Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.182
Filtrar
1.
BMC Genomics ; 25(1): 704, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030492

RESUMO

The growth, yield, and seed quality of rapeseed are negatively affected by drought stress. Therefore, it is of great value to understand the molecular mechanism behind this phenomenon. In a previous study, long non-coding RNAs (lncRNAs) were found to play a key role in the response of rapeseed seedlings to drought stress. However, many questions remained unanswered. This study was the first to investigate the expression profile of lncRNAs not only under control and drought treatment, but also under the rehydration treatment. A total of 381 differentially expressed lncRNA and 10,253 differentially expressed mRNAs were identified in the comparison between drought stress and control condition. In the transition from drought stress to rehydration, 477 differentially expressed lncRNAs and 12,543 differentially expressed mRNAs were detected. After identifying the differentially expressed (DE) lncRNAs, the comprehensive lncRNAs-engaged network with the co-expressed mRNAs in leaves under control, drought and rehydration was investigated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of co-expressed mRNAs identified the most significant pathways related with plant hormones (expecially abscisic acid, auxin, cytokinins, and gibberellins) in the signal transduction. The genes, co-expressed with the most-enriched DE-lncRNAs, were considered as the most effective candidates in the water-loss and water-recovery processes, including protein phosphatase 2 C (PP2C), ABRE-binding factors (ABFs), and SMALL AUXIN UP-REGULATED RNAs (SAURs). In summary, these analyses clearly demonstrated that DE-lncRNAs can act as a regulatory hub in plant-water interaction by controlling phytohormone signaling pathways and provided an alternative way to explore the complex mechanisms of drought tolerance in rapeseed.


Assuntos
Secas , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas , RNA Longo não Codificante , Plântula , Transdução de Sinais , Estresse Fisiológico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Plântula/genética , Plântula/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Brassica rapa/genética , Brassica rapa/metabolismo
2.
Environ Monit Assess ; 196(8): 744, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017939

RESUMO

Ultramafic soils are characterized by low productivity due to the deficiency of macroelements and high content of Ni, Cr, and Co. Incorporation of ultramafic soils for agricultural and food production involves the use of fertilizers. Therefore, this study aims to find the soil additive that decreases the metallic elements uptake by plant using Brassica napus as an example. In this study, we evaluate the effect of manure (0.5 g N/kg of soil), humic acids (1 g of Rosahumus/1 dm3 H2O; 44% C), KNO3 (0.13 g K/kg of soil), lime (12.5 g/kg of soil), (NH4)2SO4 (0.15 g N/kg of soil), and Ca(H2PO4)2) (0.07 g P/kg of soil) on the phytoavailability of metallic elements. The effect of soil additives on metallic elements uptake by Brassica napus was studied in a pot experiment executed in triplicates. Statistical analysis was applied to compare the effects of additives in ultramafic soil on plant chemical composition relative to control unfertilized ultramafic soil (one-way ANOVA and Kruskal-Wallis test). The study shows that in almost all treatments, metallic elements content (Ni, Cr, Co, Al, Fe, Mn) is higher in roots compared to the aboveground parts of Brassica napus except for (NH4)2SO4, in which the mechanism of Mn accumulation is opposite. The main differences between the treatments are observed for the buffer properties of soil and the accumulation of specific metals by studied plants. The soils with the addition of lime and manure have the highest buffer properties in acidic conditions (4.9-fold and 2.1-fold increase relative to control soil, respectively), whereas the soil with (NH4)2SO4 has the lowest effect (0.8-fold decrease relative to control soil). Also, the addition of manure increases the biomass of aboveground parts of B. napus (3.4-fold increase) and decreases the accumulation of Ni (0.6-fold decrease) compared to plants cultivated in the control soil. On the contrary, the addition of (NH4)2SO4 noticeably increases the accumulation of Ni, Co, Mn, and Al in aboveground parts of B. napus (3.2-fold, 18.2-fold, 11.2-fold, and 1.6-fold, respectively) compared to plant grown in control soil, whereas the humic acids increase the accumulation of Cr in roots (1.6-fold increase). Therefore, this study shows that manure is a promising fertilizer in agricultural practices in ultramafic soil, whereas (NH4)2SO4 and humic acids must not be used in ultramafic areas.


Assuntos
Brassica napus , Fertilizantes , Esterco , Poluentes do Solo , Solo , Brassica napus/metabolismo , Solo/química , Poluentes do Solo/análise , Substâncias Húmicas , Agricultura/métodos , Compostos de Cálcio , Óxidos
3.
BMC Plant Biol ; 24(1): 518, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851683

RESUMO

Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.


Assuntos
Brassica napus , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Poliploidia , Brassica napus/genética , Brassica napus/metabolismo , Genes Duplicados/genética , Genes de Plantas , Processamento Alternativo , Duplicação Gênica , Epigênese Genética
4.
J Agric Food Chem ; 72(25): 14419-14432, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869198

RESUMO

Rapeseed (Brassica napus L.) is extremely sensitive to excessive NH4+ toxicity. There remains incomplete knowledge of the causal factors behind the growth suppression in NH4+-nourished plants, with limited studies conducted specifically on field crop plants. In this study, we found that NH4+ toxicity significantly increased salicylic acid (SA) accumulation by accelerating the conversion of SA precursors. Moreover, exogenous SA application significantly aggravated NH4+ toxicity symptoms in the rapeseed shoots. Genome-wide differential transcriptomic analysis showed that NH4+ toxicity increased the expression of genes involved in the biosynthesis, transport, signaling transduction, and conversion of SA. SA treatment significantly increased shoot NH4+ concentrations by reducing the activities of glutamine synthase and glutamate synthase in NH4+-treated rapeseed plants. The application of an SA biosynthesis inhibitor, ABT, alleviated NH4+ toxicity symptoms. Furthermore, SA induced putrescine (Put) accumulation, resulting in an elevated ratio of Put to [spermidine (Spd) + spermine (Spm)] in the NH4+-treated plants, while the opposite was true for ABT. The application of exogenous Put and its biosynthesis inhibitor DFMA induced opposite effects on NH4+ toxicity in rapeseed shoots. These results indicated that the increased endogenous SA contributed noticeably to the toxicity caused by the sole NH4+-N supply in rapeseed shoots. This study provided fresh perspectives on the mechanism underlying excessive NH4+-induced toxicity and the corresponding alleviating strategies in plants.


Assuntos
Compostos de Amônio , Brassica napus , Ácido Salicílico , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica napus/efeitos dos fármacos , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Putrescina/metabolismo , Putrescina/farmacologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
5.
Physiol Plant ; 176(3): e14394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894535

RESUMO

AIMS: The genic male sterility (GMS) system is an important strategy for generating heterosis in plants. To better understand the essential role of lipid and sugar metabolism and to identify additional candidates for pollen development and male sterility, transcriptome and metabolome analysis of a GMS line of 1205AB in B. napus was used as a case study. DATA RESOURCES GENERATED: To characterize the GMS system, the transcriptome and metabolome profiles were generated for 24 samples and 48 samples of 1205AB in B. napus, respectively. Transcriptome analysis yielded a total of 156.52 Gb of clean data and revealed the expression levels of 109,541 genes and 8,501 novel genes. In addition, a total of 1,353 metabolites were detected in the metabolomic analysis, including 784 in positive ion mode and 569 in negative ion mode. KEY RESULTS: A total of 15,635 differentially expressed genes (DEGs) and 83 differential metabolites (DMs) were identified from different comparison groups, most of which were involved in lipid and sugar metabolism. The combination of transcriptome and metabolome analysis revealed 49 orthologous GMS genes related to lipid metabolism and 46 orthologous GMS genes related to sugar metabolism, as well as 45 novel genes. UTILITY OF THE RESOURCE: The transcriptome and metabolome profiles and their analysis provide useful reference data for the future discovery of additional GMS genes and the development of more robust male sterility breeding systems for use in the production of plant hybrids.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Infertilidade das Plantas , Pólen , Transcriptoma , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Pólen/metabolismo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Brassica napus/genética , Brassica napus/fisiologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Metabolismo dos Lipídeos/genética , Transcriptoma/genética , Metaboloma/genética , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo
6.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891905

RESUMO

The DABB proteins, which are characterized by stress-responsive dimeric A/B barrel domains, have multiple functions in plant biology. In Arabidopsis thaliana, these proteins play a crucial role in defending against various pathogenic fungi. However, the specific roles of DABB proteins in Brassica napus remain elusive. In this study, 16 DABB encoding genes were identified, distributed across 10 chromosomes of the B. napus genome, which were classified into 5 branches based on phylogenetic analysis. Genes within the same branch exhibited similar structural domains, conserved motifs, and three-dimensional structures, indicative of the conservation of BnaDABB genes (BnaDABBs). Furthermore, the enrichment of numerous cis-acting elements in hormone induction and light response were revealed in the promoters of BnaDABBs. Expression pattern analysis demonstrated the involvement of BnaDABBs, not only in the organ development of B. napus but also in response to abiotic stresses and Sclerotinia sclerotiorum infection. Altogether, these findings imply the significant impacts of BnaDABBs on plant growth and development, as well as stress responses.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Brassica napus/genética , Brassica napus/microbiologia , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética
7.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892204

RESUMO

Winter plants acclimate to frost mainly during the autumn months, through the process of cold acclimation. Global climate change is causing changes in weather patterns such as the occurrence of warmer periods during late autumn or in winter. An increase in temperature after cold acclimation can decrease frost tolerance, which is particularly dangerous for winter crops. The aim of this study was to investigate the role of brassinosteroids (BRs) and BR analogues as protective agents against the negative results of deacclimation. Plants were cold-acclimated (3 weeks, 4 °C) and deacclimated (1 week, 16/9 °C d/n). Deacclimation generally reversed the cold-induced changes in the level of the putative brassinosteroid receptor protein (BRI1), the expression of BR-induced COR, and the expression of SERK1, which is involved in BR signal transduction. The deacclimation-induced decrease in frost tolerance in oilseed rape could to some extent be limited by applying steroid regulators. The deacclimation in plants could be detected using non-invasive measurements such as leaf reflectance, chlorophyll a fluorescence, and gas exchange monitoring.


Assuntos
Aclimatação , Brassica napus , Brassinosteroides , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Brassinosteroides/metabolismo , Brassica napus/fisiologia , Brassica napus/metabolismo , Estações do Ano , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
8.
Sci Rep ; 14(1): 14026, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890414

RESUMO

The excessive accumulation of sodium chloride (NaCl) in soil can result in soil salinity, which poses a significant challenge to plant growth and crop production due to impaired water and nutrient uptake. On the other hand, hydropriming (WP) and low level of NaCl priming can improve the germination of seeds, chlorophyll contents, oil and seed yield in plants. That's why this study investigates the impact of hydro and different levels of NaCl (0.5, 1.0, 1.5 and 2.0%) priming, as pre-treatment techniques on canola seeds germination, growth and yield of two varieties Punjab and Faisal Canola. Results showed that, WP performed significant best for increase in germination (~ 20 and ~ 22%) and shoot length (~ 6 and ~ 10%) over non-priming (NP) in Punjab Canola and Faisal Canola respectively. A significant increase in plant height (~ 6 and ~ 7%), root length (~ 1 and ~ 7%), shoot fresh weight (~ 5 and ~ 7%), root fresh weight (~ 6 and ~ 7%) in Punjab Canola and Faisal Canola respectively. It was also observed that plants under WP and 0.5%NaCl priming were also better in production of seed yield per plant, oil contents, silique per plant, seeds per silique, and branches per plant chlorophyll contents and leaf relative water contents over NP. In conclusion, WP and 0.5%NaCl has potential to improve the germination, growth, yield and oil attributes of canola compared to non-priming, 1.0%NaCl priming, 1.5%NaCl priming and 2.0%NaCl priming.


Assuntos
Brassica napus , Germinação , Sementes , Cloreto de Sódio , Germinação/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica napus/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/efeitos dos fármacos , Clorofila/metabolismo , Água/metabolismo , Salinidade , Solo/química
9.
J Agric Food Chem ; 72(26): 14830-14843, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888424

RESUMO

Beyond the key bitter compound kaempferol 3-O-(2‴-O-sinapoyl-ß-d-sophoroside) previously described in the literature (1), eight further bitter and astringent-tasting kaempferol glucosides (2-9) have been identified in rapeseed protein isolates (Brassica napus L.). The bitterness and astringency of these taste-active substances have been described with taste threshold concentrations ranging from 3.3 to 531.7 and 0.3 to 66.4 µmol/L, respectively, as determined by human sensory experiments. In this study, the impact of 1 and kaempferol 3-O-ß-d-glucopyranoside (8) on TAS2R-linked proton secretion by HGT-1 cells was analyzed by quantification of the intracellular proton index. mRNA levels of bitter receptors TAS2R3, 4, 5, 13, 30, 31, 39, 40, 43, 45, 46, 50 and TAS2R8 were increased after treatment with compounds 1 and 8. Using quantitative UHPLC-MS/MSMRM measurements, the concentrations of 1-9 were determined in rapeseed/canola seeds and their corresponding protein isolates. Depending on the sample material, compounds 1, 3, and 5-9 exceeded dose over threshold (DoT) factors above one for both bitterness and astringency in selected protein isolates. In addition, an increase in the key bitter compound 1 during industrial protein production (apart from enrichment) was observed, allowing the identification of the potential precursor of 1 to be kaempferol 3-O-(2‴-O-sinapoyl-ß-d-sophoroside)-7-O-ß-d-glucopyranoside (3). These results may contribute to the production of less bitter and astringent rapeseed protein isolates through the optimization of breeding and postharvest downstream processing.


Assuntos
Brassica napus , Glicosídeos , Quempferóis , Proteínas de Plantas , Receptores Acoplados a Proteínas G , Paladar , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Brassica napus/química , Brassica napus/metabolismo , Brassica napus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glicosídeos/química , Extratos Vegetais/química , Sementes/química , Sementes/metabolismo , Brassica rapa/química , Brassica rapa/metabolismo
10.
Plant Sci ; 346: 112149, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851591

RESUMO

TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins belong to the Groucho (Gro)/Tup1 family co-repressors and act as broad co-repressors that modulate multiple phytohormone signalling pathways and various developmental processes in plant. However, TPL/TPR co-repressors so far are poorly understood in the rapeseed, one of the world-wide important oilseed crops. In this study, we comprehensively characterized eighteen TPL/TPR genes into five groups in the rapeseed genome. Members of TPL/TPR1/TPR4 and TPR2/TPR3 had close evolutionary relationship, respectively. All TPL/TPRs had similar expression patterns and encode conserved protein domain. In addition, we demonstrated that BnaA9.TPL interacted with all known plant repression domain (RD) sequences, which were distributed in non-redundant 24,238 (22.6 %) genes and significantly enriched in transcription factors in the rapeseed genome. These transcription factors were largely co-expressed with the TPL/TPR genes and involved in diverse pathway, including phytohormone signal transduction, protein kinases and circadian rhythm. Furthermore, BnaA9.TPL was revealed to regulate apical embryonic fate by interaction with Bna.IAA12 and suppression of PLETHORA1/2. BnaA9.TPL was also identified to regulate leaf morphology by interaction with Bna.AS1 (Asymmetric leaves 1) and suppression of KNOTTED-like homeobox genes and YABBY5. These data not only suggest the rapeseed TPL/TPRs play broad roles in different processes, but also provide useful information to uncover more TPL/TPR-mediated control of plant development in rapeseed.


Assuntos
Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Filogenia , Genoma de Planta
11.
BMC Plant Biol ; 24(1): 475, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816808

RESUMO

BACKGROUND: RNA editing in chloroplast and mitochondrion transcripts of plants is an important type of post-transcriptional RNA modification in which members of the multiple organellar RNA editing factor gene family (MORF) play a crucial role. However, a systematic identification and characterization of MORF members in Brassica napus is still lacking. RESULTS: In this study, a total of 43 MORF genes were identified from the genome of the Brassica napus cultivar "Zhongshuang 11". The Brassica napus MORF (BnMORF) family members were divided into three groups through phylogenetic analysis. BnMORF genes distributed on 14 chromosomes and expanded due to segmental duplication and whole genome duplication repetitions. The majority of BnMORF proteins were predicted to be localized to mitochondria and chloroplasts. The promoter cis-regulatory element analysis, spatial-temporal expression profiling, and co-expression network of BnMORF genes indicated the involvement of BnMORF genes in stress and phytohormone responses, as well as growth and development. CONCLUSION: This study provides a comprehensive analysis of BnMORF genes and lays a foundation for further exploring their physiological functions in Brassica napus.


Assuntos
Brassica napus , Família Multigênica , Filogenia , Proteínas de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Edição de RNA , Perfilação da Expressão Gênica , Cloroplastos/genética , Cloroplastos/metabolismo
12.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724910

RESUMO

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Assuntos
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores de Crescimento de Plantas , Solo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Acetatos/farmacologia , Solo/química , Clorofila/metabolismo , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nutrientes/metabolismo
13.
Plant Sci ; 345: 112116, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750797

RESUMO

Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.


Assuntos
Brassica napus , Proteínas de Plantas , Cloreto de Sódio , Brassica napus/genética , Brassica napus/fisiologia , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Autoincompatibilidade em Angiospermas/genética , Regulação da Expressão Gênica de Plantas , Polinização
14.
J Agric Food Chem ; 72(22): 12445-12458, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771652

RESUMO

Global water deficit is a severe abiotic stress threatening the yielding and quality of crops. Abscisic acid (ABA) is a phytohormone that mediates drought tolerance. Protein kinases and phosphatases function as molecular switches in eukaryotes. Protein phosphatases type 2C (PP2Cs) are a major family that play essential roles in ABA signaling and stress responses. However, the role and underlying mechanism of PP2C in rapeseed (Brassica napus L.) mediating drought response has not been reported yet. Here, we characterized a PP2C family member, BnaPP2C37, and its expression level was highly induced by ABA and dehydration treatments. It negatively regulates drought tolerance in rapeseed. We further identified that BnaPP2C37 interacted with multiple PYR/PYL receptors and a drought regulator BnaCPK5 (calcium-dependent protein kinase 5) through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Specifically, BnaPYL1 and BnaPYL9 repress BnaPP2C37 phosphatase activity. Moreover, the pull-down assay and phosphatase assays show BnaPP2C37 interacts with BnaCPK5 to dephosphorylate BnaCPK5 and its downstream BnaABF3. Furthermore, a dual-luciferase assay revealed BnaPP2C37 transcript level was enhanced by BnaABF3 and BnaABF4, forming a negative feedback regulation to ABA response. In summary, we identified that BnaPP2C37 functions negatively in drought tolerance of rapeseed, and its phosphatase activity is repressed by BnaPYL1/9 whereas its transcriptional level is upregulated by BnaABF3/4.


Assuntos
Ácido Abscísico , Brassica napus , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Brassica napus/genética , Brassica napus/metabolismo , Proteína Fosfatase 2C/metabolismo , Proteína Fosfatase 2C/genética , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Resistência à Seca
15.
Plant Mol Biol ; 114(3): 59, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750303

RESUMO

The plant-specific homeodomain-leucine zipper I subfamily is involved in the regulation of various biological processes, particularly growth, development and stress response. In the present study, we characterized four BnaHB6 homologues from Brassica napus. All BnaHB6 proteins have transcriptional activation activity. Structural and functional data indicate the complex role of BnaHB6 genes in regulating biological processes, with some functions conserved and others diverged. Transcriptional analyzes revealed that they are induced in a similar manner in different tissues but show different expression patterns in response to stress and circadian rhythm. Only the BnaA09HB6 and BnaC08HB6 genes are expressed under dehydration and salt stress, and in darkness. The partial transcriptional overlap of BnaHB6s with the evolutionarily related genes BnaHB5 and BnaHB16 was also observed. Transgenic Arabidopsis thaliana plants expressing a single proBnaHB6::GUS partially confirmed the expression results. Bioinformatic analysis allowed the identification of TF-binding sites in the BnaHB6 promoters that may control their expression under stress and circadian rhythm. ChIP-qPCR analysis revealed that BnaA09HB6 and BnaC08HB6 bind directly to the promoters of the target genes BnaABF4 and BnaDREB2A. Comparison of their expression patterns in the WT plants and the bnac08hb6 mutant showed that BnaC08HB6 positively regulates the expression of the BnaABF4 and BnaDREB2A genes under dehydration and salt stress. We conclude that four BnaHB6 homologues have distinct functions in response to stress despite high sequence similarity, possibly indicating different binding preferences with BnaABF4 and BnaDREB2A. We hypothesize that BnaC08HB6 and BnaA09HB6 function in a complex regulatory network under stress.


Assuntos
Brassica napus , Desidratação , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zíper de Leucina/genética , Plantas Geneticamente Modificadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Regiões Promotoras Genéticas/genética , Filogenia , Ritmo Circadiano/genética , Estresse Fisiológico/genética
16.
Int J Biol Macromol ; 271(Pt 1): 132544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782318

RESUMO

The lobed leaves of rapeseed (Brassica napus L.) offer significant advantages in dense planting, leading to increased yield. Although AtWIP2, a C2H2 zinc finger transcription factor, acts as a regulator of leaf development in Arabidopsis thaliana, the function and regulatory mechanisms of BnaWIP2 in B. napus remain unclear. Here, constitutive expression of the BnaC06.WIP2 paralog, predominantly expressed in leaf serrations, produced lobed leaves in both A. thaliana and B. napus. We demonstrated that BnaC06.WIP2 directly repressed the expression of BnaA01.TCP4, BnaA03.TCP4, and BnaC03.TCP4 and indirectly inhibited the expression of BnaA05.BOP1 and BnaC02.AS2 to promote leaf lobe formation. On the other hand, we discovered that BnaC06.WIP2 modulated the levels of endogenous gibberellin, cytokinin, and auxin, and controlled the auxin distribution in B. napus leaves, thus accelerating leaf lobe formation. Meanwhile, we revealed that BnaA09.STM physically interacted with BnaC06.WIP2, and ectopic expression of BnaA09.STM generated smaller and lobed leaves in B. napus. Furthermore, we found that BnaC06.WIP2 and BnaA09.STM synergistically promoted leaf lobe formation through forming transcriptional regulatory module. Collectively, our findings not only facilitate in-depth understanding of the regulatory mechanisms underlying lobed leaf formation, but also are helpful for guiding high-density breeding practices through improving leaf morphology in B. napus.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas
17.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791340

RESUMO

The CCT gene family is present in plants and is involved in biological processes such as flowering, circadian rhythm regulation, plant growth and development, and stress resistance. We identified 87, 62, 46, and 40 CCTs at the whole-genome level in B. napus, B. rapa, B. oleracea, and A. thaliana, respectively. The CCTs can be classified into five groups based on evolutionary relationships, and each of these groups can be further subdivided into three subfamilies (COL, CMF, and PRR) based on function. Our analysis of chromosome localization, gene structure, collinearity, cis-acting elements, and expression patterns in B. napus revealed that the distribution of the 87 BnaCCTs on the chromosomes of B. napus was uneven. Analysis of gene structure and conserved motifs revealed that, with the exception of a few genes that may have lost structural domains, the majority of genes within the same group exhibited similar structures and conserved domains. The gene collinearity analysis identified 72 orthologous genes, indicating gene duplication and expansion during the evolution of BnaCCTs. Analysis of cis-acting elements identified several elements related to abiotic and biotic stress, plant hormone response, and plant growth and development in the promoter regions of BnaCCTs. Expression pattern and protein interaction network analysis showed that BnaCCTs are differentially expressed in various tissues and under stress conditions. The PRR subfamily genes have the highest number of interacting proteins, indicating their significant role in the growth, development, and response to abiotic stress of B. napus.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Estresse Fisiológico/genética , Evolução Molecular , Mapeamento Cromossômico
18.
Environ Sci Pollut Res Int ; 31(24): 35038-35054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720126

RESUMO

In the present study, Brassica napus, a food plant, was grown for phytoextraction of selected heavy metals (HMs) from marble industry wastewater (WW) under oxalic acid (OA) amendment. The hydroponic experiment was performed under different combination of WW with OA in complete randomized design. Photosynthetic pigments and growth reduction were observed in plants treated with WW alone amendments. The combination of OA in combination with WW significantly enhanced the growth of plants along with antioxidant enzyme activities compared with WW-treated-only plants. HM stress alone enhanced the hydrogen peroxide, electrolyte leakage, and malondialdehyde contents in plants. OA-treated plants were observed with enhanced accumulation of cadmium (Cd), copper (Cu), and lead (Pb) concentrations in the roots and shoots of B. napus. The maximum concentration and accumulation of Cd in root, stem, and leaves was increased by 25%, 30%, and 30%; Cu by 42%, 24%, and 17%; and Pb by 45%, 24%, and 43%, respectively, under OA amendment. Average daily intake and hazard quotient (HQ) were calculated for males, females, and children in two phases of treatments in phytoremediation of metals before and after accumulation into B. napus leaves and stems. HQ of metals in the leaves and stem was < 1 before metal accumulation, whereas > 1 was observed after HM accumulation for all males, females, and children. Similarly, the hazard index of the three study types was found > 1. It was observed that the estimated excess lifetime cancer risk was of grade VII (very high risk), not within the accepted range of 1 × 10-4 to 1 × 10-6. Based on the present study, the increased levels of HMs up to carcinogenicity was observed in the B. napus which is not safe to be consumed later as food.


Assuntos
Biodegradação Ambiental , Brassica napus , Ácido Oxálico , Águas Residuárias , Brassica napus/metabolismo , Águas Residuárias/química , Metais Pesados , Medição de Risco , Carcinógenos
19.
Physiol Plant ; 176(3): e14372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812077

RESUMO

Rape (Brassica napus L.; AACC) is an important oil-bearing crop worldwide. Temperature significantly affects the production of oil crops; however, the mechanisms underlying temperature-promoted oil biosynthesis remain largely unknown. In this study, we found that a temperature-sensitive cultivar (O) could accumulate higher seed oil content under low nighttime temperatures (LNT,13°C) compared with a temperature-insensitive cultivar (S). We performed an in-depth transcriptome analysis of seeds from both cultivars grown under different nighttime temperatures. We found that low nighttime temperatures induced significant changes in the transcription patterns in the seeds of both cultivars. In contrast, the expression of genes associated with fatty acid and lipid pathways was higher in the O cultivar than in the S cultivar under low nighttime temperatures. Among these genes, we identified 14 genes associated with oil production, especially BnLPP and ACAA1, which were remarkably upregulated in the O cultivar in response to low nighttime temperatures compared to S. Further, a WGCNA analysis and qRT-PCR verification revealed that these genes were mainly regulated by five transcription factors, WRKY20, MYB86, bHLH144, bHLH95, and NAC12, whose expression was also increased in O compared to S under LNT. These results allowed the elucidation of the probable molecular mechanism of oil accumulation under LNT conditions in the O cultivar. Subsequent biochemical assays verified that BnMYB86 transcriptionally activated BnLPP expression, contributing to oil accumulation. Meanwhile, at LNT, the expression levels of these genes in the O plants were higher than at high nighttime temperatures, DEGs (SUT, PGK, PK, GPDH, ACCase, SAD, KAS II, LACS, FAD2, FAD3, KCS, KAR, ECR, GPAT, LPAAT, PAP, DGAT, STERO) related to lipid biosynthesis were also upregulated, most of which are used in oil accumulation.


Assuntos
Brassica napus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Óleos de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Temperatura Baixa , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ácidos Graxos/metabolismo
20.
Sci Rep ; 14(1): 12195, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806561

RESUMO

High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.


Assuntos
Antioxidantes , Brassica napus , Sementes , Tioureia , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Tioureia/farmacologia , Tioureia/análogos & derivados , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Temperatura Alta , Estresse Oxidativo/efeitos dos fármacos , Genótipo , Resposta ao Choque Térmico/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...