Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.463
Filtrar
1.
Magnes Res ; 37(1): 12-21, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39077820

RESUMO

Magnesium is one of the recommended treatments for calcium stone formers (CSFs) with hyperoxaluria. In this study, we compared the effect of magnesium oxide (MgO) or magnesium citrate (MgCit) with placebo on 24-hour urine (24-U) metabolites and the calcium oxalate supersaturation index (CaOx SS). In a randomized, double-blind, placebo-controlled clinical trial, 90 CSFs with idiopathic hyperoxaluria were recruited from a tertiary stone prevention clinic. Patients were randomly assigned into three groups: 120 mg MgO, 120 mg MgCit or placebo (supplements were taken three times per day, with meals). Finally, 76 patients were included in the final analysis. Analyses of 24-U were performed at baseline and after eight weeks. Study outcomes included changes in 24-U oxalate, magnesium, citrate, and CaOx SS. Dietary factors were controlled by 24-hour food recalls. Repeated measure ANOVA was used to compare the results. After the intervention, both MgO and MgCit supplements decreased 24-U oxalate excretion (-8.13±16.45 in the MgO group and -16.99±18.02 in the MgCit group) and CaOx SS compared to the placebo, with the effects of MgCit reaching statistical significance (p=0.011 and p=0.010, respectively). An increasing trend was observed for 24-U magnesium and citrate excretion without significant differences among groups. Interestingly, MgCit exhibited a significantly greater inhibitory effect on 24-U oxalate in patients with normal urine magnesium levels (p=0.021). Clinically, both MgO and MgCit reduced 24-U oxalate and CaOx SS compared to placebo. However, MgCit demonstrated a greater effect, especially in patients with normal urine magnesium levels.


Assuntos
Suplementos Nutricionais , Hiperoxalúria , Cálculos Renais , Óxido de Magnésio , Humanos , Óxido de Magnésio/uso terapêutico , Óxido de Magnésio/administração & dosagem , Feminino , Masculino , Cálculos Renais/urina , Cálculos Renais/prevenção & controle , Cálculos Renais/tratamento farmacológico , Cálculos Renais/metabolismo , Adulto , Hiperoxalúria/urina , Hiperoxalúria/tratamento farmacológico , Hiperoxalúria/complicações , Método Duplo-Cego , Fatores de Risco , Pessoa de Meia-Idade , Ácido Cítrico/urina , Compostos de Magnésio/uso terapêutico , Compostos de Magnésio/urina , Compostos de Magnésio/farmacologia , Compostos de Magnésio/administração & dosagem , Compostos Organometálicos
2.
World J Urol ; 42(1): 425, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037613

RESUMO

OBJECTIVES: This study was to investigate the correlation between oxidative balance score (OBS) and the prevalence of kidney stones in the general adult population. MATERIALS AND METHODS: We conducted an analysis using data from the 2007-2018 National Health and Nutrition Examination Survey (NHANES) project, including 17,988 participants. The OBS was computed based on previous research, combining 16 dietary factors and 4 lifestyle factors. Multiple logistic regressions and restricted cubic spline (RCS) regressions were utilized to explore the associations between OBS and kidney stone prevalence. RESULTS: Our analysis included 1,622 adults with kidney stones and 16,366 adults without kidney stones. The average age of participants was 46.86 ± 0.27 years, with 50.72% being male. The median OBS was 22.00 (17.00, 27.00). After adjusting for all covariates, each one-unit increase in OBS was associated with a 3% decrease in kidney stone prevalence (odds ratio [OR] = 0.97 [0.96-0.98], P < 0.001). Moreover, compared to the first quartile, the fourth quartile of OBS (OR = 0.65 [0.50-0.84], P = 0.001) exhibited a negative association with kidney stone prevalence after adjusting for multiple variables. Furthermore, we observed a non-linear negative relationship between OBS and kidney stone prevalence, with inflection points at 18.2 (P for nonlinearity = 0.048). Stratified analysis did not identify any variables significantly affecting the results. CONCLUSION: Our findings indicate that a higher OBS is associated with a decreased prevalence of kidney stones in the general adult population.


Assuntos
Cálculos Renais , Humanos , Cálculos Renais/epidemiologia , Cálculos Renais/metabolismo , Cálculos Renais/química , Masculino , Feminino , Pessoa de Meia-Idade , Prevalência , Adulto , Estresse Oxidativo , Inquéritos Nutricionais , Estudos Transversais
3.
Biomed Res ; 45(3): 103-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839353

RESUMO

Kidney stone disease is a serious disease due to the severe pain it causes, high morbidity, and high recurrence rate. Notably, calcium oxalate stones are the most common type of kidney stone. Calcium oxalate appears in two forms in kidney stones: the stable phase, monohydrate (COM), and the metastable phase, dihydrate (COD). Particularly, COM stones with concentric structures are hard and difficult to treat. However, the factor determining the growth of either COM or COD crystals in the urine, which is supersaturated for both phases, remains unclear. This study shows that calcium phosphate ingredients preferentially induce COM crystal nucleation and growth, by observing and analyzing kidney stones containing both COM and COD crystals. The forms of calcium phosphate are not limited to Randall's plaques (1-2 mm size aggregates, which contain calcium phosphate nanoparticles and proteins, and form in the renal papilla). For example, aggregates of strip-shaped calcium phosphate crystals and fields of dispersed calcium phosphate microcrystals (nano to micrometer order) also promote the growth of concentric COM structures. This suggests that patients who excrete urine with a higher quantity of calcium phosphate crystals may be more prone to forming hard and troublesome COM stones.


Assuntos
Oxalato de Cálcio , Fosfatos de Cálcio , Cristalização , Cálculos Renais , Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/química , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/urina , Cálculos Renais/química , Cálculos Renais/metabolismo , Humanos , Animais
4.
BMC Nephrol ; 25(1): 190, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831279

RESUMO

PURPOSE: Some studies have found that the pathological formation of kidney stones is closely related to injury and inflammatory response. Behaviors such as dietary composition, physical activity, obesity and smoking can all affect the body's oxidative stress levels. In order to evaluate the effects of various diets and lifestyles on the body's oxidative and antioxidant systems, an oxidative balance score was developed. To investigate whether the OBS is associated with the development of kidney stones. METHODS: Data were taken from the National Health and Nutrition Examination Survey (NHANES) from 2007-2018, followed by retrospective observational studies. The association between kidney stones and OBS was analyzed using survey-weighted logistic regression by adjusting for demographics, laboratory tests, and medical comorbidity covariates. The oxidative balance score is calculated by screening 16 nutrients and 4 lifestyle factors, including 5 prooxidants and 15 antioxidants, based on prior information about the relationship between oxidation levels in the body and nutrients or lifestyle factors. RESULTS: A total of 26,786 adult participants were included in the study, of which 2,578, or 9.62%, had a history of nephrolithiasis. Weighted logistic regression analysis found an association between OBS and kidney stones. In the fully tuned model, i.e., model 3, the highest quartile array of OBS was associated with the lowest quartile array of OBS (OR = 0.73 (0.57, 0.92)) with the risk of kidney stone (p = 0.01), and was statistically significant and remained relatively stable in each model. At the same time, the trend test in the model is also statistically significant. With the increase of OBS, the OR value of kidney stones generally tends to decrease. CONCLUSIONS: There is an inverse correlation between OBS and kidney stone disease. At the same time, higher OBS suggests that antioxidant exposure is greater than pro-oxidative exposure in diet and lifestyle, and is associated with a lower risk of kidney stones.


Assuntos
Cálculos Renais , Inquéritos Nutricionais , Estresse Oxidativo , Humanos , Cálculos Renais/epidemiologia , Cálculos Renais/metabolismo , Cálculos Renais/etiologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Antioxidantes/metabolismo , Estilo de Vida , Dieta , Idoso
5.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714951

RESUMO

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


Assuntos
Sistemas CRISPR-Cas , Oxalato de Cálcio , Rim , Animais , Humanos , Masculino , Camundongos , Oxalato de Cálcio/metabolismo , Sistemas CRISPR-Cas/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Ferritinas , Ferroptose/genética , Edição de Genes/métodos , Células HEK293 , Rim/metabolismo , Rim/patologia , Cálculos Renais/genética , Cálculos Renais/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Biossíntese de Proteínas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732005

RESUMO

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Assuntos
Oxalato de Cálcio , Hipercalciúria , Cálculos Renais , Camundongos Knockout , Animais , Hipercalciúria/metabolismo , Hipercalciúria/genética , Concentração de Íons de Hidrogênio , Camundongos , Oxalato de Cálcio/metabolismo , Cálculos Renais/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/patologia , Fosfatos de Cálcio/metabolismo , Nefrolitíase/metabolismo , Nefrolitíase/genética , Nefrolitíase/patologia , Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Acetazolamida/farmacologia
7.
Mayo Clin Proc ; 99(7): 1149-1161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762815

RESUMO

Oxalate kidney stones are common and exert a huge burden of morbidity worldwide. However, circulating or excreted concentrations of oxalate are rarely measured. We argue that oxalate and its metabolism are important above and beyond kidney stone formation. There is emerging evidence that increased concentrations of oxalate could be a driver of chronic kidney disease progression. Furthermore, oxalate has been implicated in cardiovascular disease. Thus, the reduction of elevated plasma oxalate concentrations may represent a novel cardioprotective and nephroprotective strategy.


Assuntos
Doenças Cardiovasculares , Cálculos Renais , Oxalatos , Humanos , Cálculos Renais/metabolismo , Cálculos Renais/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Oxalatos/metabolismo , Progressão da Doença , Insuficiência Renal Crônica/metabolismo
8.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791318

RESUMO

Bryophyllum pinnatum (BP) is a medicinal plant used to treat many conditions when taken as a leaf juice, leaves in capsules, as an ethanolic extract, and as herbal tea. These preparations have been chemically analyzed except for decoctions derived from boiled green leaves. In preparation for a clinical trial to validate BP tea as a treatment for kidney stones, we used NMR and MS analyses to characterize the saturation kinetics of the release of metabolites. During boiling of the leaves, (a) the pH decreased to 4.8 within 14 min and then stabilized; (b) regarding organic acids, citric and malic acid were released with maximum release time (tmax) = 35 min; (c) for glycoflavonoids, quercetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (Q-3O-ArRh), myricetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (M-3O-ArRh), kappinatoside, myricitrin, and quercitrin were released with tmax = 5-10 min; and (d) the total phenolic content (TPC) and the total antioxidant capacity (TAC) reached a tmax at 55 min and 61 min, respectively. In summary, 24 g of leaves boiled in 250 mL of water for 61 min ensures a maximal release of key water-soluble metabolites, including organic acids and flavonoids. These metabolites are beneficial for treating kidney stones because they target oxidative stress and inflammation and inhibit stone formation.


Assuntos
Kalanchoe , Cálculos Renais , Espectroscopia de Ressonância Magnética , Extratos Vegetais , Folhas de Planta , Kalanchoe/química , Espectroscopia de Ressonância Magnética/métodos , Cálculos Renais/tratamento farmacológico , Cálculos Renais/metabolismo , Cálculos Renais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Cinética , Espectrometria de Massas/métodos , Humanos , Malatos/química , Malatos/metabolismo
9.
Adv Sci (Weinh) ; 11(21): e2400642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647258

RESUMO

Kidney stones are a pervasive disease with notoriously high recurrence rates that require more effective treatment strategies. Herein, tartronic acid is introduced as an efficient inhibitor of calcium oxalate monohydrate (COM) crystallization, which is the most prevalent constituent of human kidney stones. A combination of in situ experimental techniques and simulations are employed to compare the inhibitory effects of tartronic acid with those of its molecular analogs. Tartronic acid exhibits an affinity for binding to rapidly growing apical surfaces of COM crystals, thus setting it apart from other inhibitors such as citric acid, the current preventative treatment for kidney stones. Bulk crystallization and in situ atomic force microscopy (AFM) measurements confirm the mechanism by which tartronic acid interacts with COM crystal surfaces and inhibits growth. These findings are consistent with in vivo studies that reveal the efficacy of tartronic acid is similar to that of citric acid in mouse models of hyperoxaluria regarding their inhibitory effect on stone formation and alleviating stone-related physical harm. In summary, these findings highlight the potential of tartronic acid as a promising alternative to citric acid for the management of calcium oxalate nephropathies, offering a new option for clinical intervention in cases of kidney stones.


Assuntos
Oxalato de Cálcio , Cristalização , Modelos Animais de Doenças , Cálculos Renais , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Camundongos , Animais , Cálculos Renais/tratamento farmacológico , Cálculos Renais/metabolismo , Microscopia de Força Atômica , Humanos , Camundongos Endogâmicos C57BL
10.
Mol Omics ; 20(5): 322-332, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623715

RESUMO

Kidney stone disease (KSD, also named renal calculi, nephrolithiasis, or urolithiasis) is a common urological disease entailing the formation of minerals and salts that form inside the urinary tract, frequently caused by diabetes, high blood pressure, hypertension, and monogenetic components in most patients. 10% of adults worldwide are affected by KSD, which continues to be highly prevalent and with increasing incidence. For the identification of novel therapeutic targets in KSD, we adopted high-throughput sequencing and mass spectrometry (MS) techniques in this study and carried out an integrative analysis of exosome proteomic data and DNA methylation data from blood samples of normal and KSD individuals. Our research delineated the profiling of exosomal proteins and DNA methylation in both healthy individuals and those afflicted with KSD, finding that the overexpressed proteins and the demethylated genes in KSD samples are associated with immune responses. The consistency of the results in proteomics and epigenetics supports the feasibility of the comprehensive strategy. Our insights into the molecular landscape of KSD pave the way for a deeper understanding of its pathogenic mechanism, providing an opportunity for more precise diagnosis and targeted treatment strategies for KSD.


Assuntos
Metilação de DNA , Cálculos Renais , Proteômica , Humanos , Cálculos Renais/genética , Cálculos Renais/metabolismo , Proteômica/métodos , Metilação de DNA/genética , Exossomos/metabolismo , Exossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Feminino , Adulto , Epigênese Genética , Pessoa de Meia-Idade , Multiômica
11.
J Cell Mol Med ; 28(7): e18235, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509735

RESUMO

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.


Assuntos
Calcinose , Cálculos Renais , Humanos , Medula Renal/metabolismo , Cálculos Renais/complicações , Cálculos Renais/metabolismo , Calcinose/metabolismo , Endoscopia , Inflamação/metabolismo
12.
Aging (Albany NY) ; 16(7): 5987-6007, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38536018

RESUMO

Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.


Assuntos
Biomarcadores , Ferroptose , Nefrolitíase , Ferroptose/efeitos dos fármacos , Animais , Nefrolitíase/metabolismo , Nefrolitíase/genética , Nefrolitíase/patologia , Ratos , Biomarcadores/metabolismo , Humanos , Masculino , Oxalato de Cálcio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cálculos Renais/metabolismo , Cálculos Renais/genética , Cálculos Renais/patologia , Cicloexilaminas/farmacologia , Fenilenodiaminas/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Linhagem Celular
13.
Biomed Pharmacother ; 173: 116393, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461684

RESUMO

Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Pirenos , Humanos , Oxalato de Cálcio/metabolismo , Cristalização , Cálculos Renais/metabolismo , Proteínas , Matriz Extracelular/metabolismo
14.
Urolithiasis ; 52(1): 51, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554162

RESUMO

Macrophages play a role in nephrolithiasis, offering the possibility of developing macrophage-mediated preventive therapies. To establish a system for screening drugs that could prevent the formation of kidney stones, we aimed to develop a model using human induced pluripotent stem cell (iPSC)-derived macrophages to study phagocytosis of calcium oxalate monohydrate (COM) crystals. Human iPSCs (201B7) were cultured. CD14+ monocytes were recovered using a stepwise process that involved the use of growth factors and cytokines. These cells were then allowed to differentiate into M1 and M2 macrophages. The macrophages were co-cultured with COM crystals and used in the phagocytosis experiments. Live cell imaging and polarized light observation via super-resolution microscopy were used to visualize phagocytosis. Localization of phagocytosed COM crystals was observed using transmission electron microscopy. Intracellular fluorescence intensity was measured using imaging cytometry to quantify phagocytosis. Human iPSCs successfully differentiated into M1 and M2 macrophages. M1 macrophages adhered to the culture plate and moved COM crystals from the periphery to cell center over time, whereas M2 macrophages did not adhere to the culture plate and actively phagocytosed the surrounding COM crystals. Fluorescence assessment over a 24-h period showed that M2 macrophages exhibited higher intracellular fluorescence intensity (5.65-times higher than that of M1 macrophages at 4.5 h) and maintained this advantage for 18 h. This study revealed that human iPSC-derived macrophages have the ability to phagocytose COM crystals, presenting a new approach for studying urinary stone formation and highlighting the potential of iPSC-derived macrophages as a tool to screen nephrolithiasis-related drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cálculos Renais , Humanos , Oxalato de Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Fagocitose , Cálculos Renais/metabolismo
15.
J Agric Food Chem ; 72(12): 6372-6388, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471112

RESUMO

Oxidative damage to the kidneys is a primary factor in the occurrence of kidney stones. This study explores the inhibitory effect of Porphyra yezoensis polysaccharides (PYP) on oxalate-induced renal injury by detecting levels of oxidative damage, expression of adhesion molecules, and damage to intracellular organelles and revealed the molecular mechanism by molecular biology methods. Additionally, we validated the role of PYP in vivo using a crystallization model of hyperoxalate-induced rats. PYP effectively scavenged the overproduction of reactive oxygen species (ROS) in HK-2 cells, inhibited the adhesion of calcium oxalate (CaOx) crystals on the cell surface, unblocked the cell cycle, restored the depolarization of the mitochondrial membrane potential, and inhibited cell death. PYP upregulated the expression of antioxidant proteins, including Nrf2, HO-1, SOD, and CAT, while decreasing the expression of Keap-1, thereby activating the Keap1/Nrf2 signaling pathway. PYP inhibited CaOx deposition in renal tubules in the rat crystallization model, significantly reduced high oxalate-induced renal injury, decreased the levels of the cell surface adhesion proteins, improved renal function in rats, and ultimately inhibited the formation of kidney stones. Therefore, PYP, which has crystallization inhibition and antioxidant properties, may be a therapeutic option for the treatment of kidney stones.


Assuntos
Oxalato de Cálcio , Algas Comestíveis , Cálculos Renais , Porphyra , Ratos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rim/metabolismo , Cálculos Renais/metabolismo , Estresse Oxidativo , Oxalatos/metabolismo , Oxalatos/farmacologia , Polissacarídeos/metabolismo
16.
Lab Invest ; 104(5): 102047, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452902

RESUMO

Sex differences in kidney stone formation are well known. Females generally have slightly acidic blood and higher urine pH when compared with males, which makes them more vulnerable to calcium stone formation, yet the mechanism is still unclear. We aimed to examine the role of sex in stone formation during hypercalciuria and urine alkalinization through acetazolamide and calcium gluconate supplementation, respectively, for 4 weeks in wild-type (WT) and moderately hypercalciuric [TRPC3 knockout [KO](-/-)] male and female mice. Our goal was to develop calcium phosphate (CaP) and CaP+ calcium oxalate mixed stones in our animal model to understand the underlying sex-based mechanism of calcium nephrolithiasis. Our results from the analyses of mice urine, serum, and kidney tissues show that female mice (WT and KO) produce more urinary CaP crystals, higher [Ca2+], and pH in urine compared to their male counterparts. We identified a sex-based relationship of stone-forming phenotypes (types of stones) in our mice model following urine alkalization/calcium supplementation, and our findings suggest that female mice are more susceptible to CaP stones under those conditions. Calcification and fibrotic and inflammatory markers were elevated in treated female mice compared with their male counterparts, and more so in TRPC3 KO mice compared with their WT counterparts. Together these findings contribute to a mechanistic understanding of sex-influenced CaP and mixed stone formation that can be used as a basis for determining the factors in sex-related clinical studies.


Assuntos
Hipercalciúria , Cálculos Renais , Camundongos Knockout , Fenótipo , Animais , Feminino , Masculino , Hipercalciúria/metabolismo , Hipercalciúria/urina , Camundongos , Cálculos Renais/metabolismo , Cálculos Renais/urina , Cálculos Renais/etiologia , Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/urina , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Rim/metabolismo , Fatores Sexuais , Caracteres Sexuais , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/urina , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética
17.
Adv Sci (Weinh) ; 11(17): e2309234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380498

RESUMO

The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels. This module, using specially designed sgRNAs, selectively boosts protein translation in targeted tissue cells without altering transcription, leading to notable protein expression upregulation. This system is applied to a kidney stone disease model, focusing on ferroptosis-linked GPX4 gene regulation. By targeting GPX4 with sgRNAs, its protein expression is upregulated in human renal cells and mouse kidney tissue, countering ferroptosis and resisting calcium oxalate-induced cell damage, hence mitigating stone formation. This study evidences the CRISPR-dCas13d-eIF4G system's efficacy in eukaryotic cells, presenting a novel protein translation research approach and potential kidney stone disease treatment advancements.


Assuntos
Sistemas CRISPR-Cas , Oxalato de Cálcio , Modelos Animais de Doenças , Fator de Iniciação Eucariótico 4G , Ferroptose , Ferroptose/genética , Camundongos , Animais , Oxalato de Cálcio/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Cálculos Renais/genética , Cálculos Renais/metabolismo , Biossíntese de Proteínas/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
18.
Biomed Pharmacother ; 170: 115988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061137

RESUMO

Epigallocatechin-3-gallate (EGCG), a predominant phytochemical in tea plant, has been reported to prevent kidney stone formation but with vague mechanism. We investigated modulatory effects of EGCG (at 0.1-100 µM) on calcium oxalate monohydrate (COM) crystals at various stages of kidney stone development. EGCG significantly increased crystal size (at 1-100 µM), but decreased crystal number (at 10-100 µM), resulting in unchanged crystal mass and volume. Interestingly, EGCG at 10-100 µM caused morphological change of the crystals from typical monoclinic prismatic to coffee-bean-like shape, which represented atypical/aberrant form of COM as confirmed by attenuated total reflection - Fourier transform infrared (ATR-FTIR) spectroscopy. EGCG at all concentrations significantly inhibited crystal growth in a concentration-dependent manner. However, only 100 µM and 10-100 µM of EGCG significantly inhibited crystal aggregation and crystal-cell adhesion, respectively. Immunofluorescence staining (without permeabilization) revealed that surface expression of heat shock protein 90 (HSP90) (a COM crystal receptor) on MDCK renal cells was significantly decreased by 10 µM EGCG, whereas other surface COM receptors (annexin A1, annexin A2, enolase 1 and ezrin) remained unchanged. Immunoblotting showed that 10 µM EGCG did not alter total level of HSP90 in MDCK cells, implicating that its decreased surface expression was due to translocation. Our data provide a piece of evidence explaining mechanism underlying the anti-lithiatic property of EGCG by inhibition of COM crystal growth, aggregation and crystal-cell adhesion via reduced surface expression of HSP90, which is an important COM crystal receptor.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Adesão Celular , Oxalato de Cálcio/metabolismo , Cristalização , Cálculos Renais/metabolismo
19.
Tissue Barriers ; 12(1): 2210051, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37162265

RESUMO

Defects of tight junction (TJ) are involved in many diseases related to epithelial cell functions, including kidney stone disease (KSD), which is a common disease affecting humans for over a thousand years. This review provides brief overviews of KSD and TJ, and summarizes the knowledge on crystal-induced defects of TJ in renal tubular epithelial cells (RTECs) in KSD. Calcium oxalate (CaOx) crystals, particularly COM, disrupt TJ via p38 MAPK and ROS/Akt/p38 MAPK signaling pathways, filamentous actin (F-actin) reorganization and α-tubulin relocalization. Stabilizing p38 MAPK signaling, reactive oxygen species (ROS) production, F-actin and α-tubulin by using SB239063, N-acetyl-L-cysteine (NAC), phalloidin and docetaxel, respectively, successfully prevent the COM-induced TJ disruption and malfunction. Additionally, genetic disorders of renal TJ, including mutations and single nucleotide polymorphisms (SNPs) of CLDN2, CLDN10b, CLDN14, CLDN16 and CLDN19, also affect KSD. Finally, the role of TJ as a potential target for KSD therapeutics and prevention is also discussed.


Assuntos
Cálculos Renais , Junções Íntimas , Humanos , Junções Íntimas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/química , Cálculos Renais/metabolismo , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Aging (Albany NY) ; 15(24): 14749-14763, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38154105

RESUMO

BACKGROUND: Renal calculi are a very prevalent disease with a high incidence. Calcium oxalate (CaOx) is a primary constituent of kidney stones. Our paper probes the regulatory function and mechanism of miR-184 in CaOx-mediated renal cell damage. METHODS: CaOx was used to treat HK2 cells and human podocytes (HPCs) to simulate kidney cell damage. The qRT-PCR technique checked the profiles of miR-184 and IGF1R. The examination of cell proliferation was conducted employing CCK8. TUNEL staining was used to monitor cell apoptosis. Western blot analysis was used to determine the protein profiles of apoptosis-concerned related proteins (including Mcl1, Bcl-XL, and Caspase-3), the NF-κB, Nrf2/HO-1, and Rap1 signaling pathways. ELISA confirmed the levels of the inflammatory factors IL-6, TNF-α, MCP1, and ICAM1. The targeting relationship between miR-184 and IGF1R was validated by dual luciferase assay and RNA immunoprecipitation assay. RESULTS: Glyoxylate-induced rat kidney stones model and HK2 and HPC cells treated with CaOx demonstrated an increase in the miR-184 profile. Inhibiting miR-184 relieved CaOx-mediated renal cell inflammation, apoptosis and oxidative stress and activated the Rap1 pathway. IGF1R was targeted by miR-184. IGF1R activation by IGF1 attenuated the effects of miR-184 on renal cell damage, and Hippo pathway suppression reversed the inhibitory effect of miR-184 knockdown on renal cell impairment. CONCLUSIONS: miR-184 downregulation activates the Rap1 signaling pathway to ameliorate renal cell damage mediated by CaOx.


Assuntos
Cálculos Renais , MicroRNAs , Animais , Humanos , Ratos , Oxalato de Cálcio/metabolismo , Rim/metabolismo , Cálculos Renais/genética , Cálculos Renais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...