Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 862
Filtrar
1.
Sci Rep ; 14(1): 15794, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982208

RESUMO

Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2-7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, - 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.


Assuntos
Biofortificação , Brassica , Hidroponia , Iodatos , Iodo , Iodo/metabolismo , Iodo/análise , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Iodatos/metabolismo , Biomassa , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Compostos de Potássio/metabolismo , Clorofila/metabolismo
2.
Planta ; 260(2): 50, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990341

RESUMO

MAIN CONCLUSION: BcERF98 is induced by ethylene signaling and inhibits the expression of BcFT by interacting with BcNF-YA2 and BcEIP9, thereby inhibiting plant flowering. Several stresses trigger the accumulation of ethylene, which then transmits the signal to ethylene response factors (ERFs) to participate in the regulation of plant development to adapt to the environment. This study clarifies the function of BcERF98, a homolog of AtERF98, in the regulation of plant flowering time mediated by high concentrations of ethylene. Results indicate that BcERF98 is a nuclear and the cell membrane-localized transcription factor and highly responsive to ethylene signaling. BcERF98 inhibits the expression of BcFT by interacting with BcEIP9 and BcNF-YA2, which are related to flowering time regulation, thereby participating in ethylene-mediated plant late flowering regulation. The results have enriched the theoretical knowledge of flowering regulation in non-heading Chinese cabbage (NHCC), providing the scientific basis and gene reserves for cultivating new varieties of NHCC with different flowering times.


Assuntos
Etilenos , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Brassica/genética , Brassica/fisiologia , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo
3.
BMC Plant Biol ; 24(1): 674, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004738

RESUMO

BACKGROUND: Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS: Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION: Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.


Assuntos
Antioxidantes , Citocininas , Cinetina , Reguladores de Crescimento de Plantas , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Cinetina/farmacologia , Antioxidantes/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/fisiologia , Brassica/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Purinas , Fotossíntese/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 14(1): 13761, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877054

RESUMO

Arid regions can benefit from using native desert plants, which require minimal freshwater and can aid in remediating soil phytotoxic metals (PTMs) from traffic emissions. In this study, we assessed the ability of three native desert plants-Pennisetum divisum, Tetraena qatarensis, and Brassica tournefortii-to accumulate phytotoxic metals (PTMs) in their different plant organs, including leaves, stems, and roots/rhizomes. The PTMs were analyzed in soil and plant samples collected from Dubai, United Arab Emirates (UAE). The results indicated significantly higher levels of PTMs on the soil surface than the subsurface layer. Brassica exhibited the highest concentrations of Fe and Zn, measuring 566.7 and 262.8 mg kg-1, respectively, while Tetraena accumulated the highest concentration of Sr (1676.9 mg kg-1) in their stems. In contrast, Pennisetum recorded the lowest concentration of Sr (21.0 mg kg-1), while Tetraena exhibited the lowest concentrations of Fe and Zn (22.5 and 30.1 mg kg-1) in their leaves. The roots of Pennisetum, Brassica, and Tetraena demonstrated the potential to accumulate Zn from the soil, with concentration factors (CF) of 1.75, 1.09, and 1.09, respectively. Moreover, Brassica exhibited the highest CF for Sr, measuring 2.34. Pennisetum, however, could not translocate PTMs from its rhizomes to other plant organs, as indicated by a translocation factor (TF) of 1. In contrast, Brassica effectively translocated the studied PTMs from its roots to the stem and leaves (except for Sr in the leaves). Furthermore, Pennisetum exclusively absorbed Zn from the soil into its leaves and stems, with an enrichment factor (EF) greater than 1. Brassica showed the ability to uptake the studied PTMs in its stem and leaves (except for Fe), while Tetraena primarily absorbed Sr and Zn into its stems. Based on the CF and TF results, Pennisetum appears to be a suitable species for phytostabilization of both Fe and Zn, while Brassica is well-suited for Sr and Zn polluted soils. Tetraena shows potential for Zn phytoremediation. These findings suggest that these plants are suitable for PTMs phytoextraction. Furthermore, based on the EF results, these plants can efficiently sequester PTMs.


Assuntos
Biodegradação Ambiental , Cidades , Poluentes do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Pennisetum/metabolismo , Clima Desértico , Solo/química , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Metais Pesados/metabolismo , Metais Pesados/análise
5.
Ecotoxicol Environ Saf ; 280: 116519, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833977

RESUMO

The indiscriminate use of zinc oxide nanoparticles (ZnO NPs) in daily life can lead to their release into soil environment. These ZnO NPs can be taken up by crops and translocated to their edible part, potentially causing risks to the ecosystem and human health. In this study, we conducted pot experiments to determine phytotoxicity, bioaccumulation and translocation depending on the size (10 - 30 nm, 80 - 200 nm and 300 nm diameter) and concentration (0, 100, 500 and 1000 mg Zn/kg) of ZnO NPs and Zn ion (Zn2+) in bok choy, a leafy green vegetable crop. After 14 days of exposure, our results showed that large-sized ZnO NPs (i.e., 300 nm) at the highest concentration exhibited greater phytotoxicity, including obstruction of leaf and root weight (42.5 % and 33.8 %, respectively) and reduction of chlorophyll a and b content (50.2 % and 85.2 %, respectively), as well as changes in the activities of oxidative stress responses compared to those of small-sized ZnO NPs, although their translocation ability was relatively lower than that of smaller ones. The translocation factor (TF) values decreased as the size of ZnO NPs increased, with TF values of 0.68 for 10 - 30 nm, 0.55 for 80 - 200 nm, and 0.27 for 300 nm ZnO NPs, all at the highest exposure concentration. Both the results of micro X-ray fluorescence (µ-XRF) spectrometer and bio-transmission electron microscopy (bio-TEM) showed that the Zn elements were mainly localized at the edges of leaves exposed to small-sized ZnO NPs. However, the Zn elements upon exposure to large-sized ZnO NP were primarily observed in the primary veins of leaves in the µ-XRF data, indicating a limitation in their ability to translocate from roots to leaves. This study not only advances our comprehension of the environmental impact of nanotechnology but also holds considerable implications for the future of sustainable agriculture and food safety.


Assuntos
Bioacumulação , Brassica , Nanopartículas Metálicas , Tamanho da Partícula , Folhas de Planta , Poluentes do Solo , Óxido de Zinco , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Poluentes do Solo/toxicidade , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Nanopartículas Metálicas/toxicidade , Solo/química , Clorofila/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Clorofila A/metabolismo , Nanopartículas/toxicidade
6.
Plant Sci ; 346: 112154, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879178

RESUMO

Chinese cabbage is a cross-pollinated crop with significant heterosis, and male sterile lines are an important way to produce hybrid seeds. In this study, a male sterile mutant msm0795 was identified in an EMS-mutagenized population of Chinese cabbage. Cytological observations revealed that the microspores failed to separate after the tetrad stage, and thus developed into abnormal pollen grains, resulting in anther abortion. MutMap combined with Kompetitive Allele Specific PCR genotyping showed that BraA01g011280.3.5 C was identified as the candidate gene, which encodes polygalacturonase QRT3 and plays a direct role in the degradation of pollen mother cell wall during microspore development, named BrQRT3. Subcellular localization and expression analyses demonstrated that BrQRT3 was localized in the cell membrane and was ubiquitously expressed in roots, stems, leaves, flower buds, and flowers, but the expression of BrQRT3 was gradually suppressed with the anther development. Ectopic expression confirmed that over-expression of BrQRT3 in qrt3 background Arabidopsis mutant can rescue the pollen defects caused by loss of AtQRT3 function. It is the first time to achieve a male sterile mutant caused by the mutation of BrQRT3 in Chinese cabbage. These findings contribute to elucidate the mechanism of BrQRT3 in regulating stamen development of Chinese cabbage.


Assuntos
Brassica , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Brassica/genética , Brassica/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Genes de Plantas , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Mutação , Flores/genética , Flores/crescimento & desenvolvimento
7.
Huan Jing Ke Xue ; 45(6): 3543-3552, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897774

RESUMO

In order to explore the effect of Rosa roxburghii pomace biochar on the yield and quality of Chinese cabbage and soil properties and realize the resource utilization of R. roxburghii pomace, a pot experiment was conducted to study the effect of R. roxburghii pomace biochar on the yield and quality of Chinese cabbage and soil properties by setting five biochar application rates of 0 % (CK), 1 % (T1), 3 % (T2), 5 % (T3), and 7 % (T4). The results showed that:① The application of R. roxburghii pomace biochar could significantly improve the yield and quality of Chinese cabbage, and the effect was the best at a 5 % biochar application rate. The yield, soluble solids, soluble sugar, vitamin C, total nitrogen, total phosphorus, and total potassium content of Chinese cabbage increased by 71.51 %, 40.14 %, 33.65 %, 38.08 %, 9.03 %, 28.85 %, and 35.38 %, respectively, compared with those in CK. ② The application of biochar from R. roxburghii pomace could significantly improve soil properties and increase soil nutrient content and availability. The effect was better at a 5 % biochar application rate. The soil pH, organic matter, total nitrogen, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium content increased by 41.06 %, 134.84 %, 157.48 %, 140.79 %, 341.75 %, and 627.13 %, respectively, compared with those in CK. The contents of available Fe, Mn, Cu, and Zn and exchangeable Ca and Mg increased by 37.68 %, 61.69 %, 400.00 %, 4 648.84 %, 617.17 %, and 351.42 %, respectively, compared with those in CK. ③ The application of biochar from R. roxburghii pomace could significantly enhance soil enzyme activity. Compared with those in the CK treatment, soil urease, acid phosphatase, catalase, and sucrase increased by 51.43 %-362.86 %, 90.63 %-134.14 %, 21.40 %-85.12 %, and 82.92 %-218.43 %, respectively. ④ Redundancy analysis showed that soil AK; exchangeable Ca, SOM, and AP; and available Zn were the main factors affecting the yield and quality of Chinese cabbage, and there was a significant positive correlation between them. In summary, the application of R. roxburghii pomace biochar can significantly increase the yield and quality of Chinese cabbage and improve soil properties. The preparation of R. roxburghii pomace into biochar can provide a theoretical reference for the rational utilization of R. roxburghii pomace resources.


Assuntos
Brassica , Carvão Vegetal , Rosa , Solo , Brassica/crescimento & desenvolvimento , Carvão Vegetal/química , Rosa/crescimento & desenvolvimento , Solo/química , Fertilizantes , Nitrogênio , Biomassa , Controle de Qualidade , Fósforo
8.
Plant Physiol Biochem ; 211: 108694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714131

RESUMO

Using natural clinoptilolite (NCP) as a carrier and alginate (Alg)-calcium as an active species, the porous silicon calcium alginate nanocomposite (Alg-Ca-NCP) was successfully fabricated via adsorption-covalence-hydrogen bond. Its structural features and physicochemical properties were detailed investigated by various characterizations. The results indicated that Alg-Ca-NCP presented the disordered lamellar structures with approximately uniform particles in size of 300-500 nm. Specially, their surface fractal evolutions between the irregular roughness and dense structures were demonstrated via the SAXS patterns. The results elucidated that the abundant micropores of NCP were beneficial for unrestricted diffusing of Alg-Ca, which was conducive to facilitate a higher loading and sustainable releasing. The Ca content of leaf mustard treated with Alg-Ca-NCP-0.5 was 484.5 mg/100g on the 21st day, higher than that by water (CK) and CaCl2 solution treatments, respectively. Meanwhile, the prepared Alg-Ca-NCPs presented the obvious anti-aging effects on peroxidase drought stress of mustard leaves. These demonstrations provided a simple and effective method to synthesize Alg-Ca-NCPs as delivery nanocomposites, which is useful to improve the weak absorption and low utilization of calcium alginate by plants.


Assuntos
Alginatos , Mostardeira , Zeolitas , Alginatos/química , Alginatos/farmacologia , Zeolitas/química , Zeolitas/farmacologia , Mostardeira/metabolismo , Mostardeira/efeitos dos fármacos , Mostardeira/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Porosidade , Brassica/metabolismo , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Ácido Glucurônico/química , Nanocompostos/química , Difração de Raios X , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo
9.
Sci Total Environ ; 933: 173100, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735330

RESUMO

Microplastics (MPs) are emerging pollutants of terrestrial ecosystems. The impacts of MP particle size on terrestrial systems remain unclear. The current study aimed to investigate the effects of six particle sizes (i.e., 4500, 1500, 500, 50, 5, and 0.5 µm) of polyethylene (PE) and polyvinyl chloride (PVC) on soil respiration, enzyme activity, bacteria, fungi, protists, and seed germination. MPs significantly promoted soil respiration, and the stimulating effects of PE were the strongest for medium and small-sized (0.5-1500 µm) particles, while those of PVC were the strongest for small particle sizes (0.5-50 µm). Large-sized (4500 µm) PE and all sizes of PVC significantly improved soil urease activity, while medium-sized (1500 µm) PVC significantly improved soil invertase activity. MPs altered the soil microbial community diversity, and the effects were especially pronounced for medium and small-sized (0.5-1500 µm) particles of PE and PVC on bacteria and fungi and small-sized (0.5 µm) particles of PE on protists. The impacts of MPs on bacteria and fungi were greater than on protists. The seed germination rate of Brassica chinensis decreased gradually with the decrease in PE MPs particle size. Therefore, to reduce the impact of MPs on soil ecosystems, effective measures should be taken to avoid the transformation of MPs into smaller particles in soil environmental management.


Assuntos
Germinação , Microbiota , Microplásticos , Tamanho da Partícula , Microbiologia do Solo , Poluentes do Solo , Microplásticos/farmacologia , Poluentes do Solo/farmacologia , Germinação/efeitos dos fármacos , Solo/química , Solo/parasitologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Fungos/efeitos dos fármacos , Fungos/enzimologia , Eucariotos/efeitos dos fármacos , Eucariotos/enzimologia , Ativação Enzimática/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Biodiversidade , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento
10.
Food Chem ; 452: 139615, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754169

RESUMO

Screening for pollution-safe cultivars (PSCs) is a cost-effective strategy for reducing health risks of crops in heavy metal (HM)-contaminated soils. In this study, 13 head cabbages were grown in multi-HMs contaminated soil, and their accumulation characteristics, interaction of HM types, and health risks assessment using Monte Carlo simulation were examined. Results showed that the edible part of head cabbage is susceptible to HM contamination, with 84.62% of varieties polluted. The average bio-concentration ability of HMs in head cabbage was Cd> > Hg > Cr > As>Pb. Among five HMs, Cd and As contributed more to potential health risks (accounting for 20.8%-48.5%). Significant positive correlations were observed between HM accumulation and co-occurring HMs in soil. Genotypic variations in HM accumulation suggested the potential for reducing health risks through crop screening. G7 is a recommended variety for head cabbage cultivation in areas with multiple HM contamination, while G3 could serve as a suitable alternative for heavily Hg-contaminated soils.


Assuntos
Bioacumulação , Brassica , Metais Pesados , Poluentes do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/química , Metais Pesados/metabolismo , Metais Pesados/análise , Brassica/química , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Solo/química , Contaminação de Alimentos/análise
11.
Sci Total Environ ; 932: 173073, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734103

RESUMO

The organic matter molecular mechanism by which combined hydrothermal carbonization (co-HTC) of municipal sludge (MS) and agricultural wastes (rice husk, spent mushroom substrate, and wheat straw) reduces the inhibitory effects of aqueous phase (AP) products on pak choi (Brassica campestris L.) growth compared to HTC of MS alone is not clear. Fourier-transform ion cyclotron resonance mass spectrometry was used to characterize the differences in organic matter at the molecular level between AP from MS HTC alone (AP-MS) and AP from co-HTC of MS and agricultural waste (co-Aps). The results showed that N-bearing molecules of AP-MS and co-Aps account for 70.6 % and 54.2 %-64.1 % of all molecules, respectively. Lignins were present in the highest proportion (56.3 %-78.5 %) in all APs, followed by proteins and lipids. The dry weight of co-APs hydroponically grown pak choi was 31.6 %-47.6 % higher than that of the AP-MS. Molecules that were poorly saturated and with low aromaticity were preferentially consumed during hydroponic treatment. Molecules present before and after hydroponics were defined as resistant molecules; molecules present before hydroponics but absent after hydroponics were defined as removed molecules; and molecules absent before hydroponics but present after hydroponics were defined as produced molecules. Large lignin molecules were broken down into more unsaturated molecules, but lignins were the most commonly resistant, removed, and produced molecules. Correlation analysis revealed that N- or S-bearing molecules were phytotoxic in the AP. Tannins positively influenced the growth of pak choi. These results provide new insights into potential implementation strategies for liquid fertilizers produced from AP arising from HTC of MS and agricultural wastes.


Assuntos
Agricultura , Esgotos , Agricultura/métodos , Brassica/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos
12.
ScientificWorldJournal ; 2024: 6086730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715843

RESUMO

Cabbage (Brassica oleracea var. capitata L.) holds significant agricultural and nutritional importance in Ethiopia; yet, its production faces challenges, including suboptimal nitrogen fertilizer management. The aim of this review was to review the possible effect of nitrogen fertilizer levels on the production of cabbage in Ethiopia. Nitrogen fertilization significantly influences cabbage yield and quality. Moderate to high levels of nitrogen application enhance plant growth, leaf area, head weight, and yield. However, excessive nitrogen levels can lead to adverse effects such as delayed maturity, increased susceptibility to pests and diseases, and reduced postharvest quality. In Ethiopia, small-scale farmers use different nitrogen levels for cabbage cultivation. In Ethiopia, NPSB or NPSBZN fertilizers are widely employed for the growing of various crops such as cabbage. 242 kg of NPS and 79 kg of urea are the blanket recommendation for the current production of cabbage in Ethiopia. The existing rate is not conducive for farmers. Therefore, small-scale farmers ought to utilize an optimal and cost-effective nitrogen rate to boost the cabbage yield. Furthermore, the effectiveness of nitrogen fertilization is influenced by various factors including the soil type, climate, cabbage variety, and agronomic practices. Integrated nutrient management approaches, combining nitrogen fertilizers with organic amendments or other nutrients, have shown promise in optimizing cabbage production while minimizing environmental impacts. The government ought to heed suggestions concerning soil characteristics such as the soil type, fertility, and additional factors such as the soil pH level and soil moisture contents.


Assuntos
Brassica , Fertilizantes , Nitrogênio , Agricultura/métodos , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Brassica/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Etiópia , Fertilizantes/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química
13.
Environ Sci Pollut Res Int ; 31(26): 38217-38231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795300

RESUMO

Crop cultivars have an influence on greenhouse gas (GHG) emissions, and there is variation between varieties. However, there are few reports available on the differences in GHG emissions and their driving factors among vegetable varieties. In this study, we conducted a field experiment to examine the variances in GHG emissions and their contributing factors among eight flowering Chinese cabbage varieties (considering growth period, leaf shape, and colour). The results showed significant differences in GHG emissions within varieties; early-maturing varieties exhibited GHG by 25.6% and 15.3%, respectively, when compared to mid- and late-maturing varieties. Among the different leaf types and color classifications, light-colored and sharp-leafed varieties had the lower global warming potential (GWP) overall. Cumulative CO2 emissions were influenced by leaf SPAD values and biomass, while cumulative N2O emissions were driven mainly by stem thickness, carbon accumulation, leaf SPAD values, and biomass. In summary, the selection of light-colored varieties with pointed leaves and shorter growth periods in actual production contributed positively to the reduction of carbon emissions from flowering Chinese cabbage production. Through efficient variety screening, this study provides a win-win strategy for achieving efficient vegetable production while also addressing the global climate challenge.


Assuntos
Brassica , Gases de Efeito Estufa , Brassica/crescimento & desenvolvimento , Gases de Efeito Estufa/análise , Folhas de Planta , Dióxido de Carbono/análise
14.
PeerJ ; 12: e17337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784401

RESUMO

Chinese cabbage (Brassica campestris L. ssp. chinensis (L.) Makino) stands as a widely cultivated leafy vegetable in China, with its leaf morphology significantly influencing both quality and yield. Despite its agricultural importance, the precise mechanisms governing leaf wrinkling development remain elusive. This investigation focuses on 'Wutacai', a representative cultivar of the Tacai variety (Brassica campestris L. ssp. chinensis var. rosularis Tsen et Lee), renowned for its distinct leaf wrinkling characteristics. Within the genome of 'Wutacai', we identified a total of 18 YUCs, designated as BraWTC_YUCs, revealing their conservation within the Brassica genus, and their close homology to YUCs in Arabidopsis. Expression profiling unveiled that BraWTC_YUCs in Chinese Cabbage exhibited organ-specific and leaf position-dependent variation. Additionally, transcriptome sequencing data from the flat leaf cultivar 'Suzhouqing' and the wrinkled leaf cultivar 'Wutacai' revealed differentially expressed genes (DEGs) related to auxin during the early phases of leaf development, particularly the YUC gene. In summary, this study successfully identified the YUC gene family in 'Wutacai' and elucidated its potential function in leaf wrinkling trait, to provide valuable insights into the prospective molecular mechanisms that regulate leaf wrinkling in Chinese cabbage.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Brassica/genética , Brassica/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , China , Oxigenases/genética , Oxigenases/metabolismo , Genes de Plantas
15.
Sci Rep ; 14(1): 10682, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724517

RESUMO

Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.


Assuntos
Brassica , Flores , Regulação da Expressão Gênica de Plantas , Brassica/química , Brassica/genética , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Metaboloma , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Transcriptoma , Carboidratos , Proteínas de Plantas/genética , Glucose-6-Fosfato/metabolismo , Genes de Plantas
16.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791354

RESUMO

Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Proteínas de Plantas , Proteínas de Ligação a RNA , Fatores de Transcrição , Glucosinolatos/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Plantas Geneticamente Modificadas
17.
Food Chem ; 450: 139349, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631205

RESUMO

Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.


Assuntos
Brassica , Homeostase , Microplásticos , Oxirredução , Fotossíntese , Reguladores de Crescimento de Plantas , Metabolismo Secundário , Selênio , Fotossíntese/efeitos dos fármacos , Brassica/metabolismo , Brassica/química , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Microplásticos/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Poluentes do Solo/metabolismo
18.
Chem Biodivers ; 21(6): e202301867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581645

RESUMO

Twelve novel carane-3,4-diol derivatives were designed, synthesized, and evaluated for their herbicidal activities against Lolium multiflorum Lam. and Brassica campestris for the first time. The relationships between the chemical structural factors, including types, the number or the carbon chain length of functional groups, associated with the lipophilicity and the herbicidal activity of the tested compounds were also discussed. The results showed that most of newly synthesized compounds had a dose-dependent, herbicidal activity against the root and shoot growths of Lolium multiflorum Lam. and Brassica campestris. Compared to carane-3,4-diol, most of the target derivatives possessed improved lipophilicity and certain solubilities in representative solvents with different polarities. Particularly, ester derivatives 3a-3b and 3e can be dissolved or dispersed in water, but also displayed higher herbicidal activity against Lolium multiflorum Lam. and Brassica campestris than other ester derivatives. The 50 % inhibitory concentration (IC50) value of compound 3e against shoot growth of Brassica campestris (0.485 mmol/L) was superior to that of commercial herbicide glyphosate (1.14 mmol/L), indicating that the potential application as a water-based herbicide for Brassica campestris control.


Assuntos
Brassica , Herbicidas , Água , Herbicidas/farmacologia , Herbicidas/síntese química , Herbicidas/química , Brassica/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Água/química , Relação Estrutura-Atividade , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Estrutura Molecular
19.
Pest Manag Sci ; 80(6): 2817-2826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323798

RESUMO

BACKGROUND: Machine vision-based precision weed management is a promising solution to substantially reduce herbicide input and weed control cost. The objective of this research was to compare two different deep learning-based approaches for detecting weeds in cabbage: (1) detecting weeds directly, and (2) detecting crops by generating the bounding boxes covering the crops and any green pixels outside the bounding boxes were deemed as weeds. RESULTS: The precision, recall, F1-score, mAP0.5, mAP0.5:0.95 of You Only Look Once (YOLO) v5 for detecting cabbage were 0.986, 0.979, 0.982, 0.995, and 0.851, respectively, while these metrics were 0.973, 0.985, 0.979, 0.993, and 0.906 for YOLOv8, respectively. However, none of these metrics exceeded 0.891 when detecting weeds. The reduced performances for directly detecting weeds could be attributed to the diverse weed species at varying densities and growth stages with different plant morphologies. A segmentation procedure demonstrated its effectiveness for extracting weeds outside the bounding boxes covering the crops, and thereby realizing effective indirect weed detection. CONCLUSION: The indirect weed detection approach demands less manpower as the need for constructing a large training dataset containing a variety of weed species is unnecessary. However, in a certain case, weeds are likely to remain undetected due to their growth in close proximity with crops and being situated within the predicted bounding boxes that encompass the crops. The models generated in this research can be used in conjunction with the machine vision subsystem of a smart sprayer or mechanical weeder. © 2024 Society of Chemical Industry.


Assuntos
Brassica , Aprendizado Profundo , Plantas Daninhas , Controle de Plantas Daninhas , Brassica/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Controle de Plantas Daninhas/métodos , Produtos Agrícolas/crescimento & desenvolvimento
20.
Science ; 382(6673): 935-940, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37995216

RESUMO

In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Arabidopsis , Arabidopsis , Brassica , Hipocótilo , Fototropinas , Fototropismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Brassica/genética , Brassica/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Luz , Fototropinas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...