Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
BMC Genomics ; 25(1): 704, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030492

RESUMO

The growth, yield, and seed quality of rapeseed are negatively affected by drought stress. Therefore, it is of great value to understand the molecular mechanism behind this phenomenon. In a previous study, long non-coding RNAs (lncRNAs) were found to play a key role in the response of rapeseed seedlings to drought stress. However, many questions remained unanswered. This study was the first to investigate the expression profile of lncRNAs not only under control and drought treatment, but also under the rehydration treatment. A total of 381 differentially expressed lncRNA and 10,253 differentially expressed mRNAs were identified in the comparison between drought stress and control condition. In the transition from drought stress to rehydration, 477 differentially expressed lncRNAs and 12,543 differentially expressed mRNAs were detected. After identifying the differentially expressed (DE) lncRNAs, the comprehensive lncRNAs-engaged network with the co-expressed mRNAs in leaves under control, drought and rehydration was investigated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of co-expressed mRNAs identified the most significant pathways related with plant hormones (expecially abscisic acid, auxin, cytokinins, and gibberellins) in the signal transduction. The genes, co-expressed with the most-enriched DE-lncRNAs, were considered as the most effective candidates in the water-loss and water-recovery processes, including protein phosphatase 2 C (PP2C), ABRE-binding factors (ABFs), and SMALL AUXIN UP-REGULATED RNAs (SAURs). In summary, these analyses clearly demonstrated that DE-lncRNAs can act as a regulatory hub in plant-water interaction by controlling phytohormone signaling pathways and provided an alternative way to explore the complex mechanisms of drought tolerance in rapeseed.


Assuntos
Secas , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas , RNA Longo não Codificante , Plântula , Transdução de Sinais , Estresse Fisiológico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Plântula/genética , Plântula/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Brassica rapa/genética , Brassica rapa/metabolismo
2.
Ecotoxicol Environ Saf ; 281: 116667, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964068

RESUMO

Elucidating the absorption and translocation of heavy metal(loid)s by common vegetables across different growth environments and stages is crucial for conducting accurate environmental risk assessments and for associated control. This study investigated temporal variations in the absorption and translocation capacities of pak choi (Brassica rapa L.) for As, Cd, Cr, Cu, Pb, and Zn in polluted soils during the plant growth cycle under greenhouse and open-field cultivation modes. Results showed high root metal(loid) bioconcentration factors and root-to-shoot translocation factors for Cd (0.25 and 1.44, respectively) and Zn (0.26 and 1.01), but low values for As (0.06 and 0.88) and Pb (0.06 and 0.87). The Cd concentration in the aerial edible parts peaked during the early slow growth period, whereas other heavy metal(loid)s peaked during the later stable maturity period. Root bioconcentration and root-to-shoot translocation factors did not significantly differ between cultivation modes. However, greenhouse cultivation exhibited lower average Cd and Zn concentrations in the edible parts and cumulative uptake amounts of most metal(loid)s than open-field cultivation during the typical harvest period spanning days 60 and 90. Short-term transitioning from open-field to greenhouse cultivation may reduce health risks associated with heavy metal(loid) intake via pak choi consumption. These findings facilitate sustainable agricultural practices and food safety management.


Assuntos
Brassica rapa , Metais Pesados , Raízes de Plantas , Poluentes do Solo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Raízes de Plantas/metabolismo , Monitoramento Ambiental/métodos , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Solo/química , Agricultura/métodos
3.
Life Sci Space Res (Amst) ; 42: 140-147, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067985

RESUMO

Despite the precise environmental manipulation enabled by controlled environment agriculture (CEA), plant genotype remains a key factor in producing desirable traits. Brassica rapa var. nipposinica (mizuna) is a leading candidate for supplementing deficiencies in the space diet, however, which cultivar of mizuna will respond best to the environment of the international space station (ISS) is unknown. It is also unclear if there are more inter-varietal (mizuna - mustards) or intra-varietal (mizuna - mizuna) differences in response to the ISS environment. Twenty-two cultivars of mustard greens, including 13 cultivars of mizuna, were grown under ISS-like conditions to determine which would provide the greatest yield and highest concentrations of carotenoids, anthocyanins, calcium, potassium, iron, magnesium, ascorbic acid, thiamine, and phylloquinone. The experiment was conducted thrice, and data were analyzed to determine which cultivar is most suited for further optimization of space-based cultivation. It was found that phylloquinone and ß-carotene concentrations did not vary between cultivars, while all other metrics of interest showed some variation. 'Amara' mustard (B. carinata) provided the best overall nutritional profile, despite its low biomass yield of 36.8 g, producing concentrations of 27.85, 0.40, and 0.65 mg·g - 1 of ascorbic acid, thiamine, and lutein, respectively. Of the mizuna cultivars evaluated, open pollinated mibuna provided the best profile, while 'Red Hybrid' mizuna provided a complimentary profile to that of 'Amara', minimally increasing dietary iron while providing beneficial anthocyanins lacking in 'Amara'.


Assuntos
Brassica rapa , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/genética , Brassica rapa/metabolismo , Suplementos Nutricionais/análise , Brassica/crescimento & desenvolvimento , Brassica/genética , Brassica/metabolismo , Voo Espacial
4.
J Agric Food Chem ; 72(26): 14830-14843, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888424

RESUMO

Beyond the key bitter compound kaempferol 3-O-(2‴-O-sinapoyl-ß-d-sophoroside) previously described in the literature (1), eight further bitter and astringent-tasting kaempferol glucosides (2-9) have been identified in rapeseed protein isolates (Brassica napus L.). The bitterness and astringency of these taste-active substances have been described with taste threshold concentrations ranging from 3.3 to 531.7 and 0.3 to 66.4 µmol/L, respectively, as determined by human sensory experiments. In this study, the impact of 1 and kaempferol 3-O-ß-d-glucopyranoside (8) on TAS2R-linked proton secretion by HGT-1 cells was analyzed by quantification of the intracellular proton index. mRNA levels of bitter receptors TAS2R3, 4, 5, 13, 30, 31, 39, 40, 43, 45, 46, 50 and TAS2R8 were increased after treatment with compounds 1 and 8. Using quantitative UHPLC-MS/MSMRM measurements, the concentrations of 1-9 were determined in rapeseed/canola seeds and their corresponding protein isolates. Depending on the sample material, compounds 1, 3, and 5-9 exceeded dose over threshold (DoT) factors above one for both bitterness and astringency in selected protein isolates. In addition, an increase in the key bitter compound 1 during industrial protein production (apart from enrichment) was observed, allowing the identification of the potential precursor of 1 to be kaempferol 3-O-(2‴-O-sinapoyl-ß-d-sophoroside)-7-O-ß-d-glucopyranoside (3). These results may contribute to the production of less bitter and astringent rapeseed protein isolates through the optimization of breeding and postharvest downstream processing.


Assuntos
Brassica napus , Glicosídeos , Quempferóis , Proteínas de Plantas , Receptores Acoplados a Proteínas G , Paladar , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Brassica napus/química , Brassica napus/metabolismo , Brassica napus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glicosídeos/química , Extratos Vegetais/química , Sementes/química , Sementes/metabolismo , Brassica rapa/química , Brassica rapa/metabolismo
5.
Nat Commun ; 15(1): 5470, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937441

RESUMO

Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.


Assuntos
Brassica rapa , Flores , Regulação da Expressão Gênica de Plantas , Histonas , Histona Desmetilases com o Domínio Jumonji , Proteínas de Plantas , Locos de Características Quantitativas , Brassica rapa/genética , Brassica rapa/metabolismo , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Termotolerância/genética , Metilação , Plantas Geneticamente Modificadas , Clorofila/metabolismo
6.
J Agric Food Chem ; 72(27): 15321-15333, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917998

RESUMO

Profenofos insecticide poses risks to nontarget organisms including mammals and hydrobionts, and its effects on crops are not known. This study examined the invisible toxicity of profenofos on pakchoi (Brassica rapa L.), using transcriptome and metabolome analyses. Profenofos inhibited the photosynthetic efficiency and light energy absorption by leaves and severely damaged the chloroplasts, causing the accumulation of reactive oxygen species (ROS). Metabolomic analysis confirmed that profenofos promoted the conversion of ß-carotene into abscisic acid (ABA), as evidenced by the upregulation of the carotenoid biosynthesis pathway genes: zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED3), and xanthoxin dehydrogenase (XanDH). The inhibitory effects on carotenoid accumulation, photosynthesis, and increased ABA and ROS contents of the leaves led to invisible injury and stunted growth of the pakchoi plants. The findings of this study revealed the toxicological risk of profenofos to nontarget crops and provide guidance for the safe use of insecticides.


Assuntos
Brassica rapa , Carotenoides , Metabolômica , Proteínas de Plantas , Brassica rapa/metabolismo , Brassica rapa/genética , Brassica rapa/química , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Transcriptoma , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Organotiofosfatos/metabolismo , Organotiofosfatos/toxicidade
7.
Gene ; 927: 148708, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885818

RESUMO

Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.


Assuntos
Arabidopsis , Brassica rapa , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Plasmodioforídeos , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica rapa/genética , Brassica rapa/parasitologia , Brassica rapa/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Transporte Biológico , Açúcares/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
Gene ; 924: 148558, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38740353

RESUMO

Recessive genic male sterility (RGMS) provides an effective approach for the commercial exploitation of heterosis, especially in Brassica crops. Although some artificial RGMS mutants have been reported in B. rapa, no causal genes derived from these natural mutants have been identified so far. In this study, a spontaneous RGMS mutant Bcajh97-01A derived from the 'Aijiaohuang' line traced back to the 1980 s was identified. Genetic analysis revealed that the RGMS trait was controlled by a single locus in the Bcajh97-01A/B system. Bulk segregant analysis (BSA) in combination with linkage analysis was employed to delimit the causal gene to an approximate 129 kb interval on chromosome A02. The integrated information of transcriptional levels and the predicted genes in the target region indicated that the Brmmd1 (BraA02g017420) encoding a PHD-containing nuclear protein was the most likely candidate gene. A 374 bp miniature inverted-repeat transposable element (MITE) was inserted into the first exon to prematurely stop the Brmmd1 gene translation, thus blocking the normal expression of this gene at the tetrad stage in the Bcajh97-01A. Additionally, a co-segregating structure variation (SV) marker was developed to rapidly screen the RGMS progenies from Bcajh97-01A/B system. Our findings reveal that BraA02g017420 is the causal gene responsible for the RGMS trait. This study lays a foundation for marker-assisted selection and further molecular mechanism exploration of pollen development in B. rapa.


Assuntos
Brassica rapa , Genes Recessivos , Infertilidade das Plantas , Proteínas de Plantas , Brassica rapa/genética , Brassica rapa/metabolismo , Mapeamento Cromossômico , Genes de Plantas , Ligação Genética , Mutação , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732049

RESUMO

In this study, the variability of major glucosinolates in the leaf lamina of 134 Chinese cabbage accessions was investigated using Acquity ultra-performance liquid chromatography (UPLC-ESI-MS/MS). A total of twenty glucosinolates were profiled, of which glucobrassicanapin and gluconapin were identified as the predominant glucosinolates within the germplasm. These two glucosinolates had mean concentration levels above 1000.00 µmol/kg DW. Based on the principal component analysis, accessions IT186728, IT120044, IT221789, IT100417, IT278620, IT221754, and IT344740 were separated from the rest in the score plot. These accessions exhibited a higher content of total glucosinolates. Based on the VIP values, 13 compounds were identified as the most influential and responsible for variation in the germplasm. Sinigrin (r = 0.73), gluconapin (r = 0.78), glucobrassicanapin (r = 0.70), epiprogoitrin (r = 0.73), progoitrin (r = 0.74), and gluconasturtiin (r = 0.67) all exhibited a strong positive correlation with total glucosinolate at p < 0.001. This indicates that each of these compounds had a significant influence on the overall glucosinolate content of the various accessions. This study contributes valuable insights into the metabolic diversity of glucosinolates in Chinese cabbage, providing potential for breeding varieties tailored to consumer preferences and nutritional demands.


Assuntos
Brassica rapa , Glucosinolatos , Espectrometria de Massas em Tandem , Glucosinolatos/análise , Glucosinolatos/metabolismo , Espectrometria de Massas em Tandem/métodos , Brassica rapa/genética , Brassica rapa/química , Brassica rapa/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal
10.
Front Biosci (Landmark Ed) ; 29(5): 198, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812324

RESUMO

BACKGROUND: DELLA protein is a crucial factor which played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, little is known about the function and information of DELLA protein in Chinese cabbage. METHODS: Using 5 DELLA gene sequences in Arabidopsis Thaliana as probes, 5 DELLA genes in Chinese cabbage were identified by Blast search in Chinese cabbage database (Brassica database (BRAD)). The National Center for Biotechnology Information (NCBI), ExPaSy, SWISS-MODEL, DNAMAN, MEGA 11, PlantCARE were used to identify and analyze the DELLA gene family of Chinese cabbage. Gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The function of BraA10gRGL3 was verified by overexpression and phenotypic analysis of BraA10gRGL3 and yeast hybrid. RESULTS: In this study, 5 BraDELLAs homologous to Arabidopsis thaliana were identified and cloned based on the Brassica database, namely, BraA02gRGL1, BraA05gRGL2, BraA10gRGL3, BraA06gRGA and BraA09gRGA. All BraDELLAs contain the DELLA, TVHYNP, and GRAS conserved domains. Cis-element analysis revealed that the promoter regions of these 5 DELLA genes all contain light-responsive elements, TCT motif, I-box, G-box, and box 4, which are associated with GA signaling. Transcriptome analysis results proved that the expression of BraA02gRGL1, BraA05gRGL2, and BraA10gRGL3 in Y2 at different growth stages were lower than them in Y7, which is consistent with the phenotype that Y7 exhibited stronger stress tolerance than Y2. It is worth emphasizing that even through the overexpression of BraA10gRGL3-Y7 in Arabidopsis resulted in smaller leaf size and lower fresh weight compared to the wild type (WT) Arabidopsis: Columbia, a stronger response to abiotic stresses was observed in BraA10gRGL3-Y7. It indicated that BraA10gRGL3-Y7 can improve the stress resistance of plants by inhibiting their growth. Moreover, the yeast two-hybrid experiment confirmed that BraA10gRGL3-Y7 can interacted with BraA05gGID1a-Y7, BraA04gGID1b1, BraA09gGID1b3-Y2, and BraA06gGID1c, whereas BraA10gRGL3-Y2 cannot interact with any BraGID1. CONCLUSIONS: Collectively, BraDELLAs play important role in plant development and response to abiotic stress. The differences in amino acid sequences between BraA10gRGL3-Y2 and BraA10gRGL3-Y7 may result in variations in their protein binding sites, thus affecting their interaction with the BraGID1 family proteins. This systematic analysis lays the foundation for further study of the functional characteristics of DELLA genes of Chinese cabbage.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Estresse Fisiológico/genética , Filogenia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Genes de Plantas , Genoma de Planta
11.
Genes (Basel) ; 15(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674340

RESUMO

Gene duplication is a key biological process in the evolutionary history of plants and an important driving force for the diversification of genomic and genetic systems. Interactions between the calcium sensor calcineurin B-like protein (CBL) and its target, CBL-interacting protein kinase (CIPK), play important roles in the plant's response to various environmental stresses. As a food crop with important economic and research value, turnip (Brassica rapa var. rapa) has been well adapted to the environment of the Tibetan Plateau and become a traditional crop in the region. The BrrCIPK9 gene in turnip has not been characterized. In this study, two duplicated genes, BrrCIPK9.1 and BrrCIPK9.2, were screened from the turnip genome. Based on the phylogenetic analysis, BrrCIPK9.1 and BrrCIPK9.2 were found located in different sub-branches on the phylogenetic tree. Real-time fluorescence quantitative PCR analyses revealed their differential expression levels between the leaves and roots and in response to various stress treatments. The differences in their interactions with BrrCBLs were also revealed by yeast two-hybrid analyses. The results indicate that BrrCIPK9.1 and BrrCIPK9.2 have undergone Asparagine-alanine-phenylalanine (NAF) site divergence during turnip evolution, which has resulted in functional differences between them. Furthermore, BrrCIPK9.1 responded to high-pH (pH 8.5) stress, while BrrCIPK9.2 retained its ancestral function (low K+), thus providing further evidence of their functional divergence. These functional divergence genes facilitate turnip's good adaptation to the extreme environment of the Tibetan Plateau. In summary, the results of this study reveal the characteristics of the duplicated BrrCIPK9 genes and provide a basis for further functional studies of BrrCBLs-BrrCIPKs in turnip.


Assuntos
Brassica rapa , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes Duplicados/genética , Estresse Fisiológico/genética
12.
BMC Plant Biol ; 24(1): 245, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575879

RESUMO

Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.


Assuntos
Brassica napus , Brassica rapa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/metabolismo , Brassica napus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Germinação/genética , Brassica rapa/metabolismo , Metaboloma , Amido/metabolismo , Sacarose/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas , Transcriptoma
13.
J Sci Food Agric ; 104(10): 6276-6288, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477353

RESUMO

BACKGROUND: Root-zone hole fertilization has a positive impact on enhancing crop production and fertilization efficiency. However, a suitable spacing for hole fertilization in rapeseed cultivation is unclear. To explore an adaptive hole spacing for improving rapeseed yield and fertilization efficiency, field experiments were conducted. Four spacings of hole fertilization were designed: 10 (FD10), 20 (FD20), 30 (FD30) and 40 cm (FD40), using no fertilization (F0) and deep-banded placement of fertilizer (DBP) as controls. The burial depth was 10 cm for FD and DBP treatments. RESULTS: Compared to DBP, hole fertilization impacted soil microenvironment, crop growth and yield components, resulting in a significant increase of 28.4% in seed yield and 25.6% in oil yield. Seed yield in FD20 (4345.43 kg ha-1) increased by 4.3%, 9.4% and 15.1% compared to FD10, FD30 and FD40, respectively. Fertilizer partial factor productivity under FD20 was 4.2%, 8.6% and 13.9% greater than FD10, FD30 and FD40, respectively; whereas the increase for agronomic efficiency was 6.0%, 12.7% and 21.0%, and the increase for N recovery efficiency was 39.5%, 52.5% and 62.9%, respectively. CONCLUSION: Fertilization with a hole spacing of 17 cm is a promising practice to maintain high production and fertilization efficiency when cultivating rapeseed. These results provide a theoretical foundation and scientific basis for improving rapeseed productivity and fertilizer utilization. © 2024 Society of Chemical Industry.


Assuntos
Fertilizantes , Nitrogênio , Raízes de Plantas , Sementes , Solo , Fertilizantes/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química , Nitrogênio/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Produção Agrícola/métodos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Agricultura/métodos
14.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542514

RESUMO

Guanine nucleotide-exchange factors (GEFs) genes play key roles in plant root and pollen tube growth, phytohormone responses, and abiotic stress responses. RopGEF genes in Brassica rapa have not yet been explored. Here, GEF genes were found to be distributed across eight chromosomes in B. rapa and were classified into three subfamilies. Promoter sequence analysis of BrRopGEFs revealed the presence of cis-elements characteristic of BrRopGEF promoters, and these cis-elements play a role in regulating abiotic stress tolerance and stress-related hormone responses. Organ-specific expression profiling demonstrated that BrRopGEFs were ubiquitously expressed in all organs, especially the roots, suggesting that they play a role in diverse biological processes. Gene expression analysis revealed that the expression of BrRopGEF13 was significantly up-regulated under osmotic stress and salt stress. RT-qPCR analysis revealed that the expression of BrRopGEF13 was significantly down-regulated under various types of abiotic stress. Protein-protein interaction (PPI) network analysis revealed interactions between RopGEF11, the homolog of BrRopGEF9, and the VPS34 protein in Arabidopsis thaliana, as well as interactions between AtRopGEF1, the homolog of BrRopGEF13 in Arabidopsis, and the ABI1, HAB1, PP2CA, and CPK4 proteins. VPS34, ABI1, HAB1, PP2CA, and CPK4 have previously been shown to confer resistance to unfavorable environments. Overall, our findings suggest that BrRopGEF9 and BrRopGEF13 play significant roles in regulating abiotic stress tolerance. These findings will aid future studies aimed at clarifying the functional characteristics of BrRopGEFs.


Assuntos
Brassica rapa , Brassica rapa/metabolismo , Estresse Fisiológico/genética , Estresse Salino , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant Physiol Biochem ; 208: 108508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490152

RESUMO

Boron (B) is essential for plant growth. However, the molecular mechanism of B transport in rapeseed (Brassica napus L.) is unknown well. Here, we report that B transporter BnaA4.BOR2 is involved in the transport of B from root to shoot and its distribution in shoot cell wall and flower in rapeseed. The results of GUS staining and in-situ PCR analysis showed that BnaA4.BOR2 is mainly expressed in cortex and endodermis of root tip meristem zone and endodermis of mature zone. BnaA4.BOR2 was mainly localized in plasma membrane and showed B transport activity in yeast. Overexpression of Bna4.BOR2 could rescue the phenotype of Arabidopsis mutant bor2-2 under low-B condition. Furthermore, knockout of BnaA4.BOR2 could significantly enhance the sensitivity of rapeseed mutants to B deficiency, including inhibition of root elongation and biomass decrease of roots and shoots. The B concentration in xylem sap of BnaA4.BOR2 mutants was significantly decreased under B deficiency, which resulted in significantly lower B concentrations in shoot cell wall at seedling stage and flower organ at reproductive stage compared to that of wild-type QY10. The growth of BnaA4.BOR2 mutants were severely inhibited, exhibiting a typical B-deficient phenotype of "flowering without seed setting", leading to a sharp decrease in seed yield in B deficient soil. Taken together, these results indicate that BnaA4.BOR2 is critical for rapeseed growth and seed yield production under low B level, which is mainly expressed in cortex and endodermis, and contributed to the transport of B from roots to shoots and its distribution in shoot.


Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Brassica napus/metabolismo , Boro/metabolismo , Brassica rapa/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo
16.
Plant Commun ; 5(5): 100830, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38297839

RESUMO

Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.


Assuntos
Aquaporinas , Aquaporinas/metabolismo , Aquaporinas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Neonicotinoides/metabolismo , Animais , Praguicidas/metabolismo , Xenopus laevis/metabolismo , Brassica rapa/metabolismo , Brassica rapa/genética , Oócitos/metabolismo , Inseticidas/metabolismo
17.
Ecotoxicol Environ Saf ; 273: 116123, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394754

RESUMO

High levels of copper released in the soil, mainly from anthropogenic activity, can be hazardous to plants, animals, and humans. The present research aimed to estimate the suitability and effectiveness of rapeseed (Brassica napus L.) as a possible soil remediation option and to uncover underlying adaptive mechanisms A pot experiment was conducted to explore the effect of copper stress on agronomic and yield traits for 32 rapeseed genotypes. The copper-tolerant genotype H2009 and copper-sensitive genotype ZYZ16 were selected for further physiological, metabolomic, and transcriptomic analyses. The results exhibited a significant genotypic variation in copper stress tolerance in rapeseed. Specifically, the ratio of seed yield under copper stress to control ranged from 0.29 to 0.74. Furthermore, the proline content and antioxidant enzymatic activities in the roots were greater than those in the shoots. The accumulated copper in the roots accounted for about 50% of the total amount absorbed by plants; thus, the genotypes possessing high root volumes can be used for rhizofiltration to uptake and sequester copper. Additionally, the pectin and hemicellulose contents were significantly increased by 15.6% and 162%, respectively, under copper stress for the copper-tolerant genotype, allowing for greater sequestration of copper ions in the cell wall and lower oxidative stress. Comparative analysis of transcriptomes and metabolomes revealed that excessive copper enhanced the up-regulation of functional genes or metabolites related to cell wall binding, copper transportation, and chelation in the copper-tolerant genotype. Our results suggest that copper-tolerant rapeseed can thrive in heavily copper-polluted soils with a 5.85% remediation efficiency as well as produce seed and vegetable oil without exceeding food quality standards for the industry. This multi-omics comparison study provides insights into breeding copper-tolerant genotypes that can be used for the phytoremediation of heavy metal-polluted soils.


Assuntos
Brassica napus , Brassica rapa , Poluentes do Solo , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Cobre/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Melhoramento Vegetal , Brassica rapa/metabolismo , Solo
18.
J Sci Food Agric ; 104(7): 3883-3893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270454

RESUMO

BACKGROUND: There has been a significant growth in demand for plant-derived protein, and this has been accompanied by an increasing need for sustainable animal-feed options. The aim of this study was to investigate the effect of magnetic field-assisted solid fermentation (MSSF) on the in vitro protein digestibility (IVPD) and functional and structural characteristics of rapeseed meal (RSM) with a mutant strain of Bacillus subtilis. RESULTS: Our investigation demonstrated that the MSSF nitrogen release rate reached 86.3% after 96 h of fermentation. The soluble protein and peptide content in magnetic field feremented rapeseed meal reached 29.34 and 34.49 mg mL-1 after simulated gastric digestion, and the content of soluble protein and peptide in MF-FRSM reached 61.81 and 69.85 mg mL-1 after simulated gastrointestinal digestion, which significantly increased (p > 0.05) compared with the fermented rapeseed meal (FRSM). Studies of different microstructures - using scanning electron microscopy (SEM) and atomic force microscopy (AFM) - and protein secondary structures have shown that the decline in intermolecular or intramolecular cross-linking leads to the relative dispersion of proteins and improves the rate of nitrogen release. The smaller number of disulfide bonds and conformational alterations suggests that the IVPD of RSM was improved. CONCLUSIONS: Magnetic field-assisted solid fermentation can be applied to enhance the nutritional and protein digestibility of FRSM. © 2024 Society of Chemical Industry.


Assuntos
Brassica napus , Brassica rapa , Animais , Brassica napus/química , Fermentação , Estrutura Molecular , Brassica rapa/metabolismo , Proteínas de Plantas/metabolismo , Peptídeos/metabolismo , Nitrogênio/metabolismo , Ração Animal/análise , Digestão , Dieta
19.
Br Poult Sci ; 65(2): 137-143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265055

RESUMO

1. Two experiments were conducted to explore the effects of an exogenous sfericase protease on the apparent ileal nutrient digestibility of soybean meal (SBM) and rapeseed meal (RSM) in broiler chickens.2. In each experiment, a total of 256 sixteen-day-old male Cobb 500 broilers were fed one of four semi-purified experimental diets, comprising two different batches (A and B) of samples for either SBM (Exp. 1) or RSM (Exp. 2) without or with an exogenous sfericase (0 or 30,000 NFP/kg). Each experimental diet was fed to eight replicate pens of broiler chickens from 16 to 21 d of age (eight birds per cage), and ileal digesta were collected for measuring the digestibility coefficients.3. In Exp. 1, the amino acid digestibility was greater (P < 0.05) in SBM B compared with SBM A for Arg and Val, and a similar trend (P < 0.1) was observed for Tyr, Leu and Thr. Exogenous sfericase increased (P < 0.10) digestibility of most of amino acids except Gly, His and Trp. There was an interaction between SBM source and sfericase, whereby digestibility of P, N and Asp was increased by sfericase for SBM B but not for SBM A. In Exp. 2, there was no interaction (P > 0.05) between RSM source and sfericase for ileal nutrient digestibility. Digestibility was greater in RSM A compared to RSM B for all non-essential AA and most essential AA (except for Trp), while the reverse was noted for Ca and P (P < 0.05). Exogenous sfericase increased (P < 0.1) digestibility for all amino acids except Cys and Met.4. In conclusion, the current studies showed that both SBM and RSM batches influenced amino acid digestibility. Sfericase protease supplementation increased amino acid digestibility for both SBM and RSM. The digestibility effects were greater in the SBM batch with low digestibility for N and Asp which was in line with an increase in P digestibility.


Assuntos
Brassica napus , Brassica rapa , Serina Endopeptidases , Animais , Masculino , Aminoácidos/metabolismo , Brassica napus/metabolismo , Galinhas/metabolismo , Peptídeo Hidrolases/metabolismo , Farinha , Digestão , Dieta/veterinária , Brassica rapa/metabolismo , Íleo/metabolismo , Glycine max , Ração Animal/análise , Nutrientes , Fenômenos Fisiológicos da Nutrição Animal
20.
Plant Physiol Biochem ; 207: 108319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183900

RESUMO

Methylglyoxal (MG), a highly reactive cellular metabolite, is crucial for plant growth and environmental responses. MG may function by modifying its target proteins, but little is known about MG-modified proteins in plants. Here, MG-modified proteins were pulled down by an antibody against methylglyoxalated proteins and detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We identified 543 candidate proteins which are involved in multiple enzymatic activities and metabolic processes. A great number of candidate proteins were predicted to localize to cytoplasm, chloroplast, and nucleus, consistent with the known subcellular compartmentalization of MG. By further analyzing the raw LC-MS/MS data, we obtained 42 methylglyoxalated peptides in 35 proteins and identified 10 methylglyoxalated lysine residues in a myrosinase-binding protein (BnaC06G0061400ZS). In addition, we demonstrated that MG modifies the glycolate oxidase and ß-glucosidase to enhance and inhibit the enzymatic activity, respectively. Together, our study contributes to the investigation of the MG-modified proteins and their potential roles in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Brassica rapa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...