Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(7): 1443-1452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38404206

RESUMO

Crustaceans possess a range of sensory organs crucial in sensory perception, communication, and various ecological functions. Understanding morphological and functional differences in antennae among species could validate taxonomic differentiation and ecological adaptations. The antennae morphology and ultrastructure of mud crab species within the Scylla genus are poorly understood, and their role in ecological adaptation and species differentiation remains unexplored. This study aimed to describe and compare the morphology and ultrastructure of antennae in Scylla olivacea, Scylla tranquebarica, and Scylla paramamosain. Antennae were carefully excised from each crab and subjected to morphological, morphometric, and ultrastructural analysis. The study revealed that the antennae of Scylla species exhibit similar overall morphology, with a series of segments that tapered toward the upper end. All species possess non-branched single setae on the upper end of each segment. The number of antennae segments varied between species, with S. paramamosain having significantly more segments than S. olivacea. Additionally, the length and width of antenna segments differed among the species, with S. tranquebarica having a rougher antenna surface compared to S. olivacea and S. paramamosain. Our findings suggest that Scylla's antennae are distinct between species, especially in the number of segments and setae size. Such difference might be related to ecological adaptation. The role of antennae in sensory perception and social behavioral cues in mud crabs warrants further investigation. This study serves as a foundational reference for future research on the taxonomy, ecological adaptation, and sensory behaviors in the Scylla genus. RESEARCH HIGHLIGHTS: Variations and similarities in morphology and ultrastructure of three Scylla species can be found in the antennae. Scylla paramamosain had significantly higher number of segments than Scylla olivacea in morphology feature. The antennae surface of Scylla tranquebarica was rougher than that of S. olivacea and S. paramamosain. Antennae of three Scylla species possess non-branched single setae.


Assuntos
Antenas de Artrópodes , Braquiúros , Áreas Alagadas , Animais , Braquiúros/ultraestrutura , Braquiúros/anatomia & histologia , Antenas de Artrópodes/ultraestrutura , Antenas de Artrópodes/anatomia & histologia , Malásia , Microscopia Eletrônica de Varredura , Masculino , Feminino , Microscopia Eletrônica de Transmissão
2.
Cell Tissue Res ; 384(3): 703-720, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33835258

RESUMO

Arthropods are the most diversified animals on Earth. The morphology of the digestive system has been widely studied in insects; however, crustaceans have received comparatively little attention. This study describes the hindgut tract of the common spider crab Maja brachydactyla Balss, 1922, in larvae and adults using dissection, light and electron microscopical analyses. The hindgut tract maintains a similar general shape in larvae and adults. Major differences among stages are found in the morphology of epithelial cells and microspines, the thickness of the cuticle and connective-like tissue, and the presence of rosette glands (only in adults). Here, we provide the description of the sub-cellular structure of the folds, epithelium (conformed by tendon cells), musculature, and microspines of the hindgut of larvae and adults of M. brachydactyla. The morphological features of the hindgut of M. brachydactyla are compared with those of other arthropods (Insecta, Myriapoda and Arachnida). Our results suggest that the morphology of the hindgut is associated mainly with transport of faeces. In adults, the hindgut may also exert an osmoregulatory function, as described in other arthropods. At difference from holometabolous insets, the hindgut of M. brachydactyla (Decapoda) does not undergo a true metamorphic change during development, but major changes observed between larval and adult stages might respond to the different body size between life stages.


Assuntos
Braquiúros/ultraestrutura , Sistema Digestório/ultraestrutura , Larva/ultraestrutura , Animais
3.
Arthropod Struct Dev ; 60: 101022, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33385761

RESUMO

Crustaceans provide a fascinating opportunity for studying adaptations to a terrestrial lifestyle because within this group, the conquest of land has occurred at least ten times convergently. The evolutionary transition from water to land demands various morphological and physiological adaptations of tissues and organs including the sensory and nervous system. In this review, we aim to compare the brain architecture between selected terrestrial and closely related marine representatives of the crustacean taxa Amphipoda, Isopoda, Brachyura, and Anomala with an emphasis on the elements of the olfactory pathway including receptor molecules. Our comparison of neuroanatomical structures between terrestrial members and their close aquatic relatives suggests that during the convergent evolution of terrestrial life-styles, the elements of the olfactory pathway were subject to different morphological transformations. In terrestrial anomalans (Coenobitidae), the elements of the primary olfactory pathway (antennules and olfactory lobes) are in general considerably enlarged whereas they are smaller in terrestrial brachyurans compared to their aquatic relatives. Studies on the repertoire of receptor molecules in Coenobitidae do not point to specific terrestrial adaptations but suggest that perireceptor events - processes in the receptor environment before the stimuli bind - may play an important role for aerial olfaction in this group. In terrestrial members of amphipods (Amphipoda: Talitridae) as well as of isopods (Isopoda: Oniscidea), however, the antennules and olfactory sensilla (aesthetascs) are largely reduced and miniaturized. Consequently, their primary olfactory processing centers are suggested to have been lost during the evolution of a life on land. Nevertheless, in terrestrial Peracarida, the (second) antennae as well as their associated tritocerebral processing structures are presumed to compensate for this loss or rather considerable reduction of the (deutocerebral) primary olfactory pathway. We conclude that after the evolutionary transition from water to land, it is not trivial for arthropods to establish aerial olfaction. If we consider insects as an ingroup of Crustacea, then the Coenobitidae and Insecta may be seen as the most successful crustacean representatives in this respect.


Assuntos
Adaptação Biológica , Evolução Biológica , Crustáceos , Percepção Olfatória/fisiologia , Olfato/fisiologia , Anfípodes/anatomia & histologia , Anfípodes/fisiologia , Anfípodes/ultraestrutura , Animais , Braquiúros/anatomia & histologia , Braquiúros/fisiologia , Braquiúros/ultraestrutura , Crustáceos/anatomia & histologia , Crustáceos/fisiologia , Crustáceos/ultraestrutura , Meio Ambiente , Isópodes/anatomia & histologia , Isópodes/fisiologia , Isópodes/ultraestrutura , Microscopia , Microscopia Eletrônica de Varredura , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/fisiologia , Condutos Olfatórios/ultraestrutura
4.
Cell Tissue Res ; 383(3): 959-977, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33237479

RESUMO

Although it is now established that neurons in crustacea contain multiple transmitter substances, little is know about patterns of expression and co-expression or about the functional effects of such co-transmission. The present study was designed to characterize the distributions and potential colocalization of choline acetyltransferase (ChAT), serotonin (5-HT) and neuropeptide H-Phe-Met-Arg-Phe-NH2 (FMRFamide) in the central nervous system (CNS) of the Asian shore crab, Hemigrapsus sanguineus using immunohistochemical analyses in combination with laser scanning confocal microscopy. ChAT was found to be expressed by small, medium-sized, and large neurons in all regions of the brain and ventral nerve cord (VNC). For the most part, ChAT, FMRFamide, and 5-HT are expressed in different neurons, although some colocalization of ChAT- with FMRFamide- or 5-HT-LIR is observed in small and medium-sized cells, mostly neurons that immunostain only weakly. In the brain, such double immunolabeling is observed primarily in neurons of the protocerebrum and, to a particularly great extent, in local olfactory interneurons of the deutocerebrum. The clusters of neurons in the VNC that stain most intensely for ChAT, FMRFamide, and 5-HT, with colocalization in some cases, are located in the subesophageal ganglia. This colocalization appears to be related to function, since it is present in regions of the CNS characterized by multiple afferent projections and outputs to a variety of functionally related centers involved in various physiological and behavioral processes. Further elucidation of the functional significance of these neurons and of the widespread process of co-transmission in the crustaceans should provide fascinating new insights.


Assuntos
Braquiúros , Sistema Nervoso Central , Gânglios dos Invertebrados , Neurônios , Animais , Braquiúros/metabolismo , Braquiúros/ultraestrutura , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/ultraestrutura , Colina O-Acetiltransferase/metabolismo , FMRFamida/metabolismo , Gânglios dos Invertebrados/metabolismo , Gânglios dos Invertebrados/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Serotonina/metabolismo
5.
Arthropod Struct Dev ; 60: 101009, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33307518

RESUMO

Parasitic rhizocephalan barnacles induce morphological, physiological, and behavioural changes in their hosts. The mechanisms of these intimate host-parasite interactions remain unknown. We have shown previously that rootlets of the internae of Peltogasterella gracilis and Peltogaster paguri penetrate the ganglion's envelope of their hermit crab hosts and form specialised structures in the ganglion periphery, the so-called goblet-shaped organs. Here, we examine the gross morphology and ultrastructure of these goblet-shaped organs in the interna of Sacculina pilosella. They consist of three layers of cells; in the intermediate layer of the organs, unusual lamellar bodies and muscle cells were found. Extensive degeneration of the host nervous tissue was observed in the funnel of the goblet-shaped organs. We conclude that the ability to penetrate into the host's nervous tissue could be a common trait in rhizocephalans. The goblet-shaped organs may play a key role in the host-parasite relationships by enabling the parasite to influence the host via hormones and neurotransmitters.


Assuntos
Braquiúros/anatomia & histologia , Interações Hospedeiro-Parasita , Thoracica/anatomia & histologia , Animais , Braquiúros/parasitologia , Braquiúros/ultraestrutura , Microscopia , Microscopia Eletrônica de Transmissão , Sistema Nervoso/anatomia & histologia , Sistema Nervoso/ultraestrutura , Thoracica/ultraestrutura
6.
J Morphol ; 281(12): 1660-1678, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037843

RESUMO

We described the ultrastructure and histochemistry of the reproductive system of five Callinectes species, and evaluate the seasonal variation in weight of the reproductive system and hepatopancreas by comparing annual changes of somatic indices. The somatic indices changed little throughout the year. In Callinectes, spermatogenesis occurs inside the lobular testes and, within each lobule, the cells are at the same developmental stage. Spermatogenesis and spermiogenesis follow the same development pattern in all Callinectes studied. Mature spermatozoa are released into the seminiferous ducts through the collecting ducts. Cells of the vas deferens are secretory as evidenced by rough endoplasmic reticulum, Golgi complex, and secretory vesicles that produce the seminal fluid. The anterior vas deferens shows two portions: proximal and distal. In proximal portion (AVDp), spermatozoa are clustered and embedded in an electron-dense, basophilic glycoproteinaceous secretion Type I. In the distal portion (AVDd), the spermatophore wall is formed by incorporation of a less electron-dense glycoproteinaceous secretion Type II. The secretion Type I change to an acid polysaccharide-rich matrix that separates the spermatophores from each other. The median vas deferens (MVD) stores the spermatophores and produces the granular glycoproteinaceous seminal fluid. The posterior vas deferens (PVD) has few spermatophores. Its epithelium has many mitochondria and the PVD seminal fluid changes into a liquid and homogeneous glycoprotein. Many outpocketings in the PVD and MVD help to increase the fluid production. Overall, the reproductive pattern of Callinectes is similar to other species that produce sperm plugs. The secretions of AVD, MVD, and PVD are responsible for the polymerization that forms the solid, waxy plug in the seminal receptacle. The traits identified here are common to all Portunidae species studied so far.


Assuntos
Braquiúros/citologia , Braquiúros/ultraestrutura , Genitália Masculina/citologia , Genitália Masculina/ultraestrutura , Animais , Hepatopâncreas/anatomia & histologia , Hepatopâncreas/citologia , Imageamento Tridimensional , Masculino , Estações do Ano , Espermatogênese , Espermatogônias/citologia , Espermatogônias/ultraestrutura , Testículo/anatomia & histologia , Testículo/citologia , Testículo/ultraestrutura , Ducto Deferente/citologia , Ducto Deferente/ultraestrutura
7.
Tissue Cell ; 66: 101395, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32933718

RESUMO

The ovarian development of Callinectes ornatus and Arenaeus cribrarius was described using histochemistry and ultrastructure. Both species shows the same ovarian stages, which are the juvenile (JUV), adult rudimentary (RUD), developing (DEV), intermediary (INT), mature (MAT), and spent (OV) stages. The JUV and RUD stages showed similar characteristics, and previtellogenesis is characterized by meiotic prophase chromosomes. In the primary vitellogenesis, the oocyte cytoplasm shows many small and large cytoplasmic glycoprotein vesicles. These vesicles correspond to the dilated cisternae of the rough endoplasmic reticulum (RER), which produces the immature (endogenous) yolk. Secondary vitellogenesis (exogenous phase) begins at the DEV stage with the fusion of pinocytic vesicles and vesicles with immature yolks to form mature yolk granules. At the INT stage, the formation of the chorion begins, and the mature yolks increase in size and number, while the RER diminishes. In the MAT stage, the oocytes are completely formed, and the cytoplasm is filled with mature yolk, lipid droplets, and glycogen. There are no significant variations between the gonadosomatic and hepatosomatic indices, which allows us to infer that the transfer of reserves from the hepatopancreas is nearly constant during ovarian development, since we observed primiparous and multiparous females in the same sampled population.


Assuntos
Braquiúros/ultraestrutura , Ovário/ultraestrutura , Natação , Exoesqueleto/ultraestrutura , Animais , Feminino , Oócitos/citologia , Oócitos/ultraestrutura , Oogônios/citologia , Oogônios/ultraestrutura , Vitelogênese
8.
Sci Rep ; 10(1): 3019, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080287

RESUMO

3D-engineered nano-architectures with various functionalities are still difficult to obtain and translate for real-world applications. However, such nanomaterials are naturally abundant and yet wasted, but could trigger huge interest for blue bioeconomy, provided that our understanding of their ultrastructure-function is achieved. To date, the Bouligand pattern in crustaceans shell structure is believed to be unique. Here we demonstrated that in blue crab Callinectes sapidus, the 3D-nanoarchitecture is color-specific, while the blue and red-orange pigments interplay in different nano-sized channels and pores. Thinnest pores of about 20 nm are found in blue shell. Additionally, the blue pigment co-existence in specific Bouligand structure is proved for the green crab Carcinus aestuarii, although the crab does not appear blue. The pigments interplay, simultaneously detected by Raman spectroscopy in color-specific native cuticles, overturns our understanding in crustaceans coloration and may trigger the selective use of particular colored natural nanoarchitectures for broaden area of applications.


Assuntos
Braquiúros/anatomia & histologia , Pigmentação , Exoesqueleto , Animais , Braquiúros/ultraestrutura , Cor , Etanol , Minerais/análise , Pigmentos Biológicos/análise , Porosidade , Análise Espectral Raman , Água , Difração de Raios X , Xantofilas/análise
9.
Integr Comp Biol ; 60(1): 24-32, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693115

RESUMO

The Indian Ocean hydrothermal vent is a region where a new oceanic crust is formed by magma at the interface of the deep-sea bed over 2000 m in depth. Here we examined for the first time the exoskeleton structure and mechanical properties of the bythograeid crab Austinograea Rodriguezensis living in hydrothermal vents. Scanning electron microscope and energy dispersive x-ray were used for structural analysis, and a nanoindentation system was used for mechanical analysis. The exoskeleton was divided into four layers: epicuticle, exocuticle, endocuticle, and membrane. The thickness of each layer was different from that of other crustaceans previously reported. Additionally, the number of constituent elements, composition ratio, and hardness of each layer were unique among previously studied crabs. This observation indicates that those characteristics might have evolved for creatures with a hard exoskeleton living in the deep-sea hydrothermal vent.


Assuntos
Exoesqueleto/anatomia & histologia , Braquiúros/anatomia & histologia , Adaptação Biológica , Exoesqueleto/ultraestrutura , Animais , Braquiúros/ultraestrutura , Feminino , Fontes Hidrotermais , Oceano Índico , Masculino , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
10.
Artigo em Inglês | MEDLINE | ID: mdl-31683012

RESUMO

The mud crab, Scylla paramamosain, is an economically-important crab in China. Air exposure is an important environmental stressor during mud crab culture and transportation. Adaptive mechanisms responding to air exposure in mud crabs are still poorly understood. In this study, mud crabs were exposed to air for 120 h. Air exposure decreased total hemocyte counts, led to cytological damage, and caused high mortality. Transcriptomic analysis was conducted at 0, 6 and 96 h after air exposure. A total of 3530 differentially expressed genes (DEGs) were identified. DEGs were mainly involved in the oxidative stress response, metabolism, cellular processes, signal transduction, and immune functions. Transcriptomic analysis also revealed that genes of glycolysis and of the tricarboxylic acid cycle were key factors in regulating the mud crab adaptation to air exposure.


Assuntos
Adaptação Fisiológica/genética , Ar , Aquicultura , Braquiúros/genética , Braquiúros/ultraestrutura , Hepatopâncreas/patologia , Estresse Oxidativo/genética , Transcriptoma , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , China , Perfilação da Expressão Gênica , Glicólise/genética , Hemócitos/patologia
11.
Arthropod Struct Dev ; 49: 137-151, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30557625

RESUMO

We studied the anatomy and cytology of the midgut gland (MGl) of the common spider crab Maja brachydactyla Balss, 1922 at several life stages (zoea, megalopa, first juvenile, and adult) using dissection, histology, electron microscopy, computed tomography, and micro-computed tomography (micro-CT). In newly hatched larvae, 14 blind-end tubules form the MGl. The length of the tubules increases during the larval development. In the late megalopa, the number of tubules also increases. In adults, 35,000 to 60,000 blind-ending tubules comprise the MGl. In all life stages, a square-net network of muscle fibers surround the tubules. We describe five cell types in the MGl in all larval stages, which have a similar location, histology, and ultrastructure in larvae and adults: embryonary (E-) cells, resorptive (R-) cells, fibrillar (F-) cells, blister-like (B-) cells, and midget (M-) cells. Major difference between larval and adult cells is the larger size of the adult cells. Microapocrine secretion occurs from the microvilli of the B-cells. No ultrastructural changes were observed during larval development, which suggests that the function of each cell type might be similar in all life stages. The role of each epithelial cell type in larvae and adults is discussed.


Assuntos
Braquiúros/anatomia & histologia , Hepatopâncreas/anatomia & histologia , Animais , Braquiúros/crescimento & desenvolvimento , Braquiúros/ultraestrutura , Feminino , Hepatopâncreas/crescimento & desenvolvimento , Hepatopâncreas/ultraestrutura , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X
12.
Arthropod Struct Dev ; 47(6): 627-642, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30300690

RESUMO

We described the spermatozoal ultrastructure and conducted a molecular analysis of Dromiidae Hypoconcha parasitica, Hypoconcha arcuata, Moreiradromia antillensis and Dromia erythropus. To elucidate the relationship between the different species of this brachyuran group, we also compared the spermatozoal morphologies and phylogenetic positioning among species of Dromiidae, Dromioidea and Podotremata. Specimens were collected from the northern coast of São Paulo, Brazil and were fixed and processed followed by transmission electron microscopy and molecular analysis routines. The Dromiidae spermatozoa studied are characterized by a discoidal acrosome, with three or four concentric zones, which are centrally separated by a bilaterally capitate perforatorial chamber, with a "mushroom"-shaped apex in the Hypoconchinae and a "T-shape" in Dromiinae. Above the perforatorial chamber, there is an apical protuberance, continuous with the subopercular region and the operculum, which forms a low, centrally perforated dome. Under differential interference contrast microscopy, the spermatozoa show 3 to 4 radial arms. The spermatozoal characters in Hypoconchinae and Dromiinae do not separate these subfamilies from the Dromiidae and Dromioidea. Ultrastructural differentiation was only found between representative Dromioidea and other Podotremata. Thus, the spermiotaxonomy of these Hypoconcha, Moreiradromia and Dromia species corroborated previous morphological and molecular studies, supporting the monophyly of Dromiidae and Dynomenidae in relation to Homolidae and Latreilliidae.


Assuntos
Braquiúros/química , Braquiúros/ultraestrutura , Evolução Molecular , Espermatozoides/química , Espermatozoides/ultraestrutura , Animais , Masculino , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico/análise , RNA Ribossômico 16S/análise , RNA Ribossômico 18S/análise , Análise de Sequência de RNA
13.
Sci Rep ; 8(1): 14399, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258199

RESUMO

Traditionally, the internal morphology of crustacean larvae has been studied using destructive techniques such as dissection and microscopy. The present study combines advances in micro-computed tomography (micro-CT) and histology to study the internal morphology of decapod larvae, using the common spider crab (Maja brachydactyla Balss, 1922) as a model and resolving the individual limitations of these techniques. The synergy of micro-CT and histology allows the organs to be easily identified, revealing simultaneously the gross morphology (shape, size, and location) and histological organization (tissue arrangement and cell identification). Micro-CT shows mainly the exoskeleton, musculature, digestive and nervous systems, and secondarily the circulatory and respiratory systems, while histology distinguishes several cell types and confirms the organ identity. Micro-CT resolves a discrepancy in the literature regarding the nervous system of crab larvae. The major changes occur in the metamorphosis to the megalopa stage, specifically the formation of the gastric mill, the shortening of the abdominal nerve cord, the curving of the abdomen beneath the cephalothorax, and the development of functional pereiopods, pleopods, and lamellate gills. The combination of micro-CT and histology provides better results than either one alone.


Assuntos
Braquiúros/ultraestrutura , Animais , Braquiúros/anatomia & histologia , Braquiúros/crescimento & desenvolvimento , Feminino , Técnicas Histológicas , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Masculino , Metamorfose Biológica , Microtomografia por Raio-X
14.
J Morphol ; 279(7): 883-894, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29577415

RESUMO

Recent studies revealed a high diversity of reproductive structures in heterotreme brachyurans, while those of Thoracotremata seem rather uniform. Yet, there still is a huge lack of data in this group as only few species have been studied with respect to their reproductive system. The phylogenetic position of Percnidae is ambiguous. Recent molecular studies place it within polyphyletic grapsoids. We herein study the reproductive morphology of Percnon gibbesi using histology, scanning electron microscopy, micro-computed tomography and 3D-reconstructions to test whether this species shows the characteristic thoracotreme pattern. Our results reveal that the male copulatory system conforms to other thoracotremes. It is composed of two pairs of pleopods (gonopods) and likewise paired penes. The first gonopod is relatively long. It possesses a bent terminal process with a distal opening of the ejaculatory canal, a character also present in other grapsoids. The second gonopod is short and terminates in an apical girdle. The female reproductive system reveals a combination of characters, so far unknown for thoracotremes. The paired oviducts do not lead into the seminal receptacles, but run into separate cuticular ducts joined with the vaginae. Accessory sperm storage organs, the bursae, are also connected to the vaginae. Bursae have previously only been described in heterotreme crabs. The data presented in this study reveals a higher diversity of thoracotreme reproductive systems than anticipated.


Assuntos
Braquiúros/anatomia & histologia , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Animais , Braquiúros/ultraestrutura , Copulação , Feminino , Genitália Feminina/diagnóstico por imagem , Genitália Feminina/ultraestrutura , Genitália Masculina/diagnóstico por imagem , Genitália Masculina/ultraestrutura , Humanos , Imageamento Tridimensional , Masculino , Filogenia , Microtomografia por Raio-X
15.
Fish Shellfish Immunol ; 72: 459-469, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29108971

RESUMO

Hemocytes play essential roles in the innate immune system of crustaceans. Characterization of hemocytes from estuary mud crab Scylla paramamosain was performed by flow cytometry and morphological studies such as cytochemical staining and electron microscopy. The hemocyte subsets were further separated using a modified Percoll density gradient centrifugation method. Based on the morphological characteristics of the cells, three distinct categories of hemocytes were identified: granulocytes with abundant large granularity representing 5.27 ± 0.42%, semigranulocytes with small or less granularity representing 76.03 ± 3.34%, and hyalinocytes (18.70 ± 3.92%) which were almost no granularity. The total hemocyte cell count and the percentage of hemocyte subsets varied after pathogen infection, including Vibrio alginolyticus and the viral double-stranded RNA analog Poly (I:C). The phagocytic process is of fundamental importance for crustaceans' cellular immune response as well as development and survival. The results of the in vitro phagocytosis assays analyzed by flow cytometry demonstrated that granulocytes and semigranulocytes had significantly higher phagocytic ability than hyalinocytes. A primary culture system, L-15 medium supplemented with 5-10% fetal bovine serum, was developed to further investigate the immune function of hemocytes. Furthermore, adenovirus can be utilized to effectively transfer GFP gene into hemocytes. Overall, three hemocyte sub-populations of S. paramamosain were successfully discriminated, moreover, their response to pathogen infections, phagocytic activity and adenovirus mediated transfection were also investigated for the first time. This study may contribute to a better understanding of the innate immune system of estuary crabs.


Assuntos
Braquiúros/imunologia , Hemócitos/imunologia , Imunidade Inata , Poli I-C/farmacologia , Vibrio alginolyticus/fisiologia , Animais , Braquiúros/citologia , Braquiúros/ultraestrutura , Citometria de Fluxo , Hemócitos/classificação , Hemócitos/citologia , Hemócitos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fagocitose
16.
J Morphol ; 279(4): 531-544, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29226521

RESUMO

The knowledge of the mating system of pea crabs is still fragmentary as it remains dubious whether females copulate in the juvenile and free-living 'hard' or in the obligatory symbiotic stages (adult stage 'V' or intermediate stages II to IV). To discriminate between these two possibilities, we analysed the female seminal receptacles, vagina and opercula, and the sperm content in different stages of the pea crab Calyptraeotheres garthi. Our histology and scanning electron microscopy results revealed that in the hard stage the seminal receptacle is simple without secretory epithelia, and vagina and opercula are not controlled by musculature. In stages II to IV, the seminal receptacles, vagina, and opercula are under development and these structures reach maturity in stage V. These results suggest that females become receptive in stage V and not during predating stages. We found no spermatozoa in SR of 'hard' and stage II to IV females while these structures were loaded of sperm in most stage V, indicating that females start to mate in stage V. Our results support the notion that males of C. garthi roam among hosts in search for sedentary stage V females, as predicted by Baeza and Thiel's () model of mating systems for symbiotic crustaceans. Nevertheless, we failed to reveal whether females mate repeatedly: the accumulation of sperm in larger females might indicate occurrence of multiple copula or a high variability in male sperm transfer.


Assuntos
Braquiúros/anatomia & histologia , Braquiúros/fisiologia , Genitália Feminina/anatomia & histologia , Comportamento Sexual Animal/fisiologia , Animais , Braquiúros/ultraestrutura , Feminino , Genitália Feminina/ultraestrutura , Masculino , Contagem de Espermatozoides , Espermatozoides/citologia
17.
J Morphol ; 278(12): 1628-1646, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28921597

RESUMO

Recent studies based on morphological and molecular data provide a new perspective concerning taxonomic aspects of the brachyuran family Mithracidae. These studies proposed a series of nominal changes and indicated that the family is actually represented by a different number and representatives of genera than previously thought. Here, we provide a comparative description of the ultrastructure of spermatozoa and spermatophores of some species of Mithracidae in a phylogenetic context. The ultrastructure of the spermatozoa and spermatophore was observed by scanning and transmission electron microscopy. The most informative morphological characters analysed were thickness of the operculum, shape of the perforatorial chamber and shape and thickness of the inner acrosomal zone. As a framework, we used a topology based on a phylogenetic analysis using mitochondrial data obtained here and from previous studies. Our results indicate that closely related species share a series of morphological characteristics of the spermatozoa. A thick operculum, for example, is a feature observed in species of the genera Amphithrax, Teleophrys, and Omalacantha in contrast to the slender operculum observed in Mithraculus and Mithrax. Amphithrax and Teleophrys have a rhomboid perforatorial chamber, while Mithraculus, Mithrax, and Omalacantha show a wider, deltoid morphology. Furthermore, our results are in agreement with recently proposed taxonomic changes including the separation of the genera Mithrax (previously Damithrax), Amphithrax (previously Mithrax) and Mithraculus, and the synonymy of Mithrax caribbaeus with Mithrax hispidus. Overall, the spermiotaxonomy of these species of Mithracidae represent a novel set of data that corroborates the most recent taxonomic revision of the family and can be used in future taxonomic and phylogenetic studies within this family.


Assuntos
Braquiúros/anatomia & histologia , Braquiúros/ultraestrutura , Espermatozoides/ultraestrutura , Animais , Braquiúros/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Masculino , Filogenia , Subunidades Ribossômicas Maiores/genética , Espermatogônias/ultraestrutura
18.
J Morphol ; 278(9): 1197-1207, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28503803

RESUMO

Within the Brachyura there are a variety of specialized holding mechanisms, which facilitate the close attachment of the highly reduced pleon underneath the cephalothorax. The most common mechanism in eubrachyurans, known as the press-button, consists of a sternal protrusion and a corresponding pleonal socket. Reports on the microstructural properties of the surface of these holding structures are scarce and patchy. In this study, the European Green Crab Carcinus maenas, is used as model to describe the microstructure of a typical press-button mechanism with the use of scanning electron microscopy and light microscopic histology. A highly tuberculate cuticle and an apical ridge on the sternal knob are found in juveniles of both sexes. The microstructures are lost in adult males. In adult females, the holding structures themselves are reduced, but never completely lost. These findings show that C. maenas does not undergo a single "final puberty moult," after which all juvenile characteristics are lost, as previously assumed. Further comparison of the morphology of juveniles to another species indicates a close resemblance of the holding structures at this stage. Therefore, the use of the microstructure of the pleon-holding mechanism for phylogenetic analysis is restricted to adult specimens.


Assuntos
Estruturas Animais/anatomia & histologia , Tamanho Corporal , Braquiúros/anatomia & histologia , Estruturas Animais/ultraestrutura , Animais , Braquiúros/ultraestrutura , Feminino , Masculino , Filogenia
19.
J Morphol ; 277(12): 1648-1660, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27650814

RESUMO

Observations of cuticular structures mineralized with silica within the Crustacea have been limited to the opal teeth of copepods, mandibles of amphipods, and recently the teeth of the gastric mill in the blue crab Callinectes sapidus. Copepod teeth are deposited during premolt, with sequential elaboration of organic materials followed by secretion of silica into the tooth mold. The timing of mineralization is in stark contrast to that of the general integument of crustaceans in which calcification is completely restricted to the postmolt period. To determine the timing of molt-related deposition and silicification of the teeth of the gastric mill, the medial tooth of the blue crab C. sapidus was examined histologically and ultrastructurally across the molt cycle. Histological data revealed deposition of the organic matrix of the epicuticle and exocuticle during premolt. No evidence of postmolt changes in the thickness of the epicuticle and exocuticle, or any deposition of endocuticle, was observed. Scanning electron microscopy revealed degradation of the outer surface of the old tooth during premolt. During premolt, epithelial structures resembling papilla appeared to secrete a fibrous web that coalesces to become the matrix of the new tooth. Semi-quantitative elemental analyses indicated simultaneous deposition of silica and organic matrix, and demonstrated a homogeneous distribution of silicon throughout the epicuticle of the tooth at all stages. However, there is evidence of deposition (presumably silicification) during postmolt as spaces between the papillae become filled in. Thus, the pattern and timing of deposition and silicification of the tooth are different from both teeth of copepods and the general exoskeleton of decapods, and may facilitate rapid resumption of feeding and consumption of the exuvia in early postmolt. J. Morphol. 277:1648-1660, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Braquiúros/fisiologia , Dióxido de Silício/metabolismo , Dente/metabolismo , Animais , Braquiúros/anatomia & histologia , Braquiúros/ultraestrutura , Elementos Químicos , Espectrometria por Raios X , Dente/anatomia & histologia , Dente/ultraestrutura
20.
Acta Biomater ; 41: 52-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27184402

RESUMO

UNLABELLED: This paper elucidates the unique setal morphology of the decorator crab Tiarinia cornigera, and further presents evidence to that setal morphology promotes micro-organism nucleation and adhesion. The carapace of this crab is covered by clusters of setae, each comprising a hollow acicular stem that is enveloped by a haystack-like structure. Using computational fluid dynamics, we find that these setae are responsible for manipulating water flow over the carapace surface. Micro-organisms in the sea water, nest in areas of flow stagnation and as a result, nucleate to and biofoul the setae by means of chemical adhesion. Attached micro-organisms secrete extracellular polymeric substances, which we deduce must also provide an additional element of chemical adhesion to mechanically interlocked mesoscopic and macroscopic biomatter. By coupling physical and chemical methods for adhesion, T. cornigera is able to hierarchically decorate its carapace. STATEMENT OF SIGNIFICANCE: Our paper brings to light the unique decorator crab carapace morphology of T. cornigera; and furthermore evidences its function in micro-organism nucleation and adhesion. We show how this special carapace morphology directs and guides water flow to form nesting regions of water stagnation where micro-organisms can nucleate and adhere. In the literature, decorator crab carapaces are presumed to be able to mechanically interlock biomatter as camouflage using hook-like setal outgrowths. T. cornigera contrarily exhibits clusters of hay-stack like structures. By encouraging micro-organism adhesion to the carapace setae, T. cornigera is able to effectively attach biomatter using both chemical and physical principles of adhesion. T. cornigera essentially has a super-biofouling carapace surface, for at least micro-organisms. Our work will have an impact on researchers interested in biofouling, adhesion, biomedical and purification filter systems, and in the development of novel biomimetic surfaces with tailored properties.


Assuntos
Exoesqueleto/anatomia & histologia , Braquiúros/anatomia & histologia , Adesividade , Exoesqueleto/ultraestrutura , Animais , Biopolímeros/química , Braquiúros/ultraestrutura , Código de Barras de DNA Taxonômico , Espaço Extracelular/química , Hidrodinâmica , Simulação de Dinâmica Molecular , Reologia , Especificidade da Espécie , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...