Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
Sci Rep ; 14(1): 22311, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333378

RESUMO

Proton therapy gives less dose to healthy tissue compared to conventional X-ray therapy, but systematic comparisons of normal tissue responses are lacking. The aim of this study was to investigate late tissue responses in the salivary glands following proton- or X-irradiation of the head and neck in mice. Moreover, we aimed at investigating molecular responses by monitoring the cytokine levels in serum and saliva. Female C57BL/6J mice underwent local fractionated irradiation with protons or X-rays to the maximally tolerated acute level. Saliva and serum were collected before and at different time points after irradiation to assess salivary gland function and cytokine expression. To study late responses in the major salivary glands, histological analyses were performed on tissues collected at day 105 after onset of irradiation. Saliva volume after proton and X-irradiation was significantly lower than for controls and remained reduced at all time points after irradiation. Protons caused reduced saliva production and fewer acinar cells in the submandibular glands compared to X-rays at day 105. X-rays induced a stronger inflammatory cytokine response in saliva compared to protons. This work supports previous preclinical findings and indicate that the relative biological effectiveness of protons in normal tissue might be higher than the commonly used value of 1.1.


Assuntos
Células Acinares , Citocinas , Camundongos Endogâmicos C57BL , Saliva , Xerostomia , Animais , Citocinas/metabolismo , Feminino , Camundongos , Xerostomia/etiologia , Xerostomia/patologia , Xerostomia/metabolismo , Saliva/metabolismo , Raios X , Células Acinares/metabolismo , Células Acinares/efeitos da radiação , Células Acinares/patologia , Atrofia , Prótons/efeitos adversos , Terapia com Prótons/efeitos adversos , Glândulas Salivares/efeitos da radiação , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Glândula Submandibular/efeitos da radiação , Glândula Submandibular/patologia , Glândula Submandibular/metabolismo
2.
Gut ; 73(11): 1831-1843, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38955401

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy because it is often diagnosed at a late-stage. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor implicated in the progression of various cancer types. However, its role in KRAS-driven pancreatic tumourigenesis remains unclear. DESIGN: We performed studies with LSL-Kras G12D; Ptf1a-Cre ERT (KCERT) mice or LSL-KrasG12D; LSL-Trp53R172H ; Pdx1-Cre (KPC) mice crossed with conditional disruption of STAT5 or completed deficiency interleukin (IL)-22. Pancreatitis was induced in mice by administration of cerulein. Pharmacological inhibition of STAT5 on PDAC prevention was studied in the orthotopic transplantation and patient-derived xenografts PDAC model, and KPC mice. RESULTS: The expression and phosphorylation of STAT5 were higher in human PDAC samples than control samples and high levels of STAT5 in tumour cells were associated with a poorer prognosis. The loss of STAT5 in pancreatic cells substantially reduces the KRAS mutation and pancreatitis-derived acinar-to-ductal metaplasia (ADM) and PDAC lesions. Mechanistically, we discovered that STAT5 binds directly to the promoters of ADM mediators, hepatocyte nuclear factor (HNF) 1ß and HNF4α. Furthermore, STAT5 plays a crucial role in maintaining energy metabolism in tumour cells during PDAC progression. IL-22 signalling induced by chronic inflammation enhances KRAS-mutant-mediated STAT5 phosphorylation. Deficiency of IL-22 signalling slowed the progression of PDAC and ablated STAT5 activation. CONCLUSION: Collectively, our findings identified pancreatic STAT5 activation as a key downstream effector of oncogenic KRAS signalling that is critical for ADM initiation and PDAC progression, highlighting its potential therapeutic vulnerability.


Assuntos
Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Pancreatite , Proteínas Proto-Oncogênicas p21(ras) , Fator de Transcrição STAT5 , Animais , Fator de Transcrição STAT5/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Metaplasia/metabolismo , Metaplasia/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Humanos , Pancreatite/metabolismo , Pancreatite/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Pâncreas/patologia , Pâncreas/metabolismo
3.
Br J Pharmacol ; 181(20): 4067-4084, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39072736

RESUMO

BACKGROUND AND PURPOSE: Acute pancreatitis (AP) is associated with acinar cell death and inflammatory responses. Ferroptosis is characterized by an overwhelming lipid peroxidation downstream of metabolic dysfunction, in which NADPH-related redox systems have been recognized as the mainstay in ferroptosis control. Nevertheless, it remains unknown how ferroptosis is regulated in AP and whether we can target it to restrict AP development. EXPERIMENTAL APPROACH: Metabolomics were applied to explore changes in metabolic pathways in pancreatic acinar cells (PACs) in AP. Using wild-type and Ptf1aCreERT2/+IDH2fl/fl mice, AP was induced by caerulein and sodium taurocholate (NaT). IDH2 overexpressing adenovirus was constructed for infection of PACs. Mice or PACs were pretreated with inhibitors of FSP1 or glutathione reductase. Pancreatitis severity, acinar cell injury, mitochondrial morphological changes and pancreatic lipid peroxidation were analysed. KEY RESULTS: Unsaturated fatty acid biosynthesis and the tricarboxylic acid cycle pathways were significantly altered in PACs during AP. Inhibition of ferroptosis reduced mitochondrial damage, lipid peroxidation and the severity of AP. During AP, the NADPH abundance and IDH2 expression were decreased. Acinar cell-specific deletion of IDH2 exacerbated acinar cell ferroptosis and pancreatic injury. Pharmacological inhibition of NADPH-dependent GSH/GPX4 and FSP1/CoQ10 pathways abolished the protective effect of IDH2 overexpression on ferroptosis in acinar cells. CoQ10 supplementation attenuated experimental pancreatitis via inhibiting acinar cell ferroptosis. CONCLUSION AND IMPLICATIONS: We identified the IDH2-NADPH pathway as a novel regulator in protecting against AP via restricting acinar cell ferroptosis. Targeting the pathway and its downstream may shed light on AP treatment.


Assuntos
Células Acinares , Ferroptose , Isocitrato Desidrogenase , NADP , Pancreatite , Ferroptose/efeitos dos fármacos , Animais , Pancreatite/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite/prevenção & controle , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Células Acinares/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Camundongos , NADP/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Peroxidação de Lipídeos/efeitos dos fármacos
4.
Front Immunol ; 15: 1418703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044831

RESUMO

Introduction: Salivary gland dysfunction, often resulting from salivary gland obstruction-induced inflammation, is a prevalent condition. Corticosteroid, known for its anti-inflammatory and immunomodulatory properties, is commonly prescribed in clinics. This study investigates the therapeutic implications and potential side effects of dexamethasone on obstructive sialadenitis recovery using duct ligation mice and salivary gland organoid models. Methods: Functional and pathological changes were assessed after administering dexamethasone to the duct following deligation 2 weeks after maintaining ligation of the mouse submandibular duct. Additionally, lipopolysaccharide- and tumor necrosis factor-induced salivary gland organoid inflammation models were established to investigate the effects and underlying mechanisms of action of dexamethasone. Results: Dexamethasone administration facilitated SG function restoration, by increasing salivary gland weight and saliva volume while reducing saliva lag time. Histological evaluation revealed, reduced acinar cell atrophy and fibrosis with dexamethasone treatment. Additionally, dexamethasone suppressed pro-inflammatory cytokines IL-1ß and TNF expression. In a model of inflammation in salivary gland organoids induced by inflammatory substances, dexamethasone restored acinar markers such as AQP5 gene expression levels, while inhibiting pro-inflammatory cytokines TNF and IL6, as well as chemokines CCL2, CXCL5, and CXCL12 induction. Macrophages cultured in inflammatory substance-treated media from salivary gland organoid cultures exhibited pro-inflammatory polarization. However, treatment with dexamethasone shifted them towards an anti-inflammatory phenotype by reducing M1 markers (Tnf, Il6, Il1b, and Cd86) and elevating M2 markers (Ym1, Il10, Cd163, and Klf4). However, high-dose or prolonged dexamethasone treatment induced acino-ductal metaplasia and had side effects in both in vivo and in vitro models. Conclusions: Our findings suggest the effectiveness of corticosteroids in treating obstructive sialadenitis-induced salivary gland dysfunction by regulating pro-inflammatory cytokines.


Assuntos
Dexametasona , Fator 4 Semelhante a Kruppel , Sialadenite , Animais , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Dexametasona/administração & dosagem , Camundongos , Sialadenite/tratamento farmacológico , Sialadenite/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Organoides/efeitos dos fármacos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Glândulas Salivares/imunologia , Aquaporina 5/metabolismo , Aquaporina 5/genética , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Humanos
5.
Mol Ther ; 32(8): 2624-2640, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38956871

RESUMO

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.


Assuntos
Células Acinares , Exossomos , Fibrose , Fator 4 Semelhante a Kruppel , MicroRNAs , Células Estreladas do Pâncreas , Pancreatite Crônica , Fator 4 Semelhante a Kruppel/metabolismo , Animais , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Exossomos/metabolismo , Pancreatite Crônica/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , MicroRNAs/genética , Células Acinares/metabolismo , Células Acinares/patologia , Dependovirus/genética , Camundongos , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Masculino , Técnicas de Cocultura , Pâncreas/metabolismo , Pâncreas/patologia , Terapia Genética/métodos
6.
ACS Nano ; 18(29): 19283-19302, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990194

RESUMO

Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.


Assuntos
Pancreatite , Tripsina , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Pancreatite/metabolismo , Tripsina/metabolismo , Tripsina/química , Camundongos , Porosidade , Nanomedicina , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Masculino , Humanos , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Endogâmicos C57BL
7.
Cancer Res ; 84(14): 2297-2312, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005053

RESUMO

Metabolic reprogramming is a hallmark of cancer and is crucial for cancer progression, making it an attractive therapeutic target. Understanding the role of metabolic reprogramming in cancer initiation could help identify prevention strategies. To address this, we investigated metabolism during acinar-to-ductal metaplasia (ADM), the first step of pancreatic carcinogenesis. Glycolytic markers were elevated in ADM lesions compared with normal tissue from human samples. Comprehensive metabolic assessment in three mouse models with pancreas-specific activation of KRAS, PI3K, or MEK1 using Seahorse measurements, nuclear magnetic resonance metabolome analysis, mass spectrometry, isotope tracing, and RNA sequencing analysis revealed a switch from oxidative phosphorylation to glycolysis in ADM. Blocking the metabolic switch attenuated ADM formation. Furthermore, mitochondrial metabolism was required for de novo synthesis of serine and glutathione (GSH) but not for ATP production. MYC mediated the increase in GSH intermediates in ADM, and inhibition of GSH synthesis suppressed ADM development. This study thus identifies metabolic changes and vulnerabilities in the early stages of pancreatic carcinogenesis. Significance: Metabolic reprogramming from oxidative phosphorylation to glycolysis mediated by MYC plays a crucial role in the development of pancreatic cancer, revealing a mechanism driving tumorigenesis and potential therapeutic targets. See related commentary by Storz, p. 2225.


Assuntos
Metaplasia , Neoplasias Pancreáticas , Animais , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Metaplasia/metabolismo , Metaplasia/patologia , Glicólise , Carcinogênese/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Fosforilação Oxidativa , Glutationa/metabolismo , Reprogramação Celular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Reprogramação Metabólica
8.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999930

RESUMO

Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1ß were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1ß immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.


Assuntos
COVID-19 , Receptores ErbB , SARS-CoV-2 , Glândula Submandibular , Xerostomia , COVID-19/patologia , COVID-19/virologia , COVID-19/metabolismo , Animais , Glândula Submandibular/virologia , Glândula Submandibular/patologia , Glândula Submandibular/metabolismo , SARS-CoV-2/fisiologia , Camundongos , Xerostomia/etiologia , Xerostomia/patologia , Xerostomia/virologia , Xerostomia/metabolismo , Receptores ErbB/metabolismo , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Mucina-5B/metabolismo , Células Acinares/patologia , Células Acinares/metabolismo , Células Acinares/virologia , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças
9.
J Pathol ; 263(4-5): 466-481, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38924548

RESUMO

The E3 ubiquitin ligase thyroid hormone receptor interacting protein 12 (TRIP12) has been implicated in pancreatic adenocarcinoma (PDAC) through its role in mediating the degradation of pancreas transcription factor 1a (PTF1a). PTF1a is a transcription factor essential for the acinar differentiation state that is notably diminished during the early steps of pancreatic carcinogenesis. Despite these findings, the direct involvement of TRIP12 in the onset of pancreatic cancer has yet to be established. In this study, we demonstrated that TRIP12 protein was significantly upregulated in human pancreatic preneoplastic lesions. Furthermore, we observed that TRIP12 overexpression varied within PDAC samples and PDAC-derived cell lines. We further demonstrated that TRIP12 was required for PDAC-derived cell growth and for the expression of E2F-targeted genes. Acinar-to-ductal cell metaplasia (ADM) is a reversible process that reflects the high plasticity of acinar cells. ADM becomes irreversible in the presence of oncogenic Kras mutations and leads to the formation of preneoplastic lesions. Using two genetically modified mouse models, we showed that a loss of TRIP12 prevented acini from developing ADM in response to pancreatic injury. With two additional mouse models, we further discovered that a depletion of TRIP12 prevented the formation of KrasG12D-induced preneoplastic lesions and impaired metastasis formation in the presence of mutated KrasG12D and Trp53R172H genes. In summary our study identified an overexpression of TRIP12 from the early stages of pancreatic carcinogenesis and proposed this E3 ubiquitin ligase as a novel regulator of acinar plasticity with an important dual role in initiation and metastatic steps of PDAC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Células Acinares , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ubiquitina-Proteína Ligases , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/enzimologia , Humanos , Células Acinares/patologia , Células Acinares/metabolismo , Células Acinares/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Metaplasia/patologia , Metaplasia/metabolismo , Plasticidade Celular , Carcinogênese/genética , Carcinogênese/metabolismo , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Knockout , Regulação Neoplásica da Expressão Gênica , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/enzimologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/metabolismo , Proteínas de Transporte
10.
Discov Med ; 36(185): 1162-1168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926102

RESUMO

BACKGROUND: Atypical acinar cell foci (AACF) seen in pancreatic cancer are fatal and have been studied with some causative agents. However, for the first time, the effect of acetylsalicylic acid with nitric oxide (NO-ASA) on AACF was examined in this study. Although NO-ASA has very successful inhibitory effects against some types of cancer, it has not been investigated whether they can exert their inhibition effects on AACFs. METHODS: For experimental purposes, 21 14-day-old male Wistar albino rats were used. Azaserine (30 mg/kg) was dissolved in 0.9% NaCl solution and injected intraperitoneally (i.p.) into 14 rats, except for the Control group (Cont) rats, for three weeks. Rats that were injected with azaserine once a week for three weeks and those that did not receive treatment were divided into experimental groups. 15 days after the end of the azaserine injection protocol, NO-ASA was applied to azaserine with NO-ASA (Az+NO-ASA) group rats three consecutive times with an interval of 15 days by gavage. At the end of the 5-month period, pancreatic tissue was dissected and weighed. Pancreas preparations prepared from histological sections were examined for AACF burden and analyzed via a video image analyzer. One-way analysis of variance (ANOVA) non-parametric statistical analyses were performed to test whether there was a difference between the averages of the experimental and Control groups. RESULTS: AACF burden in both groups injected with azaserine was found to be statistically significant in all categories compared to that of the Control group (p < 0.05). The average Calculated Estimated average AACF volume (mm3) values, the Calculated estimated average AACF diameter (µm), the Estimated average number of AACF per unit volume, AACF rate as a % of Calculated Organ Volume were higher in the AzCont group rats than in the Az+NO-ASA group, when compared, and there was an important level statistical difference between the groups (p < 0.05). It was determined that for all parameters AACFs load in Az+NO-ASA group rats were significantly reduced compared to that of AzCont group rats (p < 0.05). CONCLUSIONS: We observed that, as a result of the NO-ASA application, the experimental AACF focus ratio created by azaserine injection was significantly inhibited. The inhibitory effect of AACFs in Az+NO-ASA group rats may have resulted from the significant and independent chemopreventive and/or chemotherapeutic activity of NO-ASA against exocrine pancreatic AACF foci.


Assuntos
Células Acinares , Aspirina , Óxido Nítrico , Pâncreas Exócrino , Neoplasias Pancreáticas , Ratos Wistar , Animais , Masculino , Aspirina/farmacologia , Aspirina/uso terapêutico , Aspirina/administração & dosagem , Óxido Nítrico/metabolismo , Ratos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Células Acinares/metabolismo , Pâncreas Exócrino/efeitos dos fármacos , Pâncreas Exócrino/patologia
11.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850534

RESUMO

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Insulina/metabolismo , Feminino , Secreção de Insulina/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Glucagon/metabolismo , Glucose/metabolismo , Autoanticorpos/imunologia , Amilases/metabolismo
12.
Biomolecules ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927047

RESUMO

Acute pancreatitis (AP) entails pancreatic inflammation, tissue damage and dysregulated enzyme secretion, including pancreatic lipase (PL). The role of irisin, an anti-inflammatory and anti-apoptotic cytokine, in AP and exocrine pancreatic stress is unclear. We have previously shown that irisin regulates PL through the PPARγ-PGC1α-FNDC5 pathway. In this study, we investigated irisin and irisin's pathway on AP in in vitro (AR42J-B13) and ex vivo (rat primary acinar) models using molecular, biochemical and immunohistochemistry methodology. Pancreatitis induction (cerulein (cer)) resulted in a significant up-regulation of the PPARγ-PGC1α-FNDC5 axis, PL expression and secretion and endoplasmic reticulum (ER) stress unfolded protein response (UPR) signal-transduction markers (CHOP, XBP-1 and ATF6). Irisin addition in the cer-pancreatitis state resulted in a significant down-regulation of the PPARγ-PGC1α-FNDC5 axis, PPARγ nucleus-translocation and inflammatory state (TNFα and IL-6) in parallel to diminished PL expression and secretion (in vitro and ex vivo models). Irisin addition up-regulated the expression of pro-survival UPR markers (ATF6 and XBP-1) and reduced UPR pro-apoptotic markers (CHOP) under cer-pancreatitis and induced ER stress (tunicamycin), consequently increasing cells viability. Irisin's pro-survival effect under cer-pancreatitis state was abolished under PPARγ inhibition. Our findings suggest irisin as a potential therapeutic option for AP via its ability to up-regulate pro-survival UPR signals and activate the PPARγ-PGC1α-FNDC5 pathway.


Assuntos
Células Acinares , Sobrevivência Celular , Fibronectinas , PPAR gama , Pancreatite , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Fibronectinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/tratamento farmacológico , PPAR gama/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ratos , Sobrevivência Celular/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ceruletídeo , Masculino , Linhagem Celular , Lipase/metabolismo
13.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731942

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Assuntos
Células Acinares , Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Espécies Reativas de Oxigênio , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Metaplasia/metabolismo , Metaplasia/genética , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Transgênicos , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Proteínas Inflamatórias de Macrófagos/metabolismo , Proteínas Inflamatórias de Macrófagos/genética , Pâncreas/metabolismo , Pâncreas/patologia
14.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757565

RESUMO

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Assuntos
Cumarínicos , Retículo Endoplasmático , Mitocôndrias , Pancreatite , Animais , Cumarínicos/farmacologia , Cumarínicos/química , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Pancreatite/patologia , Camundongos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Canais de Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Punica granatum/química , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química
15.
Gastroenterology ; 167(4): 718-732.e18, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38729450

RESUMO

BACKGROUND & AIMS: Acinar-to-ductal metaplasia (ADM) is crucial in the development of pancreatic ductal adenocarcinoma. However, our understanding of the induction and resolution of ADM remains limited. We conducted comparative transcriptome analyses to identify conserved mechanisms of ADM in mouse and human. METHODS: We identified Sox4 among the top up-regulated genes. We validated the analysis by RNA in situ hybridization. We performed experiments in mice with acinar-specific deletion of Sox4 (Ptf1a: CreER; Rosa26-LSL-YFPLSL-YFP; Sox4fl/fl) with and without an activating mutation in Kras (KrasLSL-G12D/+). Mice were given caerulein to induce pancreatitis. We performed phenotypic analysis by immunohistochemistry, tissue decellularization, and single-cell RNA sequencing. RESULTS: We demonstrated that Sox4 is reactivated in ADM and pancreatic intraepithelial neoplasias. Contrary to findings in other tissues, Sox4 actually counteracts cellular dedifferentiation and helps maintain tissue homeostasis. Moreover, our investigations unveiled the indispensable role of Sox4 in the specification of mucin-producing cells and tuft-like cells from acinar cells. We identified Sox4-dependent non-cell-autonomous mechanisms regulating the stromal reaction during disease progression. Notably, Sox4-inferred targets are activated upon KRAS inactivation and tumor regression. CONCLUSIONS: Our results indicate that our transcriptome analysis can be used to investigate conserved mechanisms of tissue injury. We demonstrate that Sox4 restrains acinar dedifferentiation and is necessary for the specification of acinar-derived metaplastic cells in pancreatic injury and cancer initiation and is activated upon Kras ablation and tumor regression in mice. By uncovering novel potential strategies to promote tissue homeostasis, our findings offer new avenues for preventing the development of pancreatic ductal adenocarcinoma.


Assuntos
Células Acinares , Carcinoma Ductal Pancreático , Desdiferenciação Celular , Ceruletídeo , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Acinares/patologia , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Metaplasia/genética , Metaplasia/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos , Humanos , Pancreatite/patologia , Pancreatite/genética , Pancreatite/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Modelos Animais de Doenças , Pâncreas/patologia , Pâncreas/metabolismo , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Carcinoma in Situ/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Transcriptoma
16.
JCI Insight ; 9(13)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781030

RESUMO

Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.


Assuntos
Células Acinares , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Pancreatite , Fosfofrutoquinase-2 , Animais , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Camundongos , Pancreatite/metabolismo , Pancreatite/genética , Pancreatite/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Cálcio/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Knockout , Modelos Animais de Doenças , Índice de Gravidade de Doença , Masculino , Humanos , Sinalização do Cálcio/genética
17.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709385

RESUMO

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Assuntos
Catepsina B , Lisossomos , Pancreatite , Vesículas Secretórias , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Animais , Lisossomos/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/genética , Catepsina B/metabolismo , Catepsina B/genética , Camundongos , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7/metabolismo , Doença Aguda , Células Acinares/metabolismo , Células Acinares/patologia , Tripsinogênio/metabolismo , Tripsinogênio/genética , Ceruletídeo , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Apoptosis ; 29(5-6): 920-933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625481

RESUMO

BACKGROUND: Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS: A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS: Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS: Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.


Assuntos
Células Acinares , Modelos Animais de Doenças , Inflamassomos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pancreatite , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Células Acinares/metabolismo , Células Acinares/patologia , Inflamassomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pancreatite/metabolismo , Pancreatite/terapia , Pancreatite/patologia , Humanos , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Placenta/metabolismo , Gravidez , Masculino , Camundongos Endogâmicos C57BL
19.
ACS Nano ; 18(18): 11778-11803, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652869

RESUMO

Severe acute pancreatitis (AP) is a life-threatening pancreatic inflammatory disease with a high mortality rate (∼40%). Existing pharmaceutical therapies in development or in clinical trials showed insufficient treatment efficacy due to their single molecular therapeutic target, poor water solubility, short half-life, limited pancreas-targeting specificity, etc. Herein, acid-responsive hollow mesoporous Prussian blue nanoparticles wrapped with neutrophil membranes and surface modified with the N,N-dimethyl-1,3-propanediamine moiety were developed for codelivering membrane-permeable calcium chelator BAPTA-AM (BA) and trypsin activity inhibitor gabexate mesylate (Ga). In the AP mouse model, the formulation exhibited efficient recruitment at the inflammatory endothelium, trans-endothelial migration, and precise acinar cell targeting, resulting in rapid pancreatic localization and higher accumulation. A single low dose of the formulation (BA: 200 µg kg-1, Ga: 0.75 mg kg-1) significantly reduced pancreas function indicators to close to normal levels at 24 h, effectively restored the cell redox status, reduced apoptotic cell proportion, and blocked the systemic inflammatory amplified cascade, resulting in a dramatic increase in the survival rate from 58.3 to even 100%. Mechanistically, the formulation inhibited endoplasmic reticulum stress (IRE1/XBP1 and ATF4/CHOP axis) and restored impaired autophagy (Beclin-1/p62/LC3 axis), thereby preserving dying acinar cells and restoring the cellular "health status". This formulation provides an upstream therapeutic strategy with clinical translation prospects for AP management through synergistic ion homeostasis regulation and pancreatic autodigestion inhibition.


Assuntos
Células Acinares , Cálcio , Homeostase , Nanomedicina , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Pancreatite/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos , Homeostase/efeitos dos fármacos , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Nanopartículas/química , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Humanos
20.
World J Gastroenterol ; 30(14): 2038-2058, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38681131

RESUMO

BACKGROUND: Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM: To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS: AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS: Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION: The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.


Assuntos
Ceruletídeo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pâncreas , Pancreatite , Fatores de Transcrição , Animais , Ceruletídeo/toxicidade , Camundongos , Pancreatite/genética , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite/metabolismo , Perfilação da Expressão Gênica/métodos , Pâncreas/patologia , Pâncreas/metabolismo , Humanos , Transcriptoma , Masculino , Transdução de Sinais , Células Acinares/metabolismo , Células Acinares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...