Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.984
Filtrar
1.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38836331

RESUMO

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Assuntos
Encéfalo , Exposição por Inalação , Ratos Wistar , Tungstênio , Animais , Tungstênio/toxicidade , Masculino , Exposição por Inalação/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Biomarcadores/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
BMC Genomics ; 25(1): 566, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840049

RESUMO

BACKGROUND: Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis. RESULTS: Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity. CONCLUSIONS: HyperGCN is an unsupervised method based on hypergraph induced graph convolutional network, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.


Assuntos
Perfilação da Expressão Gênica , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Aprendizado Profundo , Análise por Conglomerados , Biologia Computacional/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Bulbo Olfatório/metabolismo
3.
Acta Neuropathol Commun ; 12(1): 70, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698465

RESUMO

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.


Assuntos
COVID-19 , Microglia , Bulbo Olfatório , Humanos , COVID-19/patologia , COVID-19/complicações , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Microglia/patologia , Microglia/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , SARS-CoV-2 , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo
4.
Sci Rep ; 14(1): 12101, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802558

RESUMO

Anxiety is among the most fundamental mammalian behaviors. Despite the physiological and pathological importance, its underlying neural mechanisms remain poorly understood. Here, we recorded the activity of olfactory bulb (OB) and medial prefrontal cortex (mPFC) of rats, which are critical structures to brain's emotional processing network, while exploring different anxiogenic environments. Our results show that presence in anxiogenic contexts increases the OB and mPFC regional theta activities. Also, these local activity changes are associated with enhanced OB-mPFC theta power- and phase-based functional connectivity as well as OB-to-mPFC information transfer. Interestingly, these effects are more prominent in the unsafe zones of the anxiogenic environments, compared to safer zones. This consistent trend of changes in diverse behavioral environments as well as local and long-range neural activity features suggest that the dynamics of OB-mPFC circuit theta oscillations might underlie different types of anxiety behaviors, with possible implications for anxiety disorders.


Assuntos
Ansiedade , Bulbo Olfatório , Córtex Pré-Frontal , Ritmo Teta , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Animais , Ansiedade/fisiopatologia , Ritmo Teta/fisiologia , Bulbo Olfatório/fisiologia , Bulbo Olfatório/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Comportamento Animal/fisiologia
5.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727956

RESUMO

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurotrofina 3 , Bulbo Olfatório , Remielinização , Animais , Ratos , Neurotrofina 3/metabolismo , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Remielinização/fisiologia , Bulbo Olfatório/citologia , Proliferação de Células , Medula Espinal/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Células Cultivadas , Movimento Celular , Cistos/patologia , Feminino , Cistos do Sistema Nervoso Central/cirurgia , Cistos do Sistema Nervoso Central/patologia
6.
Sci Rep ; 14(1): 11779, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783070

RESUMO

Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.


Assuntos
Cavidade Nasal , Bulbo Olfatório , Phoca , Órgão Vomeronasal , Animais , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/anatomia & histologia , Phoca/metabolismo , Phoca/anatomia & histologia , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/metabolismo , Bulbo Olfatório/metabolismo , Bulbo Olfatório/anatomia & histologia , Muco/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/anatomia & histologia , Masculino , Olfato/fisiologia , Feminino
7.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791326

RESUMO

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Assuntos
Compostos de Manganês , Manganês , Camundongos Endogâmicos C57BL , Vanádio , Animais , Camundongos , Manganês/toxicidade , Vanádio/toxicidade , Masculino , Bulbo Olfatório/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Dopamina/metabolismo , Compostos de Vanádio , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , alfa-Sinucleína/metabolismo , Cloretos/toxicidade , Cloretos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Aldeídos/metabolismo , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Modelos Animais de Doenças , Ácido 3,4-Di-Hidroxifenilacético/metabolismo
8.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732248

RESUMO

The role of afferent target interactions in dendritic plasticity within the adult brain remains poorly understood. There is a paucity of data regarding the effects of deafferentation and subsequent dendritic recovery in adult brain structures. Moreover, although adult zebrafish demonstrate ongoing growth, investigations into the impact of growth on mitral cell (MC) dendritic arbor structure and complexity are lacking. Leveraging the regenerative capabilities of the zebrafish olfactory system, we conducted a comprehensive study to address these gaps. Employing an eight-week reversible deafferentation injury model followed by retrograde labeling, we observed substantial morphological alterations in MC dendrites. Our hypothesis posited that cessation of injury would facilitate recovery of MC dendritic arbor structure and complexity, potentially influenced by growth dynamics. Statistical analyses revealed significant changes in MC dendritic morphology following growth and recovery periods, indicating that MC total dendritic branch length retained significance after 8 weeks of deafferentation injury when normalized to individual fish physical characteristics. This suggests that regeneration of branch length could potentially function relatively independently of growth-related changes. These findings underscore the remarkable plasticity of adult dendritic arbor structures in a sophisticated model organism and highlight the efficacy of zebrafish as a vital implement for studying neuroregenerative processes.


Assuntos
Dendritos , Bulbo Olfatório , Peixe-Zebra , Animais , Plasticidade Neuronal
9.
Front Neural Circuits ; 18: 1408187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818309

RESUMO

Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol consumption during pregnancy, are a prominent non-genetic cause of physical disabilities and brain damage in children. Alongside common symptoms like distinct facial features and neurocognitive deficits, sensory anomalies, including olfactory dysfunction, are frequently noted in FASD-afflicted children. However, the precise mechanisms underpinning the olfactory abnormalities induced by prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model organism with varying timing, duration, dosage, and administration routes of alcohol exposure, prior studies have documented impairments in olfactory system development caused by PAE. Many reported a reduction in the olfactory bulb (OB) volume accompanied by reduced OB neuron counts, suggesting the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory system defects were observed in some studies, though subtle alterations might exist. These findings suggest that the timing, duration, and extent of fetal alcohol exposure can yield diverse effects on olfactory system development. To enhance comprehension of PAE-induced olfactory dysfunctions, this review summarizes key findings from previous research on the olfactory systems of offspring prenatally exposed to alcohol.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Feminino , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos , Etanol/efeitos adversos , Etanol/administração & dosagem , Etanol/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/crescimento & desenvolvimento
10.
J Ethnopharmacol ; 331: 118332, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735421

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Citri Reticulata Pericarpium Viride (also known Qing-Pi or QP) is a plant in the Rutaceae family, QP is a traditional Qi-regulating medicine in Chinese medicine that is compatible with other Chinese medicine components and has extensive clinical practice in treating anxiety and depression. Reports on the pharmacological effects of QP have demonstrated its neuroprotective effects and antioxidant capacities. Numerous pharmacological benefits of QP are attributed to its antioxidant abilities. Anxiety disorders are a broadly defined category of mental illnesses. Oxidative stress and an imbalance in the antioxidant defense system are typical pathological features of these disorders. AIM OF THE STUDY: The aim of this study was to evaluate the effects of QP essential oil on anxiety using animal models and investigate the underlying neurobiological mechanisms. MATERIALS AND METHODS: This study aimed to develop an animal model of anxiety using chronic restraint stress and investigate the effects of inhalation of Citri Reticulata Pericarpium Viride essential oil on anxiety-like behavior, olfactory function, and olfactory bulb neurogenesis in mice with anxiety. RESULTS: The results showed that long-term chronic restraint stimulation caused a decrease in olfactory function, significant anxiety-like behavior, and a notable reduction in the number of neurons in the olfactory bulb. However, inhalation of Citri Reticulata Pericarpium Viride essential oil reversed these effects, improving the olfactory function, neuro-stimulating effect, alleviating anxiety-like behavior, and regulating theta (4-12Hz) oscillation in the hippocampus DG area. These effects were associated with changes in the expression levels of glutamate receptor NMDAR and NeuN in olfactory bulb. CONCLUSIONS: The study revealed that mice with anxiety induced by chronic restraint stress exhibited significant olfactory dysfunction, providing strong evidence for the causal relationship between anxiety disorders and olfactory dysfunction. Moreover, QP essential oil has the potential to be developed as a therapeutic drug for anxiety disorders, in addition to its role as a complementary anxiolytic.


Assuntos
Ansiolíticos , Ansiedade , Óleos Voláteis , Bulbo Olfatório , Receptores de N-Metil-D-Aspartato , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/isolamento & purificação , Masculino , Ansiedade/tratamento farmacológico , Camundongos , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiolíticos/isolamento & purificação , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Animal/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurogênese/efeitos dos fármacos , Modelos Animais de Doenças , Estresse Psicológico/tratamento farmacológico
11.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713624

RESUMO

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córtex Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Animais , Neurogênese/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Neuroglia/metabolismo , Neuroglia/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/citologia , Linhagem da Célula , Humanos
12.
Sci Rep ; 14(1): 11334, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760368

RESUMO

The phenomenon of contagious itch, observed in both humans and rodents, remains a topic of ongoing debate concerning its modulators and underlying pathways. This study delves into the relationship between contagious itch and familiar olfactory cues, a non-visual factor contributing to this intriguing behavior. Our findings showed that contagious itch in observer mice occurs during physical interaction with the cagemate itch-demonstrator but not with a stranger demonstrator or in a non-physical encounter condition. Notably, itch-experienced observer mice displayed an increased contagious itch behavior, highlighting the relevance of itch-associated memory in this phenomenon. Furthermore, anosmic observer mice, whether itch-naïve or itch-experienced, displayed no contagious itch behavior. These results demonstrate that the familiar olfactory cues, specifically cagemate body odors, are required for contagious itch behaviors in mice. In line with these behavioral findings, our study reveals increased activity in brain regions associated with olfaction, emotion, and memory during contagious itch, including the olfactory bulb, the amygdala, the hypothalamus, and the hippocampus, with this activity diminished in anosmic mice. In conclusion, our study unveils the critical role of familiar olfactory cues in driving contagious itch in mice, shedding light on the interplay between social factors, sensory perception, and memory in this phenomenon.


Assuntos
Sinais (Psicologia) , Prurido , Olfato , Animais , Prurido/fisiopatologia , Camundongos , Olfato/fisiologia , Masculino , Comportamento Animal , Relações Interpessoais , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/fisiopatologia , Encéfalo/fisiopatologia
13.
J Neurophysiol ; 131(6): 1226-1239, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691531

RESUMO

Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB → M/TCs and indirect disinhibitory long circuits HDB → interneurons → M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.


Assuntos
Interneurônios , Bulbo Olfatório , Bulbo Olfatório/fisiologia , Bulbo Olfatório/citologia , Animais , Interneurônios/fisiologia , Camundongos , Neurônios GABAérgicos/fisiologia , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Masculino , Camundongos Endogâmicos C57BL , Potenciais de Ação/fisiologia , Inibição Neural/fisiologia , Feminino , Optogenética
14.
Ageing Res Rev ; 97: 102288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580172

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.


Assuntos
COVID-19 , Doenças Neuroinflamatórias , Transtornos do Olfato , Doença de Parkinson , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/fisiopatologia , Doenças Neuroinflamatórias/imunologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Transtornos do Olfato/virologia , Bulbo Olfatório/fisiopatologia , Bulbo Olfatório/virologia , Bulbo Olfatório/patologia
15.
Genesis ; 62(2): e23594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590146

RESUMO

During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Mucosa Olfatória , Bulbo Olfatório , Axônios/metabolismo , Expressão Gênica
16.
Commun Biol ; 7(1): 420, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582915

RESUMO

The morpho-functional properties of neural networks constantly adapt in response to environmental stimuli. The olfactory bulb is particularly prone to constant reshaping of neural networks because of ongoing neurogenesis. It remains unclear whether the complexity of distinct odor-induced learning paradigms and sensory stimulation induces different forms of structural plasticity. In the present study, we automatically reconstructed spines in 3D from confocal images and performed unsupervised clustering based on morphometric features. We show that while sensory deprivation decreased the spine density of adult-born neurons without affecting the morphometric properties of these spines, simple and complex odor learning paradigms triggered distinct forms of structural plasticity. A simple odor learning task affected the morphometric properties of the spines, whereas a complex odor learning task induced changes in spine density. Our work reveals distinct forms of structural plasticity in the olfactory bulb tailored to the complexity of odor-learning paradigms and sensory inputs.


Assuntos
Odorantes , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/fisiologia , Interneurônios/fisiologia , Aprendizagem , Neurônios/fisiologia
17.
Nat Commun ; 15(1): 3268, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627390

RESUMO

Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Here, we show that odorant mixtures of increasing complexity evoke progressively denser OSN activity, yet cortical feedback activity is of similar sparsity for all stimuli. Also, representations of complex mixtures are similar in OSNs but are decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibit a sigmoidal relationship, cortical axonal responses are complex and nonmonotonic, which can be explained by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage olfactory circuits have access to local feedforward signals and global, efficiently formatted information about odor scenes through cortical feedback.


Assuntos
Bulbo Olfatório , Neurônios Receptores Olfatórios , Camundongos , Animais , Bulbo Olfatório/fisiologia , Retroalimentação , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Odorantes
18.
Genesis ; 62(2): e23597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590121

RESUMO

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Assuntos
Bulbo Olfatório , Órgão Vomeronasal , Camundongos , Animais , Bulbo Olfatório/fisiologia , Células Receptoras Sensoriais/metabolismo , Órgão Vomeronasal/metabolismo
19.
Genesis ; 62(1): e23586, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38593162

RESUMO

Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information. The establishment of this stereotypical olfactory map requires coordinated regulation of axon guidance molecules instructed by spontaneous activity. Recent studies show that sensory experiences also modify innervation patterns in the olfactory bulb, especially during a critical period of the olfactory system development. This review examines evidence in the field to suggest potential mechanisms by which various aspects of neural activity regulate axon targeting. We also discuss the precise functions served by neural plasticity during the critical period.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Neurônios Receptores Olfatórios/metabolismo , Bulbo Olfatório/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Axônios/metabolismo , Mamíferos
20.
Neurobiol Dis ; 196: 106514, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663633

RESUMO

The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.


Assuntos
Transtornos do Olfato , Bulbo Olfatório , Doença de Parkinson , Análise de Sequência de RNA , Humanos , Bulbo Olfatório/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Masculino , Transtornos do Olfato/genética , Feminino , Idoso , Análise de Sequência de RNA/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Perfilação da Expressão Gênica/métodos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA