Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 832
Filtrar
1.
Commun Biol ; 7(1): 1338, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414953

RESUMO

Bacteria at different growth stages usually coordinate capsular polysaccharide (CPS) formation and may affect their susceptibility to phage. In this study, we evaluated the infection efficacy of phage vB_VspM_VS2 in V. splendidus AJ01 at different growth stages and explored the role of growth stage-related CPS translocon Wza in the susceptibility of V. splendidus to phage vB_VspM_VS2. The results showed that V. splendidus locked in the stationary growth stage (SGS) or early exponential stage (EES) infected with phage (EES-P) has a low susceptibility to phage vB_VspM_VS and exhibit a pronounced reduction in phage adsorption rate as compared to the EES bacteria. The expression of wza of CPS transport gene was significantly increased in EES bacteria compared to that bacteria locked in the SGS or EES-P. Bacteria with deleted wza (Δwza mutant) escaped phage adsorption due to absence of Wza mediated down-regulation of CPS expression, otherwise. Our results reveal that the Wza of V. splendidus can promotes phage to infect these bacteria via increasing the phage absorption, which provides important implications for using phages therapeutically target pathogenic bacteria in dynamics communities.


Assuntos
Bacteriófagos , Vibrio , Bacteriófagos/genética , Bacteriófagos/fisiologia , Vibrio/virologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Polissacarídeos Bacterianos/metabolismo , Cápsulas Bacterianas/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1454373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364146

RESUMO

Hypervirulent K. pneumoniae (hvKp) have emerged as clinically important pathogens, posing a serious threat to human health. RfaH, a transcriptional elongation factor, has been regarded as implicated in facilitating the transcription of long virulence operons in certain bacterial species. In K. pneumoniae, RfaH plays a vital role in promoting CPS synthesis and hypermucoviscosity, as well as mediating bacterial fitness during lung infection. In this study, we aim to conduct a systematic investigation of the roles of rfaH in the survival, dissemination, and colonization of hvKp through in vitro and in vivo assays. We found that bacterial cells and colonies displayed capsule -deficient phenotypes subsequent to the deletion of rfaH in K. pneumoniae NTUH-K2044. We confirmed that rfaH is required for the synthesis of capsule and lipopolysaccharide (LPS) by positively regulating the expression of CPS and LPS gene clusters. We found that the ΔrfaH mutant led to a significantly decreased mortality of K. pneumoniae in a mouse intraperitoneal infection model. We further demonstrated that the absence of rfaH was associated with slower bacterial growth under conditions of low nutrition or iron limitation. ΔrfaH displayed reduced survival rates in the presence of human serum. Besides, the engulfment of the ΔrfaH mutant was significantly higher than that of NTUH-K2044 by macrophages in vivo, indicating an indispensable role of RfaH in the phagocytosis resistance of hvKp in mice. Both mouse intranasal and intraperitoneal infection models revealed a higher bacterial clearance rate of ΔrfaH in lungs, livers, and spleens of mice compared to its wild type, suggesting an important role of RfaH in the bacterial survival, dissemination, and colonization of hvKp in vivo. Histopathological results supported that RfaH contributes to the pathogenicity of hvKp in mice. In conclusion, our study demonstrates crucial roles of RfaH in the survival, colonization and full virulence of hvKp, which provides several implications for the development of RfaH as an antibacterial target.


Assuntos
Modelos Animais de Doenças , Infecções por Klebsiella , Klebsiella pneumoniae , Fatores de Virulência , Animais , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/genética , Virulência , Infecções por Klebsiella/microbiologia , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Fagocitose , Regulação Bacteriana da Expressão Gênica , Pulmão/microbiologia , Pulmão/patologia , Feminino , Deleção de Genes , Macrófagos/microbiologia
3.
Sci Adv ; 10(36): eadp5057, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39231230

RESUMO

Despite extensive knowledge on phage resistance at bacterium level, the resistance of bacterial communities is still not well-understood. Given its ubiquity, it is essential to understand resistance at the community level. We performed quantitative investigations on the dynamics of phage infection in Klebsiella pneumoniae biofilms. We found that the biofilms quickly developed resistance and resumed growth. Instead of mutations, the resistance was caused by unassembled phage tail fibers released by the phage-lysed bacteria. The tail fibers degraded the bacterial capsule essential for infection and induced spreading of capsule loss in the biofilm, and tuning tail fiber and capsule levels altered the resistance. Latent infections sustained in the biofilm despite resistance, allowing stable phage-bacteria coexistence. Last, we showed that the resistance exposed vulnerabilities in the biofilm. Our findings indicate that phage lysate plays important roles in shaping phage-biofilm interactions and open more dimensions for the rational design of strategies to counter bacteria with phage.


Assuntos
Bacteriófagos , Biofilmes , Klebsiella pneumoniae , Biofilmes/crescimento & desenvolvimento , Bacteriófagos/fisiologia , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/fisiologia , Cápsulas Bacterianas/metabolismo , Mutação
4.
PLoS Pathog ; 20(9): e1012534, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39259722

RESUMO

Legionella longbeachae and Legionella pneumophila are the most common causative agents of Legionnaires' disease. While the clinical manifestations caused by both species are similar, species-specific differences exist in environmental niches, disease epidemiology, and genomic content. One such difference is the presence of a genomic locus predicted to encode a capsule. Here, we show that L. longbeachae indeed expresses a capsule in post-exponential growth phase as evidenced by electron microscopy analyses, and that capsule expression is abrogated when deleting a capsule transporter gene. Capsule purification and its analysis via HLPC revealed the presence of a highly anionic polysaccharide that is absent in the capsule mutant. The capsule is important for replication and virulence in vivo in a mouse model of infection and in the natural host Acanthamoeba castellanii. It has anti-phagocytic function when encountering innate immune cells such as human macrophages and it is involved in the low cytokine responses in mice and in human monocyte derived macrophages, thus dampening the innate immune response. Thus, the here characterized L. longbeachae capsule is a novel virulence factor, unique among the known Legionella species, which may aid L. longbeachae to survive in its specific niches and which partly confers L. longbeachae its unique infection characteristics.


Assuntos
Cápsulas Bacterianas , Evasão da Resposta Imune , Legionella longbeachae , Animais , Camundongos , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Legionella longbeachae/imunologia , Humanos , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Macrófagos/imunologia , Fatores de Virulência/metabolismo , Acanthamoeba castellanii/microbiologia , Virulência
5.
J Virol ; 98(10): e0111324, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39213164

RESUMO

Bacteria exposed to bactericidal treatment, such as antibiotics or bacteriophages (phages), often develop resistance. While phage therapy is proposed as a solution to the antibiotic resistance crisis, the bacterial resistance emerging during phage therapy remains poorly characterized. In this study, we examined a large population of phage-resistant extra-intestinal pathogenic Escherichia coli 536 clones that emerged from both in vitro (non-limited liquid medium) and in vivo (murine pneumonia) conditions. Genome sequencing uncovered a convergent mutational pattern in phage resistance mechanisms under both conditions, particularly targeting two cell-wall components, the K15 capsule and the lipopolysaccharide (LPS). This suggests that their identification in vivo could be predicted from in vitro assays. Phage-resistant clones exhibited a wide range of fitness according to in vitro tests, growth rate, and resistance to amoeba grazing, which could not distinguish between the K15 capsule and LPS mutants. In contrast, K15 capsule mutants retained virulence comparable to the wild-type strain, whereas LPS mutants showed significant attenuation in the murine pneumonia model. Additionally, we observed that resistance to the therapeutic phage through a nonspecific mechanism, such as capsule overproduction, did not systematically lead to co-resistance to other phages that were initially capable or incapable of infecting the wild-type strain. Our findings highlight the importance of incorporating a diverse range of phages in the design of therapeutic cocktails to target potential future phage-resistant clones effectively. IMPORTANCE: This study isolated more than 50 phage-resistant mutants from both in vitro and in vivo conditions, exposing an extra-intestinal pathogenic Escherichia coli strain to a single virulent phage. The characterization of these clones revealed several key findings: (1) mutations occurring during phage treatment affect the same pathways as those identified in vitro; (2) the resistance mechanisms are associated with the modification of two cell-wall components, with one involving receptor deletion (phage-specific mechanism) and the other, less frequent, involving receptor masking (phage-nonspecific mechanism); (3) an in vivo virulence assay demonstrated that the absence of the receptor abolishes virulence while masking the receptor preserves it; and (4) clones with a resistance mechanism nonspecific to a particular phage can remain susceptible to other phages. This supports the idea of incorporating diverse phages into therapeutic cocktails designed to collectively target both wild-type and phage-resistant strains, including those with resistance mechanisms nonspecific to a phage.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Lipopolissacarídeos , Mutação , Terapia por Fagos , Animais , Camundongos , Escherichia coli/virologia , Escherichia coli/genética , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/microbiologia , Lipopolissacarídeos/metabolismo , Aptidão Genética , Virulência , Bacteriófagos/genética , Bacteriófagos/fisiologia , Colífagos/genética , Colífagos/fisiologia , Feminino , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo
6.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39177453

RESUMO

Escherichia coli (E. coli) is a major cause of urinary tract infections, bacteraemia, and sepsis. CFT073 is a prototypic, urosepsis isolate of sequence type (ST) 73. This laboratory, among others, has shown that strain CFT073 is resistant to serum, with capsule and other extracellular polysaccharides imparting resistance. The interplay of such polysaccharides remains under-explored. This study has shown that CFT073 mutants deficient in lipopolysaccharide (LPS) O-antigen and capsule display exquisite serum sensitivity. Additionally, O-antigen and LPS outer core mutants displayed significantly decreased surface K2 capsule, coupled with increased unbound K2 capsule being detected in the supernatant. The R1 core and O6 antigen are involved in the tethering of K2 capsule to the CFT073 cell surface, highlighting the importance of the R1 core in serum resistance. The dependence of capsule on LPS was shown to be post-transcriptional and related to changes in cell surface hydrophobicity. Furthermore, immunofluorescence microscopy suggested that the surface pattern of capsule is altered in such LPS core mutants, which display a punctate capsule pattern. Finally, targeting LPS biosynthesis using sub-inhibitory concentrations of a WaaG inhibitor resulted in increased serum sensitivity and decreased capsule in CFT073. Interestingly, the dependency of capsule on LPS has been observed previously in other Enterobacteria, indicating that the synergy between these polysaccharides is not just strain, serotype or species-specific but may be conserved across several pathogenic Gram-negative species. Therefore, using WaaG inhibitor derivatives to target LPS is a promising therapeutic strategy to reduce morbidity and mortality by reducing or eliminating surface capsule.


Assuntos
Cápsulas Bacterianas , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Humanos , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Escherichia coli Extraintestinal Patogênica/metabolismo , Antígenos O/genética , Antígenos O/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação
7.
Microbiol Spectr ; 12(10): e0025424, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39194291

RESUMO

Klebsiella pneumoniae is one of the most threatening multi-drug-resistant pathogens today, with phage therapy being a promising alternative for personalized treatments. However, the intrinsic capsule diversity in Klebsiella spp. poses a substantial barrier to the phage host range, complicating the development of broad-spectrum phage-based treatments. Here, we have isolated and genomically characterized phages capable of infecting each of the acquired 77 reference serotypes of Klebsiella spp., including capsular types widespread among high-risk K. pneumoniae clones causing nosocomial infections. We demonstrated the possibility of isolating phages for all capsular types in the collection, revealing high capsular specificity among taxonomically related phages, in contrast to a few phages that exhibited broad-spectrum infection capabilities. To decipher the determinants of the specificity of these phages, we focused on their receptor-binding proteins, with particular attention to depolymerases. We also explored the possibility of designing a broad-spectrum phage cocktail based on phages isolated in reference capsular-type strains and determining the ability to lyse relevant clinical isolates. A combination of 12 phages capable of infecting 55% of the reference Klebsiella spp. serotypes was tested on a panel of carbapenem-resistant K. pneumoniae clinical isolates. Thirty-one percent of isolates were susceptible to the phage cocktail. However, our results suggest that in a highly variable encapsulated bacterial host, phage hunting must be directed to the specific Klebsiella isolates. This work is a step forward in the understanding of the complexity of phage-host interactions and highlights the importance of implementing precise and phage-specific strategies to treat K. pneumoniae infections worldwide.IMPORTANCEThe emergence of resistant bacteria is a serious global health problem. In the absence of effective treatments, phages are a personalized and effective therapeutic alternative. However, little is still known about phage-host interactions, which are key to implementing effective strategies. Here, we focus on the study of Klebsiella pneumoniae, a highly pathogenic encapsulated bacterium. The complexity and variability of the capsule, where in most cases phage receptors are found, make it difficult for phage-based treatments. Here, we isolated a large collection of Klebsiella phages against all the reference strains and in a cohort of clinical isolates. Our results suggest that clinical isolates represent a challenge, especially high-risk clones. Thus, we propose targeted phage hunting as an effective strategy to implement phage-derived therapies. Our results are a step forward for new phage-based strategies to control K. pneumoniae infections, highlighting the importance of understanding phage-host interactions to design personalized treatments against Klebsiella spp.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Klebsiella pneumoniae , Terapia por Fagos , Klebsiella pneumoniae/virologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/terapia , Bacteriófagos/fisiologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/classificação , Humanos , Terapia por Fagos/métodos , Especificidade de Hospedeiro , Controle de Infecções/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Sorogrupo , Cápsulas Bacterianas/metabolismo , Infecção Hospitalar/microbiologia
8.
Microb Pathog ; 195: 106853, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147214

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is a gram-negative conditionally pathogenic bacterium that causes disease primarily in immunocompromised individuals. Recently, highly virulent K. pneumoniae strains have caused severe disease in healthy individuals, posing significant challenges to global infection control. Capsular polysaccharide (CPS), a major virulence determinant of K. pneumoniae, protects the bacteria from being killed by the host immune system, suggesting an urgent need for the development of drugs to prevent or treat K. pneumoniae infections. In this study, BY3 compounded traditional Chinese medicine residue (TCMR) was carried out using Lactobacillus rhamnosus as a fermentation strain, and BY3 compounded TCMR fermentation broth (BY3 fermentation broth) was obtained. The transcription of K. pneumoniae CPS-related biosynthesis genes after treatment with BY3 fermentation broth was detected using quantitative real-time polymerase chain reaction. The effects of BY3 fermentation broth on K. pneumoniae serum killing, macrophage phagocytosis, complement deposition and human ß-defensin transcription were investigated. The therapeutic effect of BY3 fermentation broth on K. pneumoniae-infected mice was also observed, and the major active components of BY3 fermentation broth were analysed via LC‒MS analysis, network pharmacology, and molecular docking. The results showed that BY3 fermentation broth inhibited K. pneumoniae CPS production and downregulated transcription of CPS-related biosynthesis genes, which weakened bacterial resistance to serum killing and phagocytosis, while promoting bacterial surface complement C3 deposition and human ß-defensin expression. BY3 fermentation broth demonstrated safety and therapeutic effects in vivo and in vitro, restoring body weight and visceral indices, significantly reducing the organ bacterial load and serum cytokine levels, and alleviating pathological organ damage in mice. In addition, three natural compounds-oleanolic acid, quercetin, and palmitoleic acid-were identified as the major active components in the BY3 fermentation broth. Therefore, BY3 fermentation broth may be a promising strategy for the prevention or treatment of K. pneumoniae infections.


Assuntos
Cápsulas Bacterianas , Fermentação , Infecções por Klebsiella , Klebsiella pneumoniae , Polissacarídeos Bacterianos , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Animais , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Camundongos , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Humanos , Polissacarídeos Bacterianos/imunologia , Medicina Tradicional Chinesa , Evasão da Resposta Imune , Modelos Animais de Doenças , Fagocitose , Lacticaseibacillus rhamnosus/imunologia , Suínos , Simulação de Acoplamento Molecular , Macrófagos/imunologia , Macrófagos/microbiologia
9.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39090973

RESUMO

AIMS: Hypervirulent Klebsiella pneumoniae (hvKp) causes invasive community-acquired infections in healthy individuals, and hypermucoviscosity (HMV) is the main phenotype associated with hvKp. This study investigates the impact of microaerobic environment availability on the mucoviscosity of K. pneumoniae. METHODS AND RESULTS: By culturing 25 clinical strains under microaerobic and aerobic environments, we observed a notable reduction in mucoviscosity in microaerobic environments. RNA sequencing and qRT-PCR revealed downregulated expressions of capsule synthesis genes (galf, orf2, wzi, wza, wzb, wzc, wcaj, manC, manB, and ugd) and regulatory genes (rmpA, rmpD, and rmpC) under microaerobic conditions. Transmission electron microscopy and Indian ink staining analysis were performed, revealing that the capsular thickness of K. pneumoniae decreased by half in microaerobic conditions compared to aerobic conditions. Deletion of rmpD and rmpC caused the loss of the HMV phenotype in both aerobic and microaerobic conditions. However, compared to wild-type strain in microaerobic condition, only rmpD overexpression strain, and not rmpC overexpression strain, displayed a significant increase in capsule thickness in microaerobic conditions. CONCLUSIONS: Microaerobic conditions can suppress the mucoviscosity of K. pneumoniae, but this suppression can be overcome by altering the expression of rmpD, indicating a specific function for rmpD in the oxygen environmental adaptation of K. pneumoniae.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aerobiose , Humanos , Regulação Bacteriana da Expressão Gênica , Fenótipo , Infecções por Klebsiella/microbiologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Virulência/genética
10.
Front Immunol ; 15: 1436039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148735

RESUMO

Klebsiella pneumoniae is an opportunistic bacterium that frequently colonizes the nasopharynx and gastrointestinal tract and can also cause severe infections when invading other tissues, particularly in immunocompromised individuals. Moreover, K. pneumoniae variants exhibiting a hypermucoviscous (HMV) phenotype are usually associated with hypervirulent strains that can produce invasive infections even in immunocompetent individuals. Major carbohydrate structures displayed on the K. pneumoniae surface are the polysaccharide capsule and the lipopolysaccharide, which presents an O-polysaccharide chain in its outermost part. Various capsular and O-chain structures have been described. Of note, production of a thick capsule is frequently observed in HMV variants. Here we examined the surface sugar epitopes of a collection of HMV and non-HMV K. pneumoniae clinical isolates and their recognition by several Siglecs and galectins, two lectin families of the innate immune system, using bacteria microarrays as main tool. No significant differences among isolates in sialic acid content or recognition by Siglecs were observed. In contrast, analysis of the binding of model lectins with diverse carbohydrate-binding specificities revealed striking differences in the recognition by galactose- and mannose-specific lectins, which correlated with the binding or lack of binding of galectins and pointed to the O-chain as the plausible ligand. Fluorescence microscopy and microarray analyses of galectin-9 binding to entire cells and outer membranes of two representative HMV isolates supported the bacteria microarray results. In addition, Western blot analysis of the binding of galectin-9 to outer membranes unveiled protein bands recognized by this galectin, and fingerprint analysis of these bands identified several proteins containing potential O-glycosylation sites, thus broadening the spectrum of possible galectin ligands on the K. pneumoniae surface. Moreover, Siglecs and galectins apparently target different structures on K. pneumoniae surfaces, thereby behaving as non-redundant complementary tools of the innate immune system.


Assuntos
Galectinas , Imunidade Inata , Infecções por Klebsiella , Klebsiella pneumoniae , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/metabolismo , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Galectinas/metabolismo , Galectinas/imunologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Lectinas/metabolismo , Lectinas/imunologia , Ligação Proteica
11.
Nat Commun ; 15(1): 6946, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138169

RESUMO

Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging bacterial pathogen causing invasive infection in immune-competent humans. The hypervirulence is strongly linked to the overproduction of hypermucoviscous capsule, but the underlying regulatory mechanisms of hypermucoviscosity (HMV) have been elusive, especially at the post-transcriptional level mediated by small noncoding RNAs (sRNAs). Using a recently developed RNA interactome profiling approach iRIL-seq, we interrogate the Hfq-associated sRNA regulatory network and establish an intracellular RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNAs that repress or promote HMV. One of the strongest HMV repressors is ArcZ, which is activated by the catabolite regulator CRP and targets many HMV-related genes including mlaA and fbp. We discover that MlaA and its function in phospholipid transport is crucial for capsule retention and HMV, inactivation of which abolishes Klebsiella virulence in mice. ArcZ overexpression drastically reduces bacterial burden in mice and reduces HMV in multiple hypervirulent and carbapenem-resistant clinical isolates, indicating ArcZ is a potent RNA inhibitor of bacterial pneumonia with therapeutic potential. Our work unravels a novel CRP-ArcZ-MlaA regulatory circuit of HMV and provides mechanistic insights into the posttranscriptional virulence control in a superbug of global concern.


Assuntos
Cápsulas Bacterianas , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Infecções por Klebsiella , Klebsiella pneumoniae , RNA Bacteriano , Pequeno RNA não Traduzido , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Animais , Virulência/genética , Camundongos , Infecções por Klebsiella/microbiologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Humanos , Feminino , Fator Proteico 1 do Hospedeiro/metabolismo , Fator Proteico 1 do Hospedeiro/genética
12.
Appl Environ Microbiol ; 90(8): e0221023, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39072624

RESUMO

Quorum sensing (QS) orchestrates many bacterial behaviors, including virulence and biofilm formation, across bacterial populations. Nevertheless, the underlying mechanism by which QS regulates capsular polysaccharide (CPS)-dependent phage-bacterium interactions remains unclear. In this study, we report that QS upregulates the expression of CPS-dependent phage receptors, thus increasing phage adsorption and infection rates in Vibrio alginolyticus. We found that QS upregulated the expression of the ugd gene, leading to increased synthesis of Autographiviridae phage receptor CPS synthesis in V. alginolyticus. The signal molecule autoinducer-2 released by Vibrio from different sources can potentially enhance CPS-dependent phage infections. Therefore, our data suggest that inhibiting QS may reduce, rather than improve, the therapeutic efficacy of CPS-specific phages. IMPORTANCE: Phage resistance is a direct threat to phage therapy, and understanding phage-host interactions, especially how bacteria block phage infection, is essential for developing successful phage therapy. In the present study, we demonstrate for the first time that Vibrio alginolyticus uses quorum sensing (QS) to promote capsular polysaccharide (CPS)-specific phage infection by upregulating ugd expression, which is necessary for the synthesis of Autographiviridae phage receptor CPS. Although increased CPS-specific phage susceptibility is a novel trade-off mediated by QS, it results in the upregulation of virulence factors, promoting biofilm development and enhanced capsular polysaccharide production in V. alginolyticus. This suggests that inhibiting QS may improve the effectiveness of antibiotic treatment, but it may also reduce the efficacy of phage therapy.


Assuntos
Percepção de Quorum , Vibrio alginolyticus , Vibrio alginolyticus/virologia , Vibrio alginolyticus/fisiologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Homosserina/análogos & derivados , Homosserina/metabolismo , Cápsulas Bacterianas/metabolismo , Podoviridae/genética , Podoviridae/fisiologia , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismo
13.
J Infect Dis ; 230(1): 209-220, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052750

RESUMO

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct enzyme-linked immunosorbent assay, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In 5 genetically related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsonophagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsonophagocytosis, which may promote KPC-Kp persistence by enabling coexistence of increased bloodstream fitness and reduced tissue virulence.


Assuntos
Cápsulas Bacterianas , Proteínas do Sistema Complemento , Infecções por Klebsiella , Klebsiella pneumoniae , Fagocitose , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/imunologia , Humanos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Animais , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Camundongos , Proteínas do Sistema Complemento/imunologia , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequenciamento Completo do Genoma , Reinfecção/microbiologia , Reinfecção/imunologia , Bacteriemia/microbiologia , Bacteriemia/imunologia , Feminino
14.
FASEB J ; 38(13): e23763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954404

RESUMO

Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.


Assuntos
Cápsulas Bacterianas , Patos , Infecções por Flavobacteriaceae , Riemerella , Riemerella/genética , Riemerella/patogenicidade , Riemerella/metabolismo , Animais , Patos/microbiologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fatores de Virulência/genética , Deleção de Genes
15.
Nat Commun ; 15(1): 5740, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982040

RESUMO

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor. However, the mechanism by which this material is generated has yet to be elucidated. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH (Rv0365c in Mycobacterium tuberculosis) which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures, potentially implicating arabinomannan as a signal for growth phase transition. Finally, we demonstrate that LamH is important for M. tuberculosis survival in macrophages.


Assuntos
Proteínas de Bactérias , Glicosídeo Hidrolases , Lipopolissacarídeos , Macrófagos , Mananas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Lipopolissacarídeos/metabolismo , Mananas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Glicosídeo Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Animais , Camundongos , Humanos , Fosfatidilinositóis/metabolismo , Cápsulas Bacterianas/metabolismo
16.
Adv Sci (Weinh) ; 11(33): e2309972, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38937990

RESUMO

Klebsiella pneumoniae, a major clinical pathogen known for causing severe infections, is attracting heightened attention due to its escalating antibiotic resistance. Phages are emerging as a promising alternative to antibiotics; however, their specificity to particular hosts often restricts their use. In this study, a collection of 114 phages is obtained and subjected to analysis against 238 clinical K. pneumoniae strains, revealing a spectrum of lytic behaviors. A correlation between putative tail protein clusters and lysis patterns leads to the discovery of six receptor-binding protein (RBP) clusters that determine host capsule tropism. Significantly, RBPs with cross-capsular lysis capabilities are identified. The newly-identified RBPs provide a toolbox for customizing phages to target diverse capsular types. Building on the toolbox, the engineered phages with altered RBPs successfully shifted and broadened their host capsule tropism, setting the stage for tunable phage that offer a precise and flexible solution to combat K. pneumoniae infections.


Assuntos
Cápsulas Bacterianas , Bacteriófagos , Klebsiella pneumoniae , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Infecções por Klebsiella/microbiologia , Humanos
17.
Int J Mycobacteriol ; 13(2): 197-205, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916392

RESUMO

BACKGROUND: Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored. This layer acts as the primary barrier for tubercle bacilli, attempting to infiltrate host cells and subsequent disease development. METHODS: The study aims to bridge this gap by investigating the differentially expressed capsule proteins in aminoglycoside-resistant M.tb clinical isolates compared with drug-sensitive isolates employing two-dimensional gel electrophoresis, mass spectrometry, and bioinformatic approaches. RESULTS: We identified eight proteins that exhibited significant upregulation in aminoglycoside-resistant isolates. Protein Rv3029c and Rv2110c were associated with intermediary metabolism and respiration; Rv2462c with cell wall and cell processes; Rv3804c with lipid metabolism; Rv2416c and Rv2623 with virulence and detoxification/adaptation; Rv0020c with regulatory functions; and Rv0639 with information pathways. Notably, the Group-based Prediction System for Prokaryotic Ubiquitin-like Protein (GPS-PUP) algorithm identified potential pupylation sites within all proteins except Rv3804c. Interactome analysis using the STRING 12.0 database revealed potential interactive partners for these proteins, suggesting their involvement in aminoglycoside resistance. Molecular docking studies revealed suitable binding between amikacin and kanamycin drugs with Rv2462c, Rv3804c, and Rv2623 proteins. CONCLUSION: As a result, our findings illustrate the multifaceted nature of aminoglycoside resistance in M.tb and the importance of understanding how capsule proteins play a role in counteracting drug efficacy. Identifying the role of these proteins in drug resistance is crucial for developing more effective treatments and diagnostics for TB.


Assuntos
Aminoglicosídeos , Proteínas de Bactérias , Farmacorresistência Bacteriana , Mycobacterium tuberculosis , Proteômica , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoglicosídeos/farmacologia , Cápsulas Bacterianas/metabolismo , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Biologia Computacional , Eletroforese em Gel Bidimensional , Tuberculose/microbiologia
18.
Vet Res ; 55(1): 80, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886823

RESUMO

Bacteria utilize intercellular communication to orchestrate essential cellular processes, adapt to environmental changes, develop antibiotic tolerance, and enhance virulence. This communication, known as quorum sensing (QS), is mediated by the exchange of small signalling molecules called autoinducers. AI-2 QS, regulated by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase), acts as a universal intercellular communication mechanism across gram-positive and gram-negative bacteria and is crucial for diverse bacterial processes. In this study, we demonstrated that in Streptococcus suis (S. suis), a notable zoonotic pathogen, AI-2 QS enhances galactose utilization, upregulates the Leloir pathway for capsular polysaccharide (CPS) precursor production, and boosts CPS synthesis, leading to increased resistance to macrophage phagocytosis. Additionally, our molecular docking and dynamics simulations suggest that, similar to S. pneumoniae, FruA, a fructose-specific phosphoenolpyruvate phosphotransferase system prevalent in gram-positive pathogens, may also function as an AI-2 membrane surface receptor in S. suis. In conclusion, our study demonstrated the significance of AI-2 in the synthesis of galactose metabolism-dependent CPS in S. suis. Additionally, we conducted a preliminary analysis of the potential role of FruA as a membrane surface receptor for S. suis AI-2.


Assuntos
Galactose , Percepção de Quorum , Streptococcus suis , Streptococcus suis/fisiologia , Galactose/metabolismo , Percepção de Quorum/fisiologia , Virulência , Animais , Cápsulas Bacterianas/metabolismo , Lactonas/metabolismo , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Homosserina/análogos & derivados , Homosserina/metabolismo , Polissacarídeos Bacterianos/metabolismo
19.
Nat Commun ; 15(1): 5258, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898034

RESUMO

Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.


Assuntos
Cápsulas Bacterianas , Mutação de Sentido Incorreto , Polissacarídeos Bacterianos , Salmonella typhi , Febre Tifoide , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Animais , Camundongos , Virulência/genética , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Febre Tifoide/microbiologia , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Feminino , Sequenciamento Completo do Genoma
20.
Front Cell Infect Microbiol ; 14: 1373052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808067

RESUMO

Among the Acinetobacter genus, Acinetobacter pittii stands out as an important opportunistic infection causative agent commonly found in hospital settings, which poses a serious threat to human health. Recently, the high prevalence of carbapenem-resistant A. pittii isolates has created significant therapeutic challenges for clinicians. Bacteriophages and their derived enzymes are promising therapeutic alternatives or adjuncts to antibiotics effective against multidrug-resistant bacterial infections. However, studies investigating the depolymerases specific to A. pittii strains are scarce. In this study, we identified and characterized a capsule depolymerase, Dpo27, encoded by the bacteriophage IME-Ap7, which targets A. pittii. A total of 23 clinical isolates of Acinetobacter spp. were identified as A. pittii (21.91%, 23/105), and seven A. pittii strains with various K locus (KL) types (KL14, KL32, KL38, KL111, KL163, KL207, and KL220) were used as host bacteria for phage screening. The lytic phage IME-Ap7 was isolated using A. pittii 7 (KL220) as an indicator bacterium and was observed for depolymerase activity. A putative tail fiber gene encoding a polysaccharide-degrading enzyme (Dpo27) was identified and expressed. The results of the modified single-spot assay showed that both A. pittii 7 and 1492 were sensitive to Dpo27, which was assigned the KL220 type. After incubation with Dpo27, A. pittii strain was susceptible to killing by human serum; moreover, the protein displayed no hemolytic activity against erythrocytes. Furthermore, the protein exhibited sustained activity across a wide pH range (5.0-10.0) and at temperatures between 20 and 50°C. In summary, the identified capsule depolymerase Dpo27 holds promise as an alternative treatment for combating KL220-type A. pittii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter , Bacteriófagos , Glicosídeo Hidrolases , Bacteriófagos/genética , Bacteriófagos/enzimologia , Bacteriófagos/isolamento & purificação , Humanos , Acinetobacter/enzimologia , Acinetobacter/genética , Acinetobacter/virologia , Acinetobacter/efeitos dos fármacos , Infecções por Acinetobacter/microbiologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...