Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
1.
Med Microbiol Immunol ; 213(1): 16, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033094

RESUMO

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei, an intracellular pathogen with a high mortality rate and significant antibiotic resistance. The high mortality rate and resistance to antibiotics have drawn considerable attention from researchers studying melioidosis. This study evaluated the effects of various concentrations (75, 50, and 25 µg/mL) of promethazine hydrochloride (PTZ), a potent antihistamine, on biofilm formation and lipase activity after 24 h of exposure to B. thailandensis E264. A concentration-dependent decrease in both biofilm biomass and lipase activity was observed. RT-PCR analysis revealed that PTZ treatment not only made the biofilm structure loose but also reduced the expression of btaR1, btaR2, btaR3, and scmR. Single gene knockouts of quorum sensing (QS) receptor proteins (∆btaR1, ∆btaR2, and ∆btaR3) were successfully constructed. Deletion of btaR1 affected biofilm formation in B. thailandensis, while deletion of btaR2 and btaR3 led to reduced lipase activity. Molecular docking and biological performance results demonstrated that PTZ inhibits biofilm formation and lipase activity by suppressing the expression of QS-regulated genes. This study found that repositioning PTZ reduced biofilm formation in B. thailandensis E264, suggesting a potential new approach for combating melioidosis.


Assuntos
Biofilmes , Burkholderia , Reposicionamento de Medicamentos , Prometazina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Burkholderia/efeitos dos fármacos , Burkholderia/fisiologia , Burkholderia/genética , Prometazina/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Lipase/metabolismo , Lipase/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Percepção de Quorum/efeitos dos fármacos
2.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892282

RESUMO

The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.


Assuntos
Arabidopsis , Burkholderia , Estresse Fisiológico , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Estresse Fisiológico/genética , Desenvolvimento Vegetal/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Etilenos/metabolismo
3.
World J Microbiol Biotechnol ; 40(8): 242, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869634

RESUMO

Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.


Assuntos
Biomassa , Burkholderia , Fermentação , Hidroxibutiratos , Lignina , Óleo de Palmeira , RNA Ribossômico 16S , Xilose , Lignina/metabolismo , Óleo de Palmeira/metabolismo , Hidroxibutiratos/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Xilose/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Glucose/metabolismo , Poliésteres/metabolismo , Concentração de Íons de Hidrogênio , Furaldeído/metabolismo , Furaldeído/análogos & derivados , Celobiose/metabolismo
4.
Microb Genom ; 10(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860878

RESUMO

Endofungal Mycetohabitans (formerly Burkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, Rhizopus microsporus. The one known secreted effector family from Mycetohabitans consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic Xanthomonas and Ralstonia spp. to activate host genes that promote disease. These 'Burkholderia TAL-like (Btl)' proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two Mycetohabitans strains revealed that the single Btl in one Mycetohabitans endofungorum strain enhances fungal membrane stress tolerance, while others in a Mycetohabitans rhizoxinica strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine Mycetohabitans spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal-bacterial metagenomes. We show that btl genes are present across diverse Mycetohabitans strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that Mycetohabitans might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across M. rhizoxinica strains than across M. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial-fungal symbioses in myriad ways.


Assuntos
Burkholderia , Rhizopus , Simbiose , Rhizopus/genética , Rhizopus/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Variação Genética
5.
J Hazard Mater ; 475: 134936, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889456

RESUMO

Biotic-abiotic hybrid systems have recently emerged as a potential technique for stable and efficient removal of persistent contaminants due to coupling of microbial catabolic with abiotic adsorption/redox processes. In this study, Burkholderia vietnamensis C09V (B.V.C09V) was successfully integrated with a Zeolitic Imidazolate Framework-8 (ZIF-8) to construct a state-of-art biotic-abiotic system using polyvinyl alcohol/ sodium alginate (PVA/SA) as media. The biotic-abiotic system (PVA/SA-ZIF-8 @B.V.C09V) was able to remove 99.0 % of 2,4-DCP within 168 h, which was much higher than either PVA/SA, PVA/SA-ZIF-8 or PVA/SA@B.V.C09V (53.8 %, 72.6 % and 67.2 %, respectively). Electrochemical techniques demonstrated that the carrier effect of PVA/SA and the driving effect of ZIF-8 collectively accelerated electron transfer processes associated with enzymatic reactions. In addition, quantitative-PCR (Q-PCR) revealed that ZIF-8 stimulated B.V.C09V to up-regulate expression of tfdB, tfdC, catA, and catC genes (2.40-, 1.68-, 1.58-, and 1.23-fold, respectively), which encoded the metabolism of related enzymes. Furthermore, the effect of key physical, chemical, and biological properties of PVA/SA-ZIF-8 @B.V.C09V on 2,4-DCP removal were statistically investigated by Spearman correlation analysis to identify the key factors that promoted synergistic removal of 2,4-DCP. Overall, this study has created an innovative new strategy for the sustainable remediation of 2,4-DCP in aquatic environments.


Assuntos
Clorofenóis , Álcool de Polivinil , Poluentes Químicos da Água , Zeolitas , Clorofenóis/química , Poluentes Químicos da Água/química , Álcool de Polivinil/química , Zeolitas/química , Alginatos/química , Burkholderia/metabolismo , Burkholderia/genética , Adsorção , Imidazóis/química , Biodegradação Ambiental , Estruturas Metalorgânicas/química
6.
Emerg Infect Dis ; 30(6): 1249-1252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782141

RESUMO

Burkholderia semiarida was previously identified solely as a plant pathogen within the Burkholderia cepacia complex. We present a case in China involving recurrent pneumonia attributed to B. semiarida infection. Of note, the infection manifested in an immunocompetent patient with no associated primary diseases and endured for >3 years.


Assuntos
Infecções por Burkholderia , Burkholderia , Recidiva , Humanos , Infecções por Burkholderia/diagnóstico , Infecções por Burkholderia/microbiologia , Infecções por Burkholderia/tratamento farmacológico , China , Burkholderia/isolamento & purificação , Burkholderia/genética , Masculino , Imunocompetência , Antibacterianos/uso terapêutico , Pessoa de Meia-Idade , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/tratamento farmacológico
7.
Int J Biol Macromol ; 272(Pt 1): 132630, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810853

RESUMO

Biocatalyst catalyzing the synthesis of esters under aqueous phase is an alternative with green and sustainable characteristics. Here, a biocatalyst esterase Bur01 was identified through genome sequencing and gene library construction from a Burkholderia ambifaria BJQ0010 with efficient ester synthesis property under aqueous phase for the first time. Bur01 was soluble expressed and the purified enzyme showed the highest activity at pH 4.0 and 40 °C. It had a broad substrate spectrum, especially for ethyl esters. The structure of Bur01 was categorized as a member of α/ß fold hydrolase superfamily. The easier opening of lid under aqueous phase and the hydrophobicity of substrate channel contribute to easier access to the active center for substrate. Molecular docking and site-directed mutation demonstrated that the oxyanion hole Ala22, Met112 and π-bond stacking between His24 and Phe217 played essential roles in catalytic function. The mutants V149A, V149I, L159I and F137I enhanced enzyme activity to 1.42, 1.14, 1.32 and 2.19 folds due to reduced spatial resistance and increased hydrophobicity of channel and ethyl octanoate with the highest conversion ratio of 68.28 % was obtained for F137I. These results provided new ideas for developing green catalysts and catalytic basis of mechanistic studies for ester synthetase under aqueous phase.


Assuntos
Biocatálise , Burkholderia , Esterases , Ésteres , Simulação de Acoplamento Molecular , Esterases/metabolismo , Esterases/genética , Esterases/química , Ésteres/metabolismo , Ésteres/química , Burkholderia/enzimologia , Burkholderia/genética , Especificidade por Substrato , Concentração de Íons de Hidrogênio , Água/química , Domínio Catalítico , Mutagênese Sítio-Dirigida , Cinética
8.
Res Microbiol ; 175(5-6): 104202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38582389

RESUMO

The Burkholderia cepacia complex (Bcc) is a group of increasingly multi-drug resistant opportunistic bacteria. This resistance is driven through a combination of intrinsic factors and the carriage of a broad range of conjugative plasmids harbouring virulence determinants. Therefore, novel treatments are required to treat and prevent further spread of these virulence determinants. In the search for phages infective for clinical Bcc isolates, CSP1 phage, a PRD1-like phage was isolated. CSP1 phage was found to require pilus machinery commonly encoded on conjugative plasmids to facilitate infection of Gram-negative bacteria genera including Escherichia and Pseudomonas. Whole genome sequencing and characterisation of one of the clinical Burkholderia isolates revealed it to be Burkholderia contaminans. B. contaminans 5080 was found to contain a genome of over 8 Mbp encoding multiple intrinsic resistance factors, such as efflux pump systems, but more interestingly, carried three novel plasmids encoding multiple putative virulence factors for increased host fitness, including antimicrobial resistance. Even though PRD1-like phages are broad host range, their use in novel antimicrobial treatments shouldn't be dismissed, as the dissemination potential of conjugative plasmids is extensive. Continued survey of clinical bacterial strains is also key to understanding the spread of antimicrobial resistance determinants and plasmid evolution.


Assuntos
Bacteriófagos , Complexo Burkholderia cepacia , Plasmídeos , Plasmídeos/genética , Complexo Burkholderia cepacia/virologia , Complexo Burkholderia cepacia/genética , Complexo Burkholderia cepacia/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Especificidade de Hospedeiro , Sequenciamento Completo do Genoma , Conjugação Genética , Fatores de Virulência/genética , Infecções por Burkholderia/microbiologia , Humanos , Genoma Viral , Genoma Bacteriano , Burkholderia/genética , Burkholderia/virologia
9.
Biol Res ; 57(1): 12, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561836

RESUMO

BACKGROUND: Bacterial aromatic degradation may cause oxidative stress. The long-chain flavodoxin FldX1 of Paraburkholderia xenovorans LB400 counteracts reactive oxygen species (ROS). The aim of this study was to evaluate the protective role of FldX1 in P. xenovorans LB400 during the degradation of 4-hydroxyphenylacetate (4-HPA) and 3-hydroxyphenylacetate (3-HPA). METHODS: The functionality of FldX1 was evaluated in P. xenovorans p2-fldX1 that overexpresses FldX1. The effects of FldX1 on P. xenovorans were studied measuring growth on hydroxyphenylacetates, degradation of 4-HPA and 3-HPA, and ROS formation. The effects of hydroxyphenylacetates (HPAs) on the proteome (LC-MS/MS) and gene expression (qRT-PCR) were quantified. Bioaugmentation with strain p2-fldX1 of 4-HPA-polluted soil was assessed, measuring aromatic degradation (HPLC), 4-HPA-degrading bacteria, and plasmid stability. RESULTS: The exposure of P. xenovorans to 4-HPA increased the formation of ROS compared to 3-HPA or glucose. P. xenovorans p2-fldX1 showed an increased growth on 4-HPA and 3-HPA compared to the control strain WT-p2. Strain p2-fldX1 degraded faster 4-HPA and 3-HPA than strain WT-p2. Both WT-p2 and p2-fldX1 cells grown on 4-HPA displayed more changes in the proteome than cells grown on 3-HPA in comparison to glucose-grown cells. Several enzymes involved in ROS detoxification, including AhpC2, AhpF, AhpD3, KatA, Bcp, CpoF1, Prx1 and Prx2, were upregulated by hydroxyphenylacetates. Downregulation of organic hydroperoxide resistance (Ohr) and DpsA proteins was observed. A downregulation of the genes encoding scavenging enzymes (katE and sodB), and gstA and trxB was observed in p2-fldX1 cells, suggesting that FldX1 prevents the antioxidant response. More than 20 membrane proteins, including porins and transporters, showed changes in expression during the growth of both strains on hydroxyphenylacetates. An increased 4-HPA degradation by recombinant strain p2-fldX1 in soil microcosms was observed. In soil, the strain overexpressing the flavodoxin FldX1 showed a lower plasmid loss, compared to WT-p2 strain, suggesting that FldX1 contributes to bacterial fitness. Overall, these results suggest that recombinant strain p2-fldX1 is an attractive bacterium for its application in bioremediation processes of aromatic compounds. CONCLUSIONS: The long-chain flavodoxin FldX1 improved the capability of P. xenovorans to degrade 4-HPA in liquid culture and soil microcosms by protecting cells against the degradation-associated oxidative stress.


Assuntos
Burkholderia , Burkholderiaceae , Flavodoxina , Gliceraldeído/análogos & derivados , Fenilacetatos , Propano , Biodegradação Ambiental , Flavodoxina/metabolismo , Flavodoxina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteoma/metabolismo , Proteoma/farmacologia , Cromatografia Líquida , Burkholderia/genética , Burkholderia/metabolismo , Espectrometria de Massas em Tandem , Estresse Oxidativo , Glucose/metabolismo , Solo
10.
Mol Biol Rep ; 51(1): 519, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625424

RESUMO

BACKGROUND: Bacterial panicle blight, incited by Burkholderia glumae, has impacted rice production globally. Despite its significance, knowledge about the disease and the virulence pattern of the causal agent is very limited. Bacterial panicle blight is a major challenge in the rice-growing belts of North-western India, resulting in yield reduction. However, the management of B. glumae has become a challenge due to the lack of proper management strategies. METHODOLOGY AND RESULTS: Twenty-one BG strains have been characterized using the 16S rRNA and the gyrB gene-based sequence approach in the present study. The gyrB gene-based phylogenetic analysis resulted in geographic region-specific clustering of the BG isolates. The virulence screening of twenty-one BG strains by inoculating the pathogenic bacterial suspension of 1 × 10-8 cfu/ml at the booting stage (55 DAT) revealed the variation in the disease severity and the grain yield of rice plants. The most virulent BG1 strain resulted in the highest disease incidence (82.11%) and lowest grain yield (11.12 g/plant), and the least virulent BG10 strain resulted in lowest disease incidence of 18.94% and highest grain yield (24.62 g/plant). In vitro evaluation of various biocontrol agents and nano copper at different concentrations by agar well diffusion method revealed that nano copper at 1000 mg/L inhibited the colony growth of B. glumae. Under net house conditions, nano copper at 1000 mg/L reduced the disease severity to 21.23% and increased the grain yield by 20.91% (31.76 g per plant) compared to the positive control (COC 0.25% + streptomycin 200 ppm). Remarkably, pre-inoculation with nano copper at 1000 mg/L followed by challenge inoculation with B. glumae enhanced the activity of enzymatic antioxidants viz., Phenyl ammonia-lyase (PAL), Polyphenol oxidase (PPO) and Peroxidase (POX) and non-enzymatic antioxidant phenol. Additionally, we observed a substantial transcript level upregulation of six defense-related genes to several folds viz., OsPR2, OsPR5, OsWRKY71, OsPAL1, OsAPX1, and OsPPO1 in comparison to the pathogen control and healthy control. CONCLUSIONS: Overall, our study provides valuable insights into the potential and practical application of nano copper for the mitigation of bacterial panicle blight, offering promising prospects for commercial utilization in disease management.


Assuntos
Burkholderia , Oryza , Oryza/genética , Filogenia , RNA Ribossômico 16S/genética , Burkholderia/genética , Antioxidantes , Cobre , Grão Comestível
11.
Emerg Infect Dis ; 30(5): 1055-1057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666739

RESUMO

We report a clinical isolate of Burkholderia thailandensis 2022DZh obtained from a patient with an infected wound in southwest China. Genomic analysis indicates that this isolate clusters with B. thailandensis BPM, a human isolate from Chongqing, China. We recommend enhancing monitoring and surveillance for B. thailandensis infection in both humans and livestock.


Assuntos
Infecções por Burkholderia , Burkholderia , Filogenia , Infecção dos Ferimentos , Humanos , Masculino , Burkholderia/genética , Burkholderia/isolamento & purificação , Burkholderia/classificação , Infecções por Burkholderia/microbiologia , Infecções por Burkholderia/diagnóstico , China/epidemiologia , Genoma Bacteriano , Infecção dos Ferimentos/microbiologia , Pessoa de Meia-Idade
12.
Mol Plant Microbe Interact ; 37(6): 507-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489400

RESUMO

Burkholderia gladioli pv. alliicola, B. cepacia, and B. orbicola are common bacterial pathogens of onion. Onions produce organosulfur thiosulfinate defensive compounds after cellular decompartmentalization. Using whole-genome sequencing and in silico analysis, we identified putative thiosulfinate tolerance gene (TTG) clusters in multiple onion-associated Burkholderia species similar to those characterized in other Allium-associated bacterial endophytes and pathogens. Sequence analysis revealed the presence of three Burkholderia TTG cluster types, with both Type A and Type B being broadly distributed in B. gladioli, B. cepacia, and B. orbicola in both the chromosome and plasmids. Based on isolate natural variation and generation of isogenic strains, we determined the in vitro and in vivo contribution of TTG clusters in B. gladioli, B. cepacia, and B. orbicola. The Burkholderia TTG clusters contributed to enhanced allicin tolerance and improved growth in filtered onion extracts by all three species. TTG clusters also made clear contributions to B. gladioli foliar necrosis symptoms and bacterial populations. Surprisingly, the TTG cluster did not contribute to bacterial populations in onion bulb scales by these three species. Based on our findings, we hypothesize onion-associated Burkholderia may evade or inhibit the production of thiosulfinates in onion bulb tissues. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Burkholderia , Família Multigênica , Cebolas , Cebolas/microbiologia , Burkholderia/genética , Burkholderia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ácidos Sulfínicos/farmacologia
13.
BMC Res Notes ; 17(1): 70, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475810

RESUMO

OBJECTIVE: In this study, we sought to determine the types and prevalence of antimicrobial resistance determinants (ARDs) in Burkholderia spp. strains using the Antimicrobial Resistance Determinant Microarray (ARDM). RESULTS: Whole genome amplicons from 22 B. mallei (BM) and 37 B. pseudomallei (BP) isolates were tested for > 500 ARDs using ARDM v.3.1. ARDM detected the following Burkholderia spp.-derived genes, aac(6), blaBP/MBL-3, blaABPS, penA-BP, and qacE, in both BM and BP while blaBP/MBL-1, macB, blaOXA-42/43 and penA-BC were observed in BP only. The method of denaturing template for whole genome amplification greatly affected the numbers and types of genes detected by the ARDM. BlaTEM was detected in nearly a third of BM and BP amplicons derived from thermally, but not chemically denatured templates. BlaTEM results were confirmed by PCR, with 81% concordance between methods. Sequences from 414-nt PCR amplicons (13 preparations) were 100% identical to the Klebsiella pneumoniae reference gene. Although blaTEM sequences have been observed in B. glumae, B. cepacia, and other undefined Burkholderia strains, this is the first report of such sequences in BM/BP/B. thailandensis (BT) clade. These results highlight the importance of sample preparation in achieving adequate genome coverage in methods requiring untargeted amplification before analysis.


Assuntos
Anti-Infecciosos , Burkholderia mallei , Burkholderia pseudomallei , Burkholderia , Síndrome do Desconforto Respiratório , Humanos , Burkholderia mallei/genética , Burkholderia/genética
14.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474392

RESUMO

Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here, we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested phages were tested for lytic activity against the same 32 isolates. Temperate phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that Burkholdera cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.


Assuntos
Bacteriófagos , Infecções por Burkholderia , Complexo Burkholderia cepacia , Burkholderia , Humanos , Prófagos/genética , Genoma Viral , Burkholderia/genética , Complexo Burkholderia cepacia/genética
15.
Appl Environ Microbiol ; 90(2): e0225023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299816

RESUMO

Burkholderia cepacia complex bacteria have emerged as opportunistic pathogens in patients with cystic fibrosis and immunocompromised individuals, causing life-threatening infections. Because of the relevance of these microorganisms, genetic manipulation is crucial for explaining the genetic mechanisms leading to pathogenesis. Despite the availability of allelic exchange tools to obtain unmarked gene deletions in Burkholderia, these require a step of merodiploid formation and another of merodiploid resolution through two independent homologous recombination events, making the procedure long-lasting. The CRISPR/Cas9-based system could ease this constraint, as only one step is needed for allelic exchange. Here, we report the modification of a two-plasmid system (pCasPA and pACRISPR) for genome editing in Burkholderia multivorans. Several modifications were implemented, including selection marker replacement, the optimization of araB promoter induction for the expression of Cas9 and λ-Red system encoding genes, and the establishment of plasmid curing procedures based on the sacB gene or growth at a sub-optimal temperature of 18°C-20°C with serial passages. We have shown the efficiency of this CRISPR/Cas9 method in the precise and unmarked deletion of different genes (rpfR, bceF, cepR, and bcsB) from two strains of B. multivorans, as well as its usefulness in the targeted insertion of the gfp gene encoding the green fluorescence protein into a precise genome location. As pCasPA was successfully introduced in other Burkholderia cepacia complex species, this study opens up the possibility of using CRISPR/Cas9-based systems as efficient tools for genome editing in these species, allowing faster and more cost-effective genetic manipulation.IMPORTANCEBurkholderia encompasses different species of bacteria, some of them pathogenic to animals and plants, but others are beneficial by promoting plant growth through symbiosis or as biocontrol agents. Among these species, Burkholderia multivorans, a member of the Burkholderia cepacia complex, is one of the predominant species infecting the lungs of cystic fibrosis patients, often causing respiratory chronic infections that are very difficult to eradicate. Since the B. multivorans species is understudied, we have developed a genetic tool based on the CRISPR/Cas9 system to delete genes efficiently from the genomes of these strains. We could also insert foreign genes that can be precisely placed in a chosen genomic region. This method, faster than other conventional strategies based on allelic exchange, will have a major contribution to understanding the virulence mechanisms in B. multivorans, but it can likely be extended to other Burkholderia species.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Burkholderia , Fibrose Cística , Animais , Humanos , Sistemas CRISPR-Cas , Infecções por Burkholderia/microbiologia , Fibrose Cística/microbiologia , Edição de Genes , Burkholderia/genética , Complexo Burkholderia cepacia/genética , Genômica
16.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364306

RESUMO

AIM: The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS: The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION: The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.


Assuntos
4-Butirolactona/análogos & derivados , Produtos Biológicos , Complexo Burkholderia cepacia , Burkholderia , Lipopeptídeos , Sideróforos/metabolismo , Antifúngicos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Burkholderia/genética , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Produtos Biológicos/metabolismo , Proteínas de Bactérias/genética
17.
J Glob Antimicrob Resist ; 37: 44-47, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408562

RESUMO

OBJECTIVES: Burkholderia dolosa is a clinically important opportunistic pathogen in inpatients. Here we characterised an extensively drug-resistant and hypervirulent B. dolosa isolate from a patient hospitalised for stroke. METHODS: Resistance to 41 antibiotics was tested with the agar disc diffusion, minimum inhibitory concentration, or broth microdilution method. The complete genome was assembled using short-reads and long-reads and the hybrid de novo assembly method. Allelic profiles obtained by multilocus sequence typing were analysed using the PubMLST database. Antibiotic-resistance and virulence genes were predicted in silico using public databases and the 'baargin' workflow. B. dolosa N149 phylogenetic relationships with all available B. dolosa strains and Burkholderia cepacia complex strains were analysed using the pangenome obtained with Roary. RESULTS: B. dolosa N149 displayed extensive resistance to 31 antibiotics and intermediate resistance to 4 antibiotics. The complete genome included three circular chromosomes (6 338 630 bp in total) and one plasmid (167 591 bp). Genotypic analysis revealed various gene clusters (acr, amr, amp, emr, ade, bla and tet) associated with resistance to 35 antibiotic classes. The major intrinsic resistance mechanisms were multidrug efflux pump alterations, inactivation and reduced permeability of targeted antibiotics. Moreover, 91 virulence genes (encoding proteins involved in adherence, formation of capsule, biofilm and colony, motility, phagocytosis inhibition, secretion systems, protease secretion, transmission and quorum sensing) were identified. B. dolosa N149 was assigned to a novel sequence type (ST2237) and formed a mono-phylogenetic clade separated from other B. dolosa strains. CONCLUSIONS: This study provided insights into the antimicrobial resistance and virulence mechanisms of B. dolosa.


Assuntos
Antibacterianos , Infecções por Burkholderia , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Acidente Vascular Cerebral , Humanos , Antibacterianos/farmacologia , Vietnã , Infecções por Burkholderia/microbiologia , Acidente Vascular Cerebral/microbiologia , Burkholderia/genética , Burkholderia/efeitos dos fármacos , Burkholderia/isolamento & purificação , Burkholderia/classificação , Burkholderia/patogenicidade , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , População do Sudeste Asiático
18.
Int J Food Microbiol ; 414: 110615, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38325260

RESUMO

Burkholderia gladiolus (B. gladiolus) is foodborne pathogenic bacteria producing bongkrekic acid (BA), which causes food poisoning and has a mortality rate of up to 40 % or more. However, no drugs have been reported in the literature for the prevention and treatment of this infection. In this study, a phage was identified to control B. gladiolus. The novel phage vB_BglM_WTB (WTB), which lyse B. gladiolus with high efficiency, was isolated from sewage of Huaihe Road Throttle Well Sewage Treatment Plant in Hefei. Transmission electron microscopy showed that WTB had an icosahedral head (69 ± 2 nm) and a long retractable tail (108 ± 2 nm). Its optimal temperature and pH ranges to control B. gladiolus were 25 °C -65 °C and 3-11 respectively. The phage WTB was identified as a linear double-stranded DNA phage of 68, 541 bp with 60.04 % G + C content, with a long latent period of 60 min. Phylogenetic analysis and comparative genetic analysis indicated that phage WTB has low identity (<50 %) with other phages, with the highest similarity to Burkholderia phage Maja (25.7 %), which showed that it does not belong to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV) and was a candidate for a new genus within the Caudoviricetes. We have submitted a new proposal to ICTV to create a new genus, Bglawtbvirus. No transfer RNA (tRNA), virulence associated and antibiotic resistance genes were detected in phage WTB. Experimental results indicated that WTB at 4 °C and 25 °C had excellent inhibition activity against B. gladiolus in the black fungus, with an inhibition efficiency of over 99 %. The amount of B. gladiolus in the black fungus was reduced to a minimum of 89 CFU/mL when treated by WTB at 25 °C for 2 h. The inhibition rate remained at 99.97 % even after 12 h. The findings showed that the phage WTB could be applied as a food-cleaning agent for enhancing food safety and contributed to our understanding of phage biology and diversity.


Assuntos
Bacteriófagos , Burkholderia , Bacteriófagos/genética , Burkholderia/genética , Esgotos , Filogenia , Genoma Viral , DNA Viral/genética , Fungos/genética
19.
Microbiol Spectr ; 12(4): e0339523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380912

RESUMO

Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.


Assuntos
Agaricus , Basidiomycota , Burkholderia gladioli , Burkholderia , Burkholderia gladioli/genética , Filogenia , RNA Ribossômico 16S/genética , Agaricus/genética , Burkholderia/genética , Verduras
20.
ACS Synth Biol ; 13(1): 337-350, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194362

RESUMO

The knotted configuration of lasso peptides confers thermal stability and proteolytic resistance, addressing two shortcomings of peptide-based drugs. However, low isolation yields hinder the discovery and development of lasso peptides. While testing Burkholderia sp. FERM BP-3421 as a bacterial host to produce the lasso peptide capistruin, an overproducer clone was previously identified. In this study, we show that an increase in the plasmid copy number partially contributed to the overproducer phenotype. Further, we modulated the plasmid copy number to recapitulate titers to an average of 160% relative to the overproducer, which is 1000-fold higher than previously reported with E. coli, reaching up to 240 mg/L. To probe the applicability of the developed tools for lasso peptide discovery, we targeted a new lasso peptide biosynthetic gene cluster from endosymbiont Mycetohabitans sp. B13, leading to the isolation of mycetolassin-15 and mycetolassin-18 in combined titers of 11 mg/L. These results validate Burkholderia sp. FERM BP-3421 as a production platform for lasso peptide discovery.


Assuntos
Burkholderia , Burkholderia/genética , Escherichia coli/genética , Variações do Número de Cópias de DNA , Peptídeos/genética , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...