Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.187
Filtrar
1.
Genes (Basel) ; 15(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927604

RESUMO

Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.


Assuntos
Brassica , Sistemas CRISPR-Cas , Edição de Genes , Plantas Geneticamente Modificadas , Brassica/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética
2.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825715

RESUMO

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Assuntos
Arabidopsis , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Plantas Geneticamente Modificadas , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Animais , Endotoxinas/genética , Regiões Promotoras Genéticas/genética , Bacillus thuringiensis/genética , Mariposas/genética , Brassica/genética , Controle Biológico de Vetores/métodos , Inseticidas/farmacologia
3.
PLoS One ; 19(6): e0304677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870160

RESUMO

Quantitative transcription regulation studies in vivo and in vitro often make use of reporter proteins. Here we show that using Broccoli aptamers, quantitative study of transcription in various regulatory scenarios is possible without a translational step. To explore the method we studied several regulatory scenarios that we analyzed using thermodynamic occupancy-based models, and found excellent agreement with previous studies. In the next step we show that non-coding DNA can have a dramatic effect on the level of transcription, similar to the influence of the lac repressor with a strong affinity to operator sites. Finally, we point out the limitations of the method in terms of delay times coupled to the folding of the aptamer. We conclude that the Broccoli aptamer is suitable for quantitative transcription measurements.


Assuntos
Aptâmeros de Nucleotídeos , Brassica , Transcrição Gênica , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/química , Brassica/genética , Brassica/metabolismo , Termodinâmica , Regulação da Expressão Gênica
4.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928029

RESUMO

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Assuntos
Brassica , Ácidos Erúcicos , Ésteres , Engenharia Metabólica , Plantas Geneticamente Modificadas , Sementes , Ceras , Ácidos Erúcicos/metabolismo , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Ésteres/metabolismo , Sementes/genética , Sementes/metabolismo , Brassica/genética , Brassica/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Theor Appl Genet ; 137(6): 123, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722407

RESUMO

KEY MESSAGE: BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.


Assuntos
Brassica , Folhas de Planta , Transaminases , Ceras , Alelos , Brassica/genética , Mutação , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Polimorfismo de Nucleotídeo Único , Transaminases/genética , Ceras/química , Ceras/metabolismo
6.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790174

RESUMO

Black spot, caused by Alternaria brassicicola (Ab), poses a serious threat to crucifer production, and knowledge of how plants respond to Ab infection is essential for black spot management. In the current study, combined transcriptomic and metabolic analysis was employed to investigate the response to Ab infection in two cabbage (Brassica oleracea var. capitata) genotypes, Bo257 (resistant to Ab) and Bo190 (susceptible to Ab). A total of 1100 and 7490 differentially expressed genes were identified in Bo257 (R_mock vs. R_Ab) and Bo190 (S_mock vs. S_Ab), respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that "metabolic pathways", "biosynthesis of secondary metabolites", and "glucosinolate biosynthesis" were the top three enriched KEGG pathways in Bo257, while "metabolic pathways", "biosynthesis of secondary metabolites", and "carbon metabolism" were the top three enriched KEGG pathways in Bo190. Further analysis showed that genes involved in extracellular reactive oxygen species (ROS) production, jasmonic acid signaling pathway, and indolic glucosinolate biosynthesis pathway were differentially expressed in response to Ab infection. Notably, when infected with Ab, genes involved in extracellular ROS production were largely unchanged in Bo257, whereas most of these genes were upregulated in Bo190. Metabolic profiling revealed 24 and 56 differentially accumulated metabolites in Bo257 and Bo190, respectively, with the majority being primary metabolites. Further analysis revealed that dramatic accumulation of succinate was observed in Bo257 and Bo190, which may provide energy for resistance responses against Ab infection via the tricarboxylic acid cycle pathway. Collectively, this study provides comprehensive insights into the Ab-cabbage interactions and helps uncover targets for breeding Ab-resistant varieties in cabbage.


Assuntos
Alternaria , Brassica , Regulação da Expressão Gênica de Plantas , Metaboloma , Doenças das Plantas , Transcriptoma , Alternaria/patogenicidade , Alternaria/genética , Brassica/microbiologia , Brassica/genética , Brassica/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Transcriptoma/genética , Metaboloma/genética , Resistência à Doença/genética , Redes e Vias Metabólicas/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Genes (Basel) ; 15(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790180

RESUMO

Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.


Assuntos
Brassica , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Brassica/genética , Repetições de Microssatélites/genética , Composição de Bases/genética , Uso do Códon , Cloroplastos/genética , Sequenciamento Completo do Genoma/métodos
8.
PeerJ ; 12: e17337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784401

RESUMO

Chinese cabbage (Brassica campestris L. ssp. chinensis (L.) Makino) stands as a widely cultivated leafy vegetable in China, with its leaf morphology significantly influencing both quality and yield. Despite its agricultural importance, the precise mechanisms governing leaf wrinkling development remain elusive. This investigation focuses on 'Wutacai', a representative cultivar of the Tacai variety (Brassica campestris L. ssp. chinensis var. rosularis Tsen et Lee), renowned for its distinct leaf wrinkling characteristics. Within the genome of 'Wutacai', we identified a total of 18 YUCs, designated as BraWTC_YUCs, revealing their conservation within the Brassica genus, and their close homology to YUCs in Arabidopsis. Expression profiling unveiled that BraWTC_YUCs in Chinese Cabbage exhibited organ-specific and leaf position-dependent variation. Additionally, transcriptome sequencing data from the flat leaf cultivar 'Suzhouqing' and the wrinkled leaf cultivar 'Wutacai' revealed differentially expressed genes (DEGs) related to auxin during the early phases of leaf development, particularly the YUC gene. In summary, this study successfully identified the YUC gene family in 'Wutacai' and elucidated its potential function in leaf wrinkling trait, to provide valuable insights into the prospective molecular mechanisms that regulate leaf wrinkling in Chinese cabbage.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Brassica/genética , Brassica/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , China , Oxigenases/genética , Oxigenases/metabolismo , Genes de Plantas
9.
Plant Physiol Biochem ; 212: 108736, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797006

RESUMO

Due to the damaging effect of high temperatures on plant development, global warming is predicted to increase agricultural risks. Chinese cabbage holds considerable importance as a leafy vegetable that is extensively consumed and cultivated worldwide. Its year-round production also encounters severe challenges in the face of high temperatures. In this study, melatonin (MT), a pivotal multifunctional signaling molecule that coordinates responses to diverse environmental stressors was used to mitigate the harmful effects of high temperatures on Chinese cabbage. Through the utilization of growth indices, cytological morphology, physiological and biochemical responses, and RNA-Seq analysis, alongside an examination of the influence of crucial enzymes in the endogenous MT synthesis pathway on the thermotolerance of Chinese cabbage, we revealed that MT pretreatment enhanced photosynthetic activity, maintained signaling pathways associated with endoplasmic reticulum protein processing, and preserved circadian rhythm in Chinese cabbage under high temperatures. Furthermore, pretreatment with MT resulted in increased levels of soluble sugar, vitamin C, proteins, and antioxidant enzyme activity, along with decreased levels of malondialdehyde, nitrate, flavonoids, and bitter glucosinolates, ultimately enhancing the capacity of the organism to mitigate oxidative stress. The knockdown of the tryptophan decarboxylase gene, which encodes a key enzyme responsible for MT biosynthesis, resulted in a significant decline in the ability of transgenic Chinese cabbage to alleviate oxidative damage under high temperatures, further indicating an important role of MT in establishing the thermotolerance. Taken together, these results provide a mechanism for MT to improve the antioxidant capacity of Chinese cabbage under high temperatures and suggest beneficial implications for the management of other plants subjected to global warming.


Assuntos
Antioxidantes , Brassica , Melatonina , Termotolerância , Melatonina/metabolismo , Melatonina/farmacologia , Antioxidantes/metabolismo , Termotolerância/efeitos dos fármacos , Brassica/metabolismo , Brassica/efeitos dos fármacos , Brassica/genética , Temperatura Alta , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
10.
Nat Genet ; 56(6): 1235-1244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714866

RESUMO

Cauliflower (Brassica oleracea L. var. botrytis) is a distinctive vegetable that supplies a nutrient-rich edible inflorescence meristem for the human diet. However, the genomic bases of its selective breeding have not been studied extensively. Herein, we present a high-quality reference genome assembly C-8 (V2) and a comprehensive genomic variation map consisting of 971 diverse accessions of cauliflower and its relatives. Genomic selection analysis and deep-mined divergences were used to explore a stepwise domestication process for cauliflower that initially evolved from broccoli (Curd-emergence and Curd-improvement), revealing that three MADS-box genes, CAULIFLOWER1 (CAL1), CAL2 and FRUITFULL (FUL2), could have essential roles during curd formation. Genome-wide association studies identified nine loci significantly associated with morphological and biological characters and demonstrated that a zinc-finger protein (BOB06G135460) positively regulates stem height in cauliflower. This study offers valuable genomic resources for better understanding the genetic bases of curd biogenesis and florescent development in crops.


Assuntos
Brassica , Domesticação , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Brassica/genética , Genômica/métodos , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Domínio MADS/genética
11.
Nat Genet ; 56(6): 1042-1044, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778241
12.
J Agric Food Chem ; 72(23): 13217-13227, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809571

RESUMO

Myrosinase (Myr) catalyzes the hydrolysis of glucosinolates, yielding biologically active metabolites. In this study, glucoraphanin (GRA) extracted from broccoli seeds was effectively hydrolyzed using a Myr-obtained cabbage aphid (Brevicoryne brassicae) (BbMyr) to produce (R)-sulforaphane (SFN). The gene encoding BbMyr was successfully heterologously expressed in Escherichia coli, resulting in the production of 1.6 g/L (R)-SFN, with a remarkable yield of 20.8 mg/gbroccoli seeds, achieved using recombination E. coli whole-cell catalysis under optimal conditions (pH 4.5, 45 °C). Subsequently, BbMyr underwent combinatorial simulation-driven mutagenesis, yielding a mutant, DE9 (N321D/Y426S), showing a remarkable 2.91-fold increase in the catalytic efficiency (kcat/KM) compared with the original enzyme. Molecular dynamics simulations demonstrated that the N321D mutation in loopA of mutant DE9 enhanced loopA stability by inducing favorable alterations in hydrogen bonds, while the Y426S mutation in loopB decreased spatial resistance. This research lays a foundation for the environmentally sustainable enzymatic (R)-SFN synthesis.


Assuntos
Afídeos , Brassica , Glicosídeo Hidrolases , Isotiocianatos , Sulfóxidos , Sulfóxidos/química , Sulfóxidos/metabolismo , Animais , Isotiocianatos/metabolismo , Isotiocianatos/química , Afídeos/enzimologia , Afídeos/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Brassica/genética , Brassica/enzimologia , Brassica/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Glucosinolatos/metabolismo , Glucosinolatos/química , Cinética , Simulação de Dinâmica Molecular , Oximas/química , Oximas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular Direcionada , Imidoésteres/metabolismo , Imidoésteres/química
13.
J Hazard Mater ; 472: 134581, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743972

RESUMO

Microplastics (MPs) and antibiotic resistance genes (ARGs) are two types of contaminants that are widely present in the soil environment. MPs can act as carriers of microbes, facilitating the colonization and spread of ARGs and thus posing potential hazards to ecosystem safety and human health. In the present study, we explored the microbial networks and ARG distribution characteristics in different soil types (heavy metal (HM)-contaminated soil and agricultural soil planted with different plants: Bidens pilosa L., Ipomoea aquatica F., and Brassica chinensis L.) after the application of MPs and evaluated environmental factors, potential microbial hosts, and ARGs. The microbial communities in the three rhizosphere soils were closely related to each other, and the modularity of the microbial networks was greater than 0.4. Moreover, the core taxa in the microbial networks, including Actinobacteriota, Proteobacteria, and Myxococcota, were important for resisting environmental stress. The ARG resistance mechanisms were dominated by antibiotic efflux in all three rhizosphere soils. Based on the annotation results, the MP treatments induced changes in the relative abundance of microbes carrying ARGs, and the G1-5 treatment significantly increased the abundance of MuxB in Verrucomicrobia, Elusimicrobia, Actinobacteria, Planctomycetes, and Acidobacteria. Path analysis showed that changes in MP particle size and dosage may indirectly affect soil enzyme activities by changing pH, which affects microbes and ARGs. We suggest that MPs may provide surfaces for ARG accumulation, leading to ARG enrichment in plants. In conclusion, our results demonstrate that MPs, as potentially persistent pollutants, can affect different types of soil environments and that the presence of ARGs may cause substantial environmental risks.


Assuntos
Resistência Microbiana a Medicamentos , Ipomoea , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Ipomoea/genética , Ipomoea/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Rizosfera , Polietileno , Genes Bacterianos/efeitos dos fármacos , Brassica/genética , Brassica/efeitos dos fármacos , Brassica/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Solo/química , Metais Pesados/toxicidade , Microbiota/efeitos dos fármacos
14.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791131

RESUMO

Salinity stress is a type of abiotic stress which negatively affects the signaling pathways and cellular compartments of plants. Melatonin (MT) has been found to be a bioactive compound that can mitigate these adverse effects, which makes it necessary to understand the function of MT and its role in salt stress. During this study, plants were treated exogenously with 100 µM of MT for 7 days and subjected to 200 mM of salt stress, and samples were collected after 1 and 7 days for different indicators and transcriptome analysis. The results showed that salt reduced chlorophyll contents and damaged the chloroplast structure, which was confirmed by the downregulation of key genes involved in the photosynthesis pathway after transcriptome analysis and qRT-PCR confirmation. Meanwhile, MT increased the chlorophyll contents, reduced the electrolyte leakage, and protected the chloroplast structure during salt stress by upregulating several photosynthesis pathway genes. MT also decreased the H2O2 level and increased the ascorbic acid contents and APX activity by upregulating genes involved in the ascorbic acid pathway during salt stress, as confirmed by the transcriptome and qRT-PCR analyses. Transcriptome profiling also showed that 321 and 441 DEGs were expressed after 1 and 7 days of treatment, respectively. The KEGG enrichment analysis showed that 76 DEGs were involved in the photosynthesis pathway, while 35 DEGs were involved in the ascorbic acid metabolism pathway, respectively. These results suggest that the exogenous application of MT in plants provides important insight into understanding MT-induced stress-responsive mechanisms and protecting Brassica campestris against salt stress by regulating the photosynthesis and ascorbic acid pathway genes.


Assuntos
Ácido Ascórbico , Brassica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melatonina , Fotossíntese , Estresse Salino , Melatonina/farmacologia , Melatonina/metabolismo , Fotossíntese/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Clorofila/metabolismo
15.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791354

RESUMO

Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Proteínas de Plantas , Proteínas de Ligação a RNA , Fatores de Transcrição , Glucosinolatos/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Plantas Geneticamente Modificadas
16.
BMC Plant Biol ; 24(1): 311, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649805

RESUMO

BACKGROUND: Brassica napus, a hybrid resulting from the crossing of Brassica rapa and Brassica oleracea, is one of the most important oil crops. Despite its significance, B. napus productivity faces substantial challenges due to heavy metal stress, especially in response to cadmium (Cd), which poses a significant threat among heavy metals. Natural resistance-associated macrophage proteins (NRAMPs) play pivotal roles in Cd uptake and transport within plants. However, our understanding of the role of BnNRAMPs in B. napus is limited. Thus, this study aimed to conduct genome-wide identification and bioinformatics analysis of three Brassica species: B. napus, B. rapa, and B. oleracea. RESULTS: A total of 37 NRAMPs were identified across the three Brassica species and classified into two distinct subfamilies based on evolutionary relationships. Conservative motif analysis revealed that motif 6 and motif 8 might significantly contribute to the differentiation between subfamily I and subfamily II within Brassica species. Evolutionary analyses and chromosome mapping revealed a reduction in the NRAMP gene family during B. napus evolutionary history, resulting in the loss of an orthologous gene derived from BoNRAMP3.2. Cis-acting element analysis suggested potential regulation of the NRAMP gene family by specific plant hormones, such as abscisic acid (ABA) and methyl jasmonate (MeJA). However, gene expression pattern analyses under hormonal or stress treatments indicated limited responsiveness of the NRAMP gene family to these treatments, warranting further experimental validation. Under Cd stress in B. napus, expression pattern analysis of the NRAMP gene family revealed a decrease in the expression levels of most BnNRAMP genes with increasing Cd concentrations. Notably, BnNRAMP5.1/5.2 exhibited a unique response pattern, being stimulated at low Cd concentrations and inhibited at high Cd concentrations, suggesting potential response mechanisms distinct from those of other NRAMP genes. CONCLUSIONS: In summary, this study indicates complex molecular dynamics within the NRAMP gene family under Cd stress, suggesting potential applications in enhancing plant resilience, particularly against Cd. The findings also offer valuable insights for further understanding the functionality and regulatory mechanisms of the NRAMP gene family.


Assuntos
Brassica , Proteínas de Plantas , Estresse Fisiológico , Brassica/genética , Estudo de Associação Genômica Ampla , Genoma de Planta , Proteínas de Plantas/genética , Genes de Plantas , Cádmio/metabolismo , Cádmio/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Cátions/genética , Estresse Fisiológico/genética , Fenômenos Fisiológicos Vegetais
17.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627624

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Assuntos
Brassica rapa , Brassica , Infertilidade Masculina , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Brassica/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Fertilidade , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética
18.
BMC Plant Biol ; 24(1): 296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632529

RESUMO

BACKGROUND: Calcium-dependent protein kinases (CPKs) are crucial for recognizing and transmitting Ca2+ signals in plant cells, playing a vital role in growth, development, and stress response. This study aimed to identify and detect the potential roles of the CPK gene family in the amphidiploid Brassica carinata (BBCC, 2n = 34) using bioinformatics methods. RESULTS: Based on the published genomic information of B. carinata, a total of 123 CPK genes were identified, comprising 70 CPK genes on the B subgenome and 53 on the C subgenome. To further investigate the homologous evolutionary relationship between B. carinata and other plants, the phylogenetic tree was constructed using CPKs in B. carinata and Arabidopsis thaliana. The phylogenetic analysis classified 123 family members into four subfamilies, where gene members within the same subfamily exhibited similar conserved motifs. Each BcaCPK member possesses a core protein kinase domain and four EF-hand domains. Most of the BcaCPK genes contain 5 to 8 introns, and these 123 BcaCPK genes are unevenly distributed across 17 chromosomes. Among these BcaCPK genes, 120 replicated gene pairs were found, whereas only 8 genes were tandem duplication, suggesting that dispersed duplication mainly drove the family amplification. The results of the Ka/Ks analysis indicated that the CPK gene family of B. carinata was primarily underwent purification selection in evolutionary selection. The promoter region of most BcaCPK genes contained various stress-related cis-acting elements. qRT-PCR analysis of 12 selected CPK genes conducted under cadmium and salt stress at various points revealed distinct expression patterns among different family members in response to different stresses. Specifically, the expression levels of BcaCPK2.B01a, BcaCPK16.B02b, and BcaCPK26.B02 were down-regulated under both stresses, whereas the expression levels of other members were significantly up-regulated under at least one stress. CONCLUSION: This study systematically identified the BcaCPK gene family in B. carinata, which contributes to a better understanding the CPK genes in this species. The findings also serve as a reference for analyzing stress responses, particularly in relation to cadmium and salt stress in B. carinata.


Assuntos
Brassica , Brassica/genética , Filogenia , Cádmio/metabolismo , Família Multigênica , Genômica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Genoma de Planta
19.
BMC Genomics ; 25(1): 425, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684983

RESUMO

BACKGROUND: Purple non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis] has become popular because of its richness in anthocyanin. However, anthocyanin only accumulates in the upper epidermis of leaves. Further studies are needed to investigate the molecular mechanisms underlying the specific accumulation of it. RESULTS: In this study, we used the laser capture frozen section method (LCM) to divide purple (ZBC) and green (LBC) non-heading Chinese cabbage leaves into upper and lower epidermis parts (Pup represents the purple upper epidermis, Plow represents the purple lower epidermis, Gup represents the green upper epidermis, Glow represents the green lower epidermis). Through transcriptome sequencing, we found that the DIHYDROFLAVONOL 4-REDUCTASE-encoding gene BcDFR, is strongly expressed in Pup but hardly in others (Plow, Gup, Glow). Further, a deletion and insertion in the promoter of BcDFR in LBC were found, which may interfere with BcDFR expression. Subsequent analysis of gene structure and conserved structural domains showed that BcDFR is highly conserved in Brassica species. The predicted protein-protein interaction network of BcDFR suggests that it interacts with almost all functional proteins in the anthocyanin biosynthesis pathway. Finally, the results of the tobacco transient expression also demonstrated that BcDFR promotes the synthesis and accumulation of anthocyanin. CONCLUSIONS: BcDFR is specifically highly expressed on the upper epidermis of purple non-heading Chinese cabbage leaves and regulates anthocyanin biosynthesis and accumulation. Our study provides new insights into the functional analysis and transcriptional regulatory network of anthocyanin-related genes in purple non-heading Chinese cabbage.


Assuntos
Antocianinas , Brassica , Proteínas de Plantas , Antocianinas/biossíntese , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Microdissecção e Captura a Laser , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA-Seq , Regiões Promotoras Genéticas
20.
BMC Plant Biol ; 24(1): 335, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664614

RESUMO

BACKGROUND: The vivid red, purple, and blue hues that are observed in a variety of plant fruits, flowers, and leaves are produced by anthocyanins, which are naturally occurring pigments produced by a series of biochemical processes occurring inside the plant cells. The purple-stalked Chinese kale, a popular vegetable that contains anthocyanins, has many health benefits but needs to be investigated further to identify the genes involved in the anthocyanin biosynthesis and translocation in this vegetable. RESULTS: In this study, the purple- and green-stalked Chinese kale were examined using integrative transcriptome and metabolome analyses. The content of anthocyanins such as cyanidin-3-O-(6″-O-feruloyl) sophoroside-5-O-glucoside, cyanidin-3,5-O-diglucoside (cyanin), and cyanidin-3-O-(6″-O-p-hydroxybenzoyl) sophoroside-5-O-glucoside were considerably higher in purple-stalked Chinese kale than in its green-stalked relative. RNA-seq analysis indicated that 23 important anthocyanin biosynthesis genes, including 3 PAL, 2 C4H, 3 4CL, 3 CHS, 1 CHI, 1 F3H, 2 FLS, 2 F3'H, 1 DFR, 3 ANS, and 2 UFGT, along with the transcription factor BoMYB114, were significantly differentially expressed between the purple- and green-stalked varieties. Results of analyzing the expression levels of 11 genes involved in anthocyanin production using qRT-PCR further supported our findings. Association analysis between genes and metabolites revealed a strong correlation between BoGSTF12 and anthocyanin. We overexpressed BoGSTF12 in Arabidopsis thaliana tt19, an anthocyanin transport mutant, and this rescued the anthocyanin-loss phenotype in the stem and rosette leaves, indicating BoGSTF12 encodes an anthocyanin transporter that affects the accumulation of anthocyanins. CONCLUSION: This work represents a key step forward in our understanding of the molecular processes underlying anthocyanin production in Chinese kale. Our comprehensive metabolomic and transcriptome analyses provide important insights into the regulatory system that controls anthocyanin production and transport, while providing a foundation for further research to elucidate the physiological importance of the metabolites found in this nutritionally significant vegetable.


Assuntos
Antocianinas , Brassica , Perfilação da Expressão Gênica , Metaboloma , Proteínas de Plantas , Antocianinas/metabolismo , Antocianinas/biossíntese , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...