reported the identification and cloning of CYLD in Chinese mitten crab, Eriocheir sinensis. Quantitative real-time reverse transcription polymerase chain reaction analysis showed that EsCYLD was widely expressed in all the examined tissues and was upregulated in the hemolymph after Vibrio parahaemolyticus challenge. Knockdown of EsCYLD in hemocytes promoted the cytoplasm-to-nucleus translocation of transcription factor Relish under V. parahaemolyticus stimulation and increased the expression of corresponding antimicrobial peptides. In vivo, silencing of EsCYLD promoted the removal of bacteria from the crabs and enhanced their survival. In addition, interfering with EsCYLD expression inhibited apoptosis of crab hemocytes caused by V. parahaemolyticus stimulation. In summary, our findings revealed that EsCYLD negatively regulates the nuclear translocation of Relish to affect the expression of corresponding antimicrobial peptides and regulates the apoptosis of crab hemocytes, thus indirectly participating in the innate immunity of E. sinensis.


Assuntos
Apoptose , Proteínas de Artrópodes , Braquiúros , Enzima Desubiquitinante CYLD , Hemócitos , Imunidade Inata , Fatores de Transcrição , Animais , Sequência de Aminoácidos , Peptídeos Antimicrobianos/metabolismo , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Braquiúros/imunologia , Braquiúros/microbiologia , Enzima Desubiquitinante CYLD/classificação , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Hemócitos/enzimologia , Imunidade Inata/genética , Filogenia , Fatores de Transcrição/metabolismo , Vibrio parahaemolyticus , Transporte Ativo do Núcleo Celular
15.
Fish Shellfish Immunol ; 129: 170-181, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057429

RESUMO

A meticulous understanding of the immune characteristics of aquaculture animals is the basis for developing precise disease prevention and control strategies. In this study, four novel C-type lectins (PtCTL-5, PtCTL-6, PtCTL-7 and PtCTL-8) including a single carbohydrate-recognition domain (CRD), and four novel crustins (Ptcrustin-1, Ptcrustin-2, Ptcrustin-3 and Ptcrustin-4) with a single whey acidic protein (WAP) domain were identified from the swimming crab Portunus trituberculatus. Tissue distribution analysis indicated that most of the target genes were predominantly expressed in the hepatopancreas in all examined tissues, except for Ptcrustin-1 which were mainly expressed in the gills. Our results showed that the eight genes displayed various transcriptional profiles across different tissues. In hemocytes, the PtCTL-7 responded quickly to Vibrio alginolyticus and exhibited much more strongly up-regulation than other three PtCTLs. The Ptcrustin-1 rapidly responded to V. alginolyticus within 3 h in all the three tested tissues. Furthermore, recombinant proteins of PtCTL-5 and PtCTL-8 were successfully obtained, and both of them displayed bacterial binding activities toward V. alginolyticus, V. harveyi and Staphylococcus aureus, and only showed antibacterial activity against V. harveyi. These findings provided new insights into the diverse immune response of P. trituberculatus and laid theoretical foundations for the development of precise disease prevention and control strategies in P. trituberculatus farming. Moreover, the specific anti-V. harveyi activities exhibited by rPtCTL-5 and rPtCTL-8 suggested their promising application prospects for controlling diseases caused by V. harveyi.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Braquiúros/imunologia , Lectinas Tipo C/fisiologia , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Aquicultura , Proteínas de Artrópodes/química , Sequência de Bases , Braquiúros/classificação , Braquiúros/genética , Carboidratos/isolamento & purificação , Imunidade Inata/genética , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Filogenia , Proteínas Recombinantes/genética , Alinhamento de Sequência
16.
Fish Shellfish Immunol ; 127: 437-445, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779811

RESUMO

Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.


Assuntos
Braquiúros/virologia , Reoviridae/patogenicidade , Aminoácidos/metabolismo , Animais , Apoptose , Aquicultura , Braquiúros/enzimologia , Braquiúros/imunologia , Braquiúros/metabolismo , Ácidos Graxos Insaturados/biossíntese , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Estresse Oxidativo , Fagocitose , Reoviridae/fisiologia
17.
Mol Immunol ; 143: 147-156, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131595

RESUMO

In recent years there has been an increase in the prevalence of allergic reactions to contact with/or consumption of crustaceans by immune responses mediated by IgE antibodies. Arginine kinase (AK) is considered one of the main allergens present in marine invertebrates. Currently, the allergenic potential of the brown crab (Callinectes bellicosus), which is a crustacean of great economic importance, has not been studied. Therefore, the aim of this work was to identify C. bellicosus AK as an allergen and to predict IgE-binding epitopes through immunobioinformatic analysis. AK was purified by precipitation with ammonium sulfate and ion- exchange chromatography. AK allergenicity was evaluated by IgE reactivity against sera from crustacean-allergic and non-allergic patients in both native and denaturing conditions. Additionally, a homology model was built based on the deduced amino acid sequence. A single band (~40 kDa) was found in SDS-PAGE, which was identified as an AK by mass spectrometry. AK showed immunoreactivity against crab-allergenic sera in both native and denaturing conditions with 70% and 80% positive reactions, respectively. Additionally, a 1073 bp ORF was obtained which codes for a deduced sequence of 357 amino acids corresponding to AK with > 90% identity with other AKs. Structural homology model of AK showed two main domains with conserved / folding of phospho-guanidine kinases. BediPred and Discotope were used for epitope prediction analysis, which suggests eight possible linear epitopes and seven conformational epitopes, respectively; and shows to be similar to other crustaceans AKs. C. bellicosus AK was identified as an allergenic protein by IgE reactivity and immunobioinformatic analysis indicates that both linear and conformational epitopes could be located in the surface of C. bellicosus AK structure.


Assuntos
Alérgenos/imunologia , Arginina Quinase/imunologia , Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Simulação por Computador , Epitopos/imunologia , Imunoglobulina E/imunologia , Hipersensibilidade a Frutos do Mar/imunologia , Proteínas de Frutos do Mar/imunologia , Animais , Braquiúros/enzimologia , Humanos
18.
Elife ; 112022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179494

RESUMO

Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally - considered to suppress the innate defences of hosts, making them more susceptible to co-infections. Evidence supporting immune suppression is largely anecdotal and sourced from diffuse accounts of compromised decapods. We used a population of shore crabs (Carcinus maenas), where Hematodinium sp. is endemic, to determine the extent of collateral infections across two distinct environments (open-water, semi-closed dock). Using a multi-resource approach (PCR, histology, haematology, population genetics, eDNA), we identified 162 Hematodinium-positive crabs and size/sex-matched these to 162 Hematodinium-free crabs out of 1191 analysed. Crabs were interrogated for known additional disease-causing agents; haplosporidians, microsporidians, mikrocytids, Vibrio spp., fungi, Sacculina, trematodes, and haemolymph bacterial loads. We found no significant differences in occurrence, severity, or composition of collateral infections between Hematodinium-positive and Hematodinium-free crabs at either site, but crucially, we recorded site-restricted blends of pathogens. We found no gross signs of host cell immune reactivity towards Hematodinium in the presence or absence of other pathogens. We contend Hematodinium sp. is not the proximal driver of co-infections in shore crabs, which suggests an evolutionary drive towards latency in this environmentally plastic host.


Assuntos
Braquiúros/parasitologia , Dinoflagellida/fisiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Braquiúros/imunologia , Braquiúros/microbiologia , Feminino , Helmintos/classificação , Helmintos/isolamento & purificação , Interações Hospedeiro-Patógeno , Masculino
19.
Fish Shellfish Immunol ; 121: 142-151, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998986

RESUMO

Crustacean cardioactive peptide (CCAP) is a pleiotropic neuropeptide, but its immunomodulatory role is not clear. Herein, the mud crab Scylla paramamosain provides a primitive model to study crosstalk between the neuroendocrine and immune systems. In this study, in situ hybridization showed that Sp-CCAP positive signal localized in multiple cells in the nervous tissue, while its conjugate receptor (Sp-CCAPR) positive signal mainly localized in the semigranular cells of hemocytes. The Sp-CCAP mRNA expression level in the thoracic ganglion was significantly up-regulated after lipopolysaccharide (LPS) stimulation, but the Sp-CCAP mRNA expression level was up-regulated firstly and then down-regulated after the stimulation of polyriboinosinic polyribocytidylic acid [Poly (I:C)]. After the injection of Sp-CCAP synthesis peptide, the phagocytosis ability of hemocytes was significantly higher than that of synchronous control group. Simultaneously, the mRNA expression of phagocytosis related gene (Sp-Rab5), nuclear transcription factor NF-κB homologues (Sp-Relish), C-type lectin (Sp-CTL-B), prophenoloxidase (Sp-proPO), pro-inflammatory cytokines factor (Sp-TNFSF, Sp-IL16) and antimicrobial peptides (Sp-ALF1 and Sp-ALF5) in the hemocytes were also significantly up-regulated at different time points after the injection of Sp-CCAP synthetic peptide, but Sp-TNFSF, Sp-ALF1 and Sp-ALF5 were down-regulated significantly at 24h. In addition, RNA interference of Sp-CCAP suppressed the phagocytic activity of hemocytes and inhibited the mRNA expression of Sp-Rab5, Sp-Relish, Sp-CTL-B, Sp-TNFSF, Sp-IL16 and Sp-ALF5 in the hemocytes, and ultimately weakened the ability of hemolymph bacteria clearance of mud crab. Taken together, these results revealed that CCAP induced innate immune and increased the anti-infection ability in the mud crab.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros , Imunidade Inata , Neuropeptídeos , Animais , Braquiúros/genética , Braquiúros/imunologia , Interleucina-16 , Neuropeptídeos/imunologia , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/genética
20.
Dev Comp Immunol ; 129: 104349, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007655

RESUMO

The function of B-cell lymphoma-2 (Bcl-2) family proteins can be divided into two categories: anti-apoptotic and pro-apoptotic. As an anti-apoptotic protein, Bcl2-associated athanogene 3 (BAG3) plays a key role in regulating apoptosis, development, cell movement, and autophagy, and mediating the adaptability of cells to stimulation. However, SpBAG3 has not been reported in mud crab (Scylla paramamosain), and the regulatory effect of SpBAG3 on apoptosis in mud crab and its function in antiviral immunity is still unknown. In this study, SpBAG3 was found, and characterized, which encoded a total of 175 amino acid (molecular mass 19.3 kDa), including a specific conserved domain of the BAG family. SpBAG3 was significantly down-regulated at 0-48 h post-infection with WSSV in vivo. The antiviral effect of SpBAG3 was investigated using RNA interference. The results indicated that SpBAG3 might be involved in assisting the replication of WSSV in the host. SpBAG3 could change the mitochondrial membrane potential (△ψm), and affect cell apoptosis through mitochondrial apoptotic pathways. Therefore, the results of this study suggested that SpBAG3 could assist WSSV infection by inhibiting the apoptosis of the hemocytes in mud crab.


Assuntos
Braquiúros/imunologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas de Artrópodes/genética , Perfilação da Expressão Gênica , Hemócitos/imunologia , Imunidade Inata/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Filogenia , Vírus da Síndrome da Mancha Branca 1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...