Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.412
Filtrar
1.
Traffic ; 25(6): e12950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923715

RESUMO

Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.


Assuntos
Linfócitos T , Proteínas rab de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Linfócitos T/metabolismo , Linfócitos T/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/imunologia
2.
J Biotechnol ; 391: 57-63, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851397

RESUMO

Antigen-presenting cells (APCs) play an important role in virus infection control by bridging innate and adaptive immune responses. Macrophages and dendritic cells (DCs) possess various surface receptors to recognize/internalize antigens, and antibody binding can enhance pathogen-opsonizing uptake by these APCs via interaction of antibody fragment crystallizable (Fc) domains with Fc receptors, evoking profound pathogen control in certain settings. Here, we examined phagocytosis-enhancing potential of Fc domains directly oriented on a retroviral virion/virus-like particle (VLP) surface. We generated an expression vector coding a murine Fc fragment fused to the transmembrane region (TM) of a retroviral envelope protein, deriving expression of the Fc-TM fusion protein on the transfected cell surface and production of virions incorporating the chimeric Fc upon co-transfection. Incubation of Fc-displaying simian immunodeficiency virus (SIV) with murine J774 macrophages and bone marrow-derived DCs derived Fc receptor-dependent enhanced uptake, being visualized by imaging cytometry. Alternative preparation of a murine leukemia virus (MLV) backbone-based Fc-displaying VLP loading an influenza virus hemagglutinin (HA) antigen resulted in enhanced HA internalization by macrophages, stating antigen compatibility of the design. Results show that the Fc-TM fusion molecule can be displayed on certain viruses/VLPs and may be utilized as a molecular adjuvant to facilitate APC antigen uptake.


Assuntos
Células Apresentadoras de Antígenos , Células Dendríticas , Fragmentos Fc das Imunoglobulinas , Vírion , Animais , Camundongos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Vírion/metabolismo , Vírion/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Linhagem Celular , Vírus da Leucemia Murina/genética , Fagocitose , Humanos
3.
Cell Immunol ; 401-402: 104845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38909549

RESUMO

CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.


Assuntos
Basigina , Sinapses Imunológicas , Ativação Linfocitária , Linfócitos T , Basigina/metabolismo , Basigina/imunologia , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fosforilação , Anticorpos Monoclonais/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos B/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Interleucina-2/metabolismo , Interleucina-2/imunologia , Animais , Células Jurkat
4.
Front Immunol ; 15: 1392316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711516

RESUMO

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Assuntos
Imunidade Adaptativa , Proteínas de Bactérias , Citocinas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/imunologia , Citocinas/metabolismo , Proteínas de Bactérias/imunologia , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Vacinas Pneumocócicas/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Macrófagos/imunologia , Macrófagos/metabolismo , Células Cultivadas
5.
Blood Adv ; 8(14): 3691-3704, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38701354

RESUMO

ABSTRACT: Despite therapeutic advancements, graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HSCT). In current models of GVHD, tissue injury induced by cytotoxic conditioning regimens, along with translocation of microbes expressing pathogen-associated molecular patterns, result in activation of host antigen-presenting cells (APCs) to stimulate alloreactive donor T lymphocytes. Recent studies have demonstrated that in many pathologic states, tissue injury results in the release of mitochondria from the cytoplasm to the extracellular space. We hypothesized that extracellular mitochondria, which are related to archaebacteria, could also trigger GVHD by stimulation of host APCs. We found that clinically relevant doses of radiation or busulfan induced extracellular release of mitochondria by various cell types, including cultured intestinal epithelial cells. Conditioning-mediated mitochondrial release was associated with mitochondrial damage and impaired quality control but did not affect the viability of the cells. Extracellular mitochondria directly stimulated host APCs to express higher levels of major histocompatibility complex II (MHC-II), costimulatory CD86, and proinflammatory cytokines, resulting in increased donor T-cell activation, and proliferation in mixed lymphocyte reactions. Analyses of plasma from both experimental mice and a cohort of children undergoing HSCT demonstrated that conditioning induced extracellular mitochondrial release in vivo. In mice undergoing MHC-mismatched HSCT, administration of purified syngeneic extracellular mitochondria increased host APC activation and exacerbated GVHD. Our data suggest that pre-HSCT conditioning results in extracellular release of damaged mitochondria, which increase alloreactivity and exacerbate GVHD. Therefore, decreasing the extracellular release of damaged mitochondria after conditioning could serve as a novel strategy for GVHD prevention.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Mitocôndrias , Condicionamento Pré-Transplante , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mitocôndrias/metabolismo , Camundongos , Humanos , Condicionamento Pré-Transplante/métodos , Modelos Animais de Doenças , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/imunologia
6.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675621

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pirazóis , Transplante Homólogo , Animais , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Azetidinas/farmacologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Camundongos Endogâmicos C57BL , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
7.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682259

RESUMO

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Assuntos
Antígenos de Histocompatibilidade Classe II , Histona Desacetilase 2 , Proteínas Nucleares , Regiões Promotoras Genéticas , SARS-CoV-2 , Transativadores , Humanos , Apresentação de Antígeno/genética , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/imunologia , COVID-19/virologia , COVID-19/imunologia , COVID-19/genética , COVID-19/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Regulação para Baixo/genética , Células HEK293 , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/imunologia , Transativadores/metabolismo , Transativadores/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética
8.
J Food Sci ; 89(6): 3802-3815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685880

RESUMO

The relationship between allergic inflammation and gut microbiota has been elucidated, and the effect of probiotics on immune disorders has been studied as well. Identifying the role of probiotics in individual diseases and immune responses and selecting and applying specific microorganisms based on these findings can be an effective strategy for using probiotics. Herein, lactobacilli isolated from kimchi were investigated in depth, focusing on their immune regulatory effects and the mechanisms involved. Lactic acid bacteria (LAB) effectively diminished the increased secretion of T helper 2 cytokines, such as IL-4, IL-5, and IL-13, from ovalbumin (OVA)-sensitized mouse splenocytes. The gene expression of GATA3, IL-4, IL-5, IL-9, and IL-13 was confirmed to be regulated by LAB. LAB also suppressed IL-2 production and STAT5 phosphorylation. An IL-10-neutralizing antibody attenuated these effects, indicating that LAB-induced upregulation of IL-10 in antigen-presenting cells was responsible at least partially for the increased IL-2 production and STAT5 phosphorylation in CD4+ T cells. In conclusion, the current study identified one immunomodulatory mechanism that allows LAB to regulate allergic immune reactions and the potential of LAB from kimchi to modulate various immune reactions.


Assuntos
Células Apresentadoras de Antígenos , Interleucina-10 , Lactobacillus plantarum , Fator de Transcrição STAT5 , Células Th2 , Fator de Transcrição STAT5/metabolismo , Animais , Interleucina-10/metabolismo , Fosforilação , Camundongos , Células Th2/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Inflamação , Probióticos/farmacologia , Camundongos Endogâmicos BALB C , Alimentos Fermentados/microbiologia , Interleucina-4/metabolismo , Feminino , Ovalbumina , Baço/imunologia , Baço/metabolismo , Interleucina-5/metabolismo , Citocinas/metabolismo , Interleucina-2/metabolismo
9.
Immunol Rev ; 323(1): 303-315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501766

RESUMO

Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.


Assuntos
Homeostase , Tolerância Imunológica , Mucosa Intestinal , Humanos , Animais , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestinos/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Microbioma Gastrointestinal/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo
10.
Immunol Lett ; 267: 106856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537718

RESUMO

Multifunctional CD4+ T helper 1 (Th1) cells, producing IFN-γ, TNF-α and IL-2, define a correlate of vaccine-mediated protection against intracellular infection. In our previous study, we found that CVC1302 in oil formulation promoted the differentiation of IFN-γ+/TNF-α+/IL-2+Th1 cells. In order to extend the application of CVC1302 in oil formulation, this study aimed to elucidate the mechanism of action in improving the Th1 immune response. Considering the signals required for the differentiation of CD4+ T cells to Th1 cells, we detected the distribution of innate immune cells and the model antigen OVA-FITC in lymph node (LN), as well as the quantity of cytokines produced by the innate immune cells. The results of these experiments show that, cDC2 and OVA-FITC localized to interfollicular region (IFR) of the draining lymph nodes, inflammatory monocytes localized to both IFR and T cell zone, which mainly infiltrate from the blood. In this inflammatory niche within LN, CD4+ T cells were attracted into IFR by CXCL10, secreted by inflammatory monocytes, then activated by cDC2, secreting IL-12. Above all, CVC1302 in oil formulation, on the one hand, targeted antigen and inflammatory monocytes into the LN IFR in order to attract CD4+ T cells, on the other hand, targeted cDC2 to produce IL-12 in order to promote optimal Th1 differentiation. The new finding will provide a blueprint for application of immunopotentiators in optimal formulations.


Assuntos
Citocinas , Células Dendríticas , Imunização , Células Th1 , Animais , Camundongos , Células Dendríticas/imunologia , Células Th1/imunologia , Citocinas/metabolismo , Linfonodos/imunologia , Diferenciação Celular/efeitos dos fármacos , Ovalbumina/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Feminino , Ativação Linfocitária/imunologia , Ativação Linfocitária/efeitos dos fármacos , Óleos/química , Camundongos Endogâmicos C57BL
12.
Bioessays ; 46(4): e2300230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412391

RESUMO

In circulation, T cells are spherical with selectin enriched dynamic microvilli protruding from the surface. Following extravasation, these microvilli serve another role, continuously surveying their environment for antigen in the form of peptide-MHC (pMHC) expressed on the surface of antigen presenting cells (APCs). Upon recognition of their cognate pMHC, the microvilli are initially stabilized and then flatten into F-actin dependent microclusters as the T cell spreads over the APC. Within 1-5 min, clathrin is recruited by the ESCRT-0 component Hrs to mediate release of T cell receptor (TCR) loaded vesicles directly from the plasma membrane by clathrin and ESCRT-mediated ectocytosis (CEME). After 5-10 min, Hrs is displaced by the endocytic clathrin adaptor epsin-1 to induce clathrin-mediated trans-endocytosis (CMTE) of TCR-pMHC conjugates. Here we discuss some of the functional properties of the clathrin machinery which enables it to control these topologically opposite modes of membrane transfer at the immunological synapse, and how this might be regulated during T cell activation.


Assuntos
Clatrina , Linfócitos T , Clatrina/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Comunicação
13.
Curr Protoc ; 4(2): e976, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400601

RESUMO

Antigen-presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide-loaded major histocompatibility complexes (signal 1). This presentation, along with a co-stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient-derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen-specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Protein and particle modification for aAPC fabrication Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein Support Protocol 1: Quantification of aAPC stock concentration Basic Protocol 3: Determination of aAPC usage for murine CD8+ T cell activation Support Protocol 2: Isolation of murine CD8+ T cells.


Assuntos
Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Humanos , Animais , Camundongos , Células Apresentadoras de Antígenos/metabolismo , Ativação Linfocitária , Imunoterapia/métodos , Macrófagos
14.
Nat Rev Immunol ; 24(1): 64-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37479834

RESUMO

Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.


Assuntos
Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Imunidade Inata , Células Endoteliais , Células Apresentadoras de Antígenos/metabolismo , Proteínas de Transporte/metabolismo
15.
Nature ; 624(7992): 630-638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093012

RESUMO

The COVID-19 pandemic has fostered major advances in vaccination technologies1-4; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration4-6. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses. Moreover, this vaccine induces strong production of IgG and IgA, as well as a local T cell response, collectively conferring effective protection against SARS-CoV-2 in mice, hamsters and nonhuman primates. Finally, we also demonstrate a mosaic iteration of the vaccine that co-displays ancestral and Omicron antigens, extending the breadth of antibody response against co-circulating strains and transmission of the Omicron variant. These findings support the use of this inhaled vaccine as a promising multivalent platform for fighting COVID-19 and other respiratory infectious diseases.


Assuntos
Vacinas contra COVID-19 , Imunidade nas Mucosas , Animais , Cricetinae , Humanos , Camundongos , Administração por Inalação , Aerossóis , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos Virais/imunologia , Toxina da Cólera , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Nanopartículas , Pós , Primatas/virologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinação , Cápsulas
16.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069400

RESUMO

The cells and numerous macromolecules of living organisms carry an array of simple and complex carbohydrates on their surface, which may be recognized by many types of proteins, including lectins. Human macrophage galactose-type lectin (MGL, also known as hMGL/CLEC10A/CD301) is a C-type lectin receptor expressed on professional antigen-presenting cells (APCs) specific to glycans containing terminal GalNAc residue, such as Tn antigen or LacdiNAc but also sialylated Tn antigens. Macrophage galactose-type lectin (MGL) exhibits immunosuppressive properties, thus facilitating the maintenance of immune homeostasis. Hence, MGL is exploited by tumors and some pathogens to trick the host immune system and induce an immunosuppressive environment to escape immune control. The aims of this article are to discuss the immunological outcomes of human MGL ligand recognition, provide insights into the molecular aspects of these interactions, and review the MGL ligands discovered so far. Lastly, based on the human fetoembryonic defense system (Hu-FEDS) hypothesis, this paper raises the question as to whether MGL-mediated interactions may be relevant in the development of maternal tolerance toward male gametes and the fetus.


Assuntos
Células Apresentadoras de Antígenos , Galactose , Masculino , Humanos , Ligantes , Células Apresentadoras de Antígenos/metabolismo , Macrófagos/metabolismo , Lectinas Tipo C/metabolismo
17.
Cancer Res Commun ; 3(10): 2158-2169, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37823774

RESUMO

Novel therapeutic strategies are urgently needed for patients with high-risk Ewing sarcoma and for the reduction of severe side effects for all patients. Immunotherapy may fill this need, but its successful application has been hampered by a lack of knowledge on the composition and function of the Ewing sarcoma immune microenvironment. Here, we explore the immune microenvironment of Ewing sarcoma, by single-cell RNA sequencing of 18 Ewing sarcoma primary tissue samples. Ewing sarcoma is infiltrated by natural killer, T, and B cells, dendritic cells, and immunosuppressive macrophages. Ewing sarcoma-associated T cells show various degrees of dysfunction. The antigen-presenting cells found in Ewing sarcoma lack costimulatory gene expression, implying functional impairment. Interaction analysis reveals a clear role for Ewing sarcoma tumor cells in turning the Ewing sarcoma immune microenvironment into an immunosuppressive niche. These results provide novel insights into the functional state of immune cells in the Ewing sarcoma tumor microenvironment and suggest mechanisms by which Ewing sarcoma tumor cells interact with, and shape, the immune microenvironment. SIGNIFICANCE: This study is the first presenting a detailed analysis of the Ewing sarcoma microenvironment using single-cell RNA sequencing. We provide novel insight into the functional state of immune cells and suggests mechanisms by which Ewing tumor cells interact with, and shape, their immune microenvironment. These insights provide help in understanding the failures and successes of immunotherapy in Ewing sarcoma and may guide novel targeted (immuno) therapeutic approaches.


Assuntos
Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/genética , Análise da Expressão Gênica de Célula Única , Linhagem Celular Tumoral , Células Apresentadoras de Antígenos/metabolismo , Microambiente Tumoral/genética
18.
Immunol Cell Biol ; 101(9): 847-856, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37585342

RESUMO

Artificial antigen-presenting cells (aAPCs) offer a cost effective and convenient tool for the expansion of chimeric antigen receptor (CAR)-bearing T cells and NK cells. aAPCs are particularly useful because of their ability to efficiently expand low-frequency antigen-reactive lymphocytes in bulk cultures. Commonly derived from the leukemic cell line K562, these aAPCs lack most major histocompatibility complex expression and are therefore useful for NK cell expansion without triggering allogeneic T-cell proliferation. To combat difficulties in accessing existing aAPC lines, while circumventing the iterative lentiviral gene transfers with antibody-mediated sorting required for the isolation of stable aAPC clones, we developed a single-step technique using Sleeping Beauty (SB)-based vectors with antibiotic selection options. Our SB vectors contain options of two to three genes encoding costimulatory molecules, membrane-bound cytokines as well as the presence of antibiotic-resistance genes that allow for stable transposition-based transfection of feeder cells. Transfection of K562 with SB vectors described in this study allows for the surface expression of CD86, 4-1BBL, membrane-bound (mb) interleukin (IL)-15 and mbIL-21 after simultaneous transposition and antibiotic selection using only two antibiotics. aAPCs successfully expanded NK cells to high purity (80-95%). Expanded NK cells could be further engineered by lentiviral CAR transduction. The multivector kit set is publicly available and will allow convenient and reproducible in-house production of effective aAPCs for the in vitro expansion of primary cells.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Imunoterapia Adotiva/métodos , Células Apresentadoras de Antígenos/metabolismo , Células Matadoras Naturais , Proliferação de Células , Antibacterianos/metabolismo
19.
Microbiome ; 11(1): 159, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491398

RESUMO

BACKGROUND: Cervicovaginal inflammation has been linked to negative reproductive health outcomes including the acquisition of HIV, other sexually transmitted infections, and cervical carcinogenesis. While changes to the vaginal microbiome have been linked to genital inflammation, the molecular relationships between the functional components of the microbiome with cervical immunology in the reproductive tract are understudied, limiting our understanding of mucosal biology that may be important for reproductive health. RESULTS: In this study, we used a multi'-omics approach to profile cervicovaginal samples collected from 43 Canadian women to characterize host, immune, functional microbiome, and metabolome features of cervicovaginal inflammation. We demonstrate that inflammation is associated with lower amounts of L. crispatus and higher levels of cervical antigen-presenting cells (APCs). Proteomic analysis showed an upregulation of pathways related to neutrophil degranulation, complement, and leukocyte migration, with lower levels of cornified envelope and cell-cell adherens junctions. Functional microbiome analysis showed reductions in carbohydrate metabolism and lactic acid, with increases in xanthine and other metabolites. Bayesian network analysis linked L. crispatus with glycolytic and nucleotide metabolism, succinate and xanthine, and epithelial proteins SCEL and IVL as major molecular features associated with pro-inflammatory cytokines and increased APCs. CONCLUSIONS: This study identified key molecular and immunological relationships with cervicovaginal inflammation, including higher APCs, bacterial metabolism, and proteome alterations that underlie inflammation. As APCs are involved in HIV transmission, parturition, and cervical cancer progression, further studies are needed to explore the interactions between these cells, bacterial metabolism, mucosal immunity, and their relationship to reproductive health. Video Abstract.


Assuntos
Infecções por HIV , Humanos , Feminino , Infecções por HIV/microbiologia , Proteômica , Teorema de Bayes , Canadá , Vagina/microbiologia , Inflamação/metabolismo , Citocinas , Células Apresentadoras de Antígenos/metabolismo , Xantinas/metabolismo
20.
Methods Cell Biol ; 178: 149-171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37516524

RESUMO

T cell activation through TCR stimulation leads to the formation of the immunological synapse (IS), a specialized adhesion organized between T lymphocytes and antigen presenting cells (APCs) in which a dynamic interaction among signaling molecules, the cytoskeleton and intracellular organelles achieves proper antigen-mediated stimulation and effector function. The kinetics of molecular reactions at the IS is essential to determine the quality of the response to the antigen stimulation. Herein, we describe methods based on biochemistry, flow cytometry and imaging in live and fixed cells to study the activation state and dynamics of regulatory molecules at the IS in the Jurkat T cell line CH7C17 and primary human and mouse CD4+ T lymphocytes stimulated by antigen presented by Raji and HOM2 B cell lines and human and mouse dendritic cells.


Assuntos
Sinapses Imunológicas , Linfócitos T , Humanos , Animais , Camundongos , Linfócitos T/metabolismo , Sinapses Imunológicas/metabolismo , Cinética , Células Apresentadoras de Antígenos/metabolismo , Transdução de Sinais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Células Jurkat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...