Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 910
Filtrar
1.
ACS Synth Biol ; 13(10): 3144-3149, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39353593

RESUMO

Artificial cells with reconstructed cellular functions could serve as practical protocell models for studying the early cellular life on the Earth. Investigating the viability of protocell models in extreme environments where life may have arisen is important for advancing origin-of-life research. Here, we tested the survivability of lipid membrane vesicles in deep-sea environments. The vesicles were submerged in the deep-sea floor with a human-occupied vehicle. Although most of the vesicles were broken, some vesicles maintained a spherical shape after the dives. When a cell-free protein synthesis system was encapsulated inside, a few vesicles remained even after a 1,390 m depth dive. Interestingly, such artificial cells could subsequently synthesize protein in a nutrient-rich buffer solution. Together with on shore experiments showing artificial cells synthesized protein under high pressure, our results suggest artificial cells may be able to express genes in deep-sea environments where thermal energy is available from hydrothermal vents.


Assuntos
Células Artificiais , Células Artificiais/metabolismo , Biossíntese de Proteínas , Fontes Hidrotermais , Sistema Livre de Células , Origem da Vida , Água do Mar
2.
Nat Commun ; 15(1): 9363, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39477950

RESUMO

The development of artificial cells has led to fundamental insights into the functional processes of living cells while simultaneously paving the way for transformative applications in biotechnology and medicine. A common method of generating artificial cells is to encapsulate protein expression systems within lipid vesicles. However, to communicate with the external environment, protein translocation across lipid membranes must take place. In living cells, protein transport across membranes is achieved with the aid of complex translocase systems which are difficult to reconstitute into artificial cells. Thus, there is need for simple mechanisms by which proteins can be encoded and expressed inside synthetic compartments yet still be externally displayed. Here we present a genetically encodable membrane functionalization system based on mutants of pore-forming proteins. We modify the membrane translocating loop of α-hemolysin to translocate functional peptides up to 52 amino acids across lipid membranes. Full membrane translocation occurs in the absence of any translocase machinery and the translocated peptides are recognized by specific peptide-binding ligands on the opposing membrane side. Engineered hemolysins can be used for genetically programming artificial cells to display interacting peptide pairs, enabling their assembly into artificial tissue-like structures.


Assuntos
Células Artificiais , Membrana Celular , Proteínas Hemolisinas , Engenharia de Proteínas , Transporte Proteico , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Células Artificiais/metabolismo , Engenharia de Proteínas/métodos , Membrana Celular/metabolismo , Peptídeos/metabolismo , Peptídeos/química , Membranas Artificiais , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
3.
Nat Commun ; 15(1): 9091, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39433731

RESUMO

Replication, heredity, and evolution are characteristic of Life. We and others have postulated that the reconstruction of a synthetic living system in the laboratory will be contingent on the development of a genetic self-replicator capable of undergoing Darwinian evolution. Although DNA-based life dominates, the in vitro reconstitution of an evolving DNA self-replicator has remained challenging. We hereby emulate in liposome compartments the principles according to which life propagates information and evolves. Using two different experimental configurations supporting intermittent or semi-continuous evolution (i.e., with or without DNA extraction, PCR, and re-encapsulation), we demonstrate sustainable replication of a linear DNA template - encoding the DNA polymerase and terminal protein from the Phi29 bacteriophage - expressed in the 'protein synthesis using recombinant elements' (PURE) system. The self-replicator can survive across multiple rounds of replication-coupled transcription-translation reactions in liposomes and, within only ten evolution rounds, accumulates mutations conferring a selection advantage. Combined data from next-generation sequencing with reverse engineering of some of the enriched mutations reveal nontrivial and context-dependent effects of the introduced mutations. The present results are foundational to build up genetic complexity in an evolving synthetic cell, as well as to study evolutionary processes in a minimal cell-free system.


Assuntos
Células Artificiais , Replicação do DNA , Células Artificiais/metabolismo , Replicação do DNA/genética , Evolução Molecular , Lipossomos/metabolismo , Mutação , DNA/genética , DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Evolução Molecular Direcionada/métodos , Biologia Sintética/métodos
4.
Nat Commun ; 15(1): 7976, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266519

RESUMO

Cellular homeostasis depends on the supply of metabolic energy in the form of ATP and electrochemical ion gradients. The construction of synthetic cells requires a constant supply of energy to drive membrane transport and metabolism. Here, we provide synthetic cells with long-lasting metabolic energy in the form of an electrochemical proton gradient. Leveraging the L-malate decarboxylation pathway we generate a stable proton gradient and electrical potential in lipid vesicles by electrogenic L-malate/L-lactate exchange coupled to L-malate decarboxylation. By co-reconstitution with the transporters GltP and LacY, the synthetic cells maintain accumulation of L-glutamate and lactose over periods of hours, mimicking nutrient feeding in living cells. We couple the accumulation of lactose to a metabolic network for the generation of intermediates of the glycolytic and pentose phosphate pathways. This study underscores the potential of harnessing a proton motive force via a simple metabolic network, paving the way for the development of more complex synthetic systems.


Assuntos
Malatos , Descarboxilação , Malatos/metabolismo , Ácido Glutâmico/metabolismo , Transporte Biológico , Células Artificiais/metabolismo , Ácido Láctico/metabolismo , Lactose/metabolismo , Escherichia coli/metabolismo , Nutrientes/metabolismo , Força Próton-Motriz , Antiporters/metabolismo , Glicólise , Redes e Vias Metabólicas , Prótons , Via de Pentose Fosfato
5.
STAR Protoc ; 5(3): 103283, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39235939

RESUMO

Cyclic-phospholipids-based vesicles can play a role in facilitating the chemical evolution of protocells from the structurally simple to the functionally more complex form. Here, we present a protocol for preparing decanoic acid-derived cyclic phospholipid and glyceryl-diester phosphate-containing vesicles. We describe steps for sample preparation, equilibration, and image acquisition using confocal microscopy. This protocol has the potential for preparing a wide variety of these phospholipid-based artificial cell constructs. For complete details on the use and execution of this protocol, please refer to Pulletikurti et al.1.


Assuntos
Ácidos Decanoicos , Fosfolipídeos , Fosfolipídeos/química , Ácidos Decanoicos/química , Microscopia Confocal/métodos , Células Artificiais/química
6.
J Mol Evol ; 92(5): 530-538, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39230713

RESUMO

The path to minimal life involves a series of stages that can be understood in terms of incremental, stepwise additions of complexity ranging from simple solutions of organic compounds to systems of encapsulated polymers capable of capturing nutrients and energy to grow and reproduce. This brief review will describe the initial stages that lead to populations of protocells capable of undergoing selection and evolution. The stages incorporate knowledge of chemical and physical properties of organic compounds, self-assembly of membranous compartments, non-enzymatic polymerization of amino acids and nucleotides followed by encapsulation of polymers to produce protocell populations. The results are based on laboratory simulations related to cyclic hydrothermal conditions on the prebiotic Earth. The final portion of the review looks ahead to what remains to be discovered about this process in order to understand the evolutionary path to minimal life.


Assuntos
Células Artificiais , Origem da Vida , Evolução Biológica , Polímeros/química , Aminoácidos/química
7.
Biomater Sci ; 12(20): 5372-5385, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39258483

RESUMO

Macrophages are usually present in solid tumors where they participate in tumor progression, angiogenesis, immunosuppression and metastasis. The design of nanocarriers capable of delivering therapeutic agents to specific cell populations has received considerable attention in the last decades. However, the capacity of many of these nanosystems to deliver multiple therapeutic agents with very different chemical properties is more limited. Herein, a novel multitasking nanoplatform capable of delivering large macromolecules and cytotoxic drugs to macrophages is presented. This novel nanosystem has exhibited excellent skills in performing simultaneous tasks, macrophage depletion and glucose starvation, maintaining the oxygen levels in the tissue. This nanodevice is composed of a dual-pore mesoporous silica core with the capacity to house small cytotoxic drugs, such as doxorubicin or zoledronic acid, and large macromolecules, such as glucose oxidase. The external surface of the silica core was coated with a lipid bilayer to avoid the premature release of the housed drugs. Finally, polymeric nanocapsules loaded with catalase were covalently anchored on the outer lipid bilayer, and carboxy-mannose was attached to the exposed side of the nanocapsules to provide selectivity to the macrophages. These nanoassemblies were able to transport enzymes (Gox and CAT), maintaining their catalytic activity. Therefore, they could induce glucose starvation, keeping the oxygen levels in the tissue, owing to the tandem enzymatic reaction. The capacity of these nanoassemblies to deliver therapeutic agents to macrophages was evaluated both in static and under flow conditions, showing a rapid capture of the nanoparticles by the macrophages. Once there, the nanoassemblies also exhibited excellent capacity to induce potent macrophage depletion. This strategy can be directly adapted for the treatment of different malignancies due to the modular nature of the nanoplatform, which can be loaded with different therapeutic agent combinations and pave the way for the development of personalized nanomedicines for diverse types of tumors.


Assuntos
Catalase , Doxorrubicina , Glucose Oxidase , Macrófagos , Dióxido de Silício , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glucose Oxidase/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Camundongos , Animais , Dióxido de Silício/química , Catalase/química , Catalase/administração & dosagem , Catalase/farmacologia , Catalase/metabolismo , Células Artificiais/química , Células RAW 264.7 , Porosidade , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Nanocápsulas/química , Sistemas de Liberação de Medicamentos , Humanos
8.
Proc Natl Acad Sci U S A ; 121(36): e2404790121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186653

RESUMO

Eukaryotic cells are characterized by multiple chemically distinct compartments, one of the most notable being the nucleus. Within these compartments, there is a continuous exchange of information, chemicals, and signaling molecules, essential for coordinating and regulating cellular activities. One of the main goals of bottom-up synthetic biology is to enhance the complexity of synthetic cells by establishing functional compartmentalization. There is a need to mimic autonomous signaling between compartments, which in living cells, is often regulated at the genetic level within the nucleus. This advancement is key to unlocking the potential of synthetic cells as cell models and as microdevices in biotechnology. However, a technological bottleneck exists preventing the creation of synthetic cells with a defined nucleus-like compartment capable of genetically programmed intercompartment signaling events. Here, we present an approach for creating synthetic cells with distinct nucleus-like compartments that can encapsulate different biochemical mixtures in discrete compartments. Our system enables in situ protein expression of membrane proteins, enabling autonomous chemical communication between nuclear and cytoplasmic compartments, leading to downstream activation of enzymatic pathways within the cell.


Assuntos
Células Artificiais , Núcleo Celular , Biologia Sintética , Biologia Sintética/métodos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Células Artificiais/metabolismo , Transdução de Sinais , Citoplasma/metabolismo , Comunicação Celular
9.
Biomacromolecules ; 25(9): 5454-5467, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39196319

RESUMO

The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.


Assuntos
Células Artificiais , Polímeros , Células Artificiais/química , Células Artificiais/metabolismo , Polímeros/química , Humanos
10.
Nat Commun ; 15(1): 7397, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191726

RESUMO

Synthetic droplets mimicking bio-soft matter droplets formed via liquid-liquid phase separation (LLPS) in living cells have recently been employed in nanobiotechnology for artificial cells, molecular robotics, molecular computing, etc. Temporally controlling the dynamics of synthetic droplets is essential for developing such bio-inspired systems because living systems maintain their functions based on the temporally controlled dynamics of biomolecular reactions and assemblies. This paper reports the temporal control of DNA-based LLPS droplets (DNA droplets). We demonstrate the timing-controlled division of DNA droplets via time-delayed division triggers regulated by chemical reactions. Controlling the release order of multiple division triggers results in order control of the multistep droplet division, i.e., pathway-controlled division in a reaction landscape. Finally, we apply the timing-controlled division into a molecular computing element to compare microRNA concentrations. We believe that temporal control of DNA droplets will promote the design of dynamic artificial cells/molecular robots and sophisticated biomedical applications.


Assuntos
Células Artificiais , DNA , Células Artificiais/metabolismo , Células Artificiais/química , DNA/química , MicroRNAs/metabolismo , MicroRNAs/genética , Computadores Moleculares , Nanotecnologia/métodos
11.
Sci Adv ; 10(34): eadn9657, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39167649

RESUMO

Membraneless coacervate microdroplets have long been proposed as model protocells as they can grow, divide, and concentrate RNA by natural partitioning. However, the rapid exchange of RNA between these compartments, along with their rapid fusion, both within minutes, means that individual droplets would be unable to maintain their separate genetic identities. Hence, Darwinian evolution would not be possible, and the population would be vulnerable to collapse due to the rapid spread of parasitic RNAs. In this study, we show that distilled water, mimicking rain/freshwater, leads to the formation of electrostatic crosslinks on the interface of coacervate droplets that not only suppress droplet fusion indefinitely but also allow the spatiotemporal compartmentalization of RNA on a timescale of days depending on the length and structure of RNA. We suggest that these nonfusing membraneless droplets could potentially act as protocells with the capacity to evolve compartmentalized ribozymes in prebiotic environments.


Assuntos
Células Artificiais , Chuva , Células Artificiais/química , RNA/química , Água/química
12.
Acc Chem Res ; 57(16): 2293-2302, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39099316

RESUMO

ConspectusCentral to the quest of understanding the emergence of life is to uncover the role of metals, particularly iron, in shaping prebiotic chemistry. Iron, as the most abundant of the accessible transition metals on the prebiotic Earth, played a pivotal role in early biochemical processes and continues to be indispensable to modern biology. Here, we discuss our recent contributions to probing the plausibility of prebiotic complexes with iron, including heme and iron-sulfur clusters, in mediating chemistry beneficial to a protocell. Laboratory experiments and spectroscopic findings suggest plausible pathways, often facilitated by UV light, for the synthesis of heme and iron-sulfur clusters. Once formed, heme displays catalytic, peroxidase-like activity when complexed with amphiphiles. This activity could have been beneficial in two ways. First, heme could have catalytically removed a molecule (H2O2) that could have had degradative effects on a protocell. Second, heme could have helped in the synthesis of the building blocks of life by coupling the reduction of H2O2 with the oxidation of organic substrates. The necessity of amphiphiles to avoid the formation of inactive complexes of heme is telling, as the modern-day electron transport chain possesses heme embedded within a lipid membrane. Conversely, prebiotic iron-sulfur peptides have yet to be reported to partition into lipid membranes, nor have simple iron-sulfur peptides been found to be capable of participating in the synthesis of organic molecules. Instead, iron-sulfur peptides span a wide range of reduction potentials complementary to the reduction potentials of hemes. The reduction potential of iron-sulfur peptides can be tuned by the type of iron-sulfur cluster formed, e.g., [2Fe-2S] versus [4Fe-4S], or by the substitution of ligands to the metal center. Since iron-sulfur clusters easily form upon stochastic encounters between iron ions, hydrosulfide, and small organic molecules possessing a thiolate, including peptides, the likelihood of soluble iron-sulfur clusters seems to be high. What remains challenging to determine is if iron-sulfur peptides participated in early prebiotic chemistry or were recruited later when protocellular membranes evolved that were compatible with the exploitation of electron transfer for the storage of energy as a proton gradient. This problem mirrors in some ways the difficulty in deciphering the origins of metabolism as a whole. Chemistry that resembles some facets of extant metabolism must have transpired on the prebiotic Earth, but there are few clues as to how and when such chemistry was harnessed to support a (proto)cell. Ultimately, unraveling the roles of hemes and iron-sulfur clusters in prebiotic chemistry promises to deepen our understanding of the origins of life on Earth and aids the search for life elsewhere in the universe.


Assuntos
Heme , Heme/química , Heme/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ferro/química , Ferro/metabolismo , Enxofre/química , Células Artificiais/química , Células Artificiais/metabolismo
14.
STAR Protoc ; 5(3): 103169, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38970793

RESUMO

Sensing is a critical function of artificial cells; however, this is challenging to realize using bottom-up approaches. Here, we present a protocol for building protocell membranes that sense cues important for redox biochemistry and signaling by combining synthetic phospholipids and natural lipids. We detail procedures for building giant unilamellar vesicles as protocell models that fluoresce in response to the biologically significant redox agents peroxynitrite, hydrogen peroxide, and hydrogen sulfide. For complete details on the use and execution of this protocol, please refer to (i) Gutierrez and Aggarwal et al.1 as well as (ii) Erguven and Wang et al.2.


Assuntos
Células Artificiais , Oxirredução , Fosfolipídeos , Fosfolipídeos/química , Células Artificiais/química , Células Artificiais/metabolismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Lipídeos/química , Peróxido de Hidrogênio/química
15.
J Cell Sci ; 137(16)2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39078119

RESUMO

After tissue injury, inflammatory cells are rapidly recruited to the wound where they clear microbes and other debris, and coordinate the behaviour of other cell lineages at the repair site in both positive and negative ways. In this study, we take advantage of the translucency and genetic tractability of zebrafish to evaluate the feasibility of reprogramming innate immune cells in vivo with cargo-loaded protocells and investigate how this alters the inflammatory response in the context of skin and skeletal repair. Using live imaging, we show that protocells loaded with R848 cargo (which targets TLR7 and TLR8 signalling), are engulfed by macrophages resulting in their switching to a pro-inflammatory phenotype and altering their regulation of angiogenesis, collagen deposition and re-epithelialization during skin wound healing, as well as dampening osteoblast and osteoclast recruitment and bone mineralization during fracture repair. For infected skin wounds, R848-reprogrammed macrophages exhibited enhanced bactericidal activities leading to improved healing. We replicated our zebrafish studies in cultured human macrophages, and showed that R848-loaded protocells similarly reprogramme human cells, indicating how this strategy might be used to modulate wound inflammation in the clinic.


Assuntos
Macrófagos , Pele , Cicatrização , Peixe-Zebra , Animais , Macrófagos/metabolismo , Humanos , Pele/metabolismo , Células Artificiais/metabolismo , Reprogramação Celular , Imidazóis/farmacologia , Osso e Ossos/metabolismo
16.
ACS Synth Biol ; 13(8): 2436-2446, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025476

RESUMO

Bioprinting is an automated bioassembly method that enables the formation of human tissue-like constructs to restore or replace damaged tissues. Regardless of the employed bioprinting method, cells undergo mechanical stress that can impact their survival and function postprinting. In this study, we investigate the use of a synthetic cell-like unit, giant unilamellar vesicles (GUVs), as adjuvants of the cellular function of human cells postprinting, or in future as the complete replacement of human cells. We analyzed the impact of two nozzle-based bioprinting methods (drop-on-demand and extrusion bioprinting) on the structure, stability, and function of GUVs. We showed that over 65% of the GUVs remain intact when printing at 0.5 bar, demonstrating the potential of using GUVs as a synthetic cell source. We further increased the stability of GUVs in a cell culture medium by introducing polyethylene glycol (PEG) into the GUV lipid membrane. The presence of PEG, however, diminished the structural properties of GUVs postprinting, and reduced the interaction of GUVs with human cells. Although the design of PEG-GUVs can still be modified in future studies for better cell-GUV interactions, we demonstrated that GUVs are functional postprinting. Chlorin e6-PEG-GUVs loaded with a fluorescent dye were bioprinted, and they released the dye postprinting only upon illumination. This is a new strategy to deliver carriers, such as growth factors, drugs, nutrients, or gases, inside large bioprinted specimens on a millimeter to centimeter scale. Overall, we showed that printed GUVs can augment the functionality of manufactured human tissues.


Assuntos
Bioimpressão , Polietilenoglicóis , Lipossomas Unilamelares , Humanos , Bioimpressão/métodos , Polietilenoglicóis/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Engenharia Tecidual/métodos , Células Artificiais/metabolismo , Células Artificiais/química , Lipídeos/química
17.
Nat Chem Biol ; 20(10): 1380-1386, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969863

RESUMO

Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.


Assuntos
Células Artificiais , Biossíntese de Proteínas , Células Artificiais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , Temperatura Alta , Escherichia coli/genética , Escherichia coli/metabolismo
18.
Geobiology ; 22(4): e12611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39020475

RESUMO

The osmotic rupture of a cell, its osmotic lysis or cytolysis, is a phenomenon that active biological cell volume regulation mechanisms have evolved in the cell membrane to avoid. How then, at the origin of life, did the first protocells survive prior to such active processes? The pores of alkaline hydrothermal vents in the oceans form natural nanoreactors in which osmosis across a mineral membrane plays a fundamental role. Here, we discuss the dynamics of lysis and its avoidance in an abiotic system without any active mechanisms, reliant upon self-organized behaviour, similar to the first self-organized mineral membranes within which complex chemistry may have begun to evolve into metabolism. We show that such mineral nanoreactors could function as protocells without exploding because their self-organized dynamics have a large regime in parameter space where osmotic lysis does not occur and homeostasis is possible. The beginnings of Darwinian evolution in proto-biochemistry must have involved the survival of protocells that remained within such a safe regime.


Assuntos
Células Artificiais , Origem da Vida , Osmose , Células Artificiais/metabolismo , Minerais/metabolismo , Minerais/química , Pressão Osmótica , Membrana Celular/metabolismo
19.
Acc Chem Res ; 57(14): 1885-1895, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968602

RESUMO

ConspectusCoacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions. Coacervates can selectively take up reactants and enhance their effective concentration, stabilize products, destabilize reactants and lower transition states, and can therefore play a similar role as micellar catalysts in providing rate enhancement and selectivity in reaction outcome. Rate enhancement and selectivity must have been essential for the origins of life by enabling chemical reactions to occur at appreciable rates and overcoming competition from hydrolysis.In this Accounts, we dissect the mechanisms by which coacervate protocells can accelerate reactions and provide selectivity. These mechanisms can similarly be exploited by membraneless organelles to control cellular processes. First, coacervates can affect the local concentration of reactants and accelerate reactions by copartitioning of reactants or exclusion of a product or inhibitor. Second, the local environment inside the coacervate can change the energy landscape for reactions taking place inside the droplets. The coacervate is more apolar than the surrounding solution and often rich in charged moieties, which can affect the stability of reactants, transition states and products. The crowded nature of the droplets can favor complexation of large molecules such as ribozymes. Their locally different proton and water activity can facilitate reactions involving a (de)protonation step, condensation reactions and reactions that are sensitive to hydrolysis. Not only the coacervate core, but also the surface can accelerate reactions and provides an interesting site for chemical reactions with gradients in pH, water activity and charge. The coacervate is often rich in catalytic amino acids and can localize catalysts like divalent metal ions, leading to further rate enhancement inside the droplets. Lastly, these coacervate properties can favor certain reaction pathways, and thereby give selectivity over the reaction outcome.These mechanisms are further illustrated with a case study on ribozyme reactions inside coacervates, for which there is a fine balance between concentration and reactivity that can be tuned by the coacervate composition. Furthermore, coacervates can both catalyze ribozyme reactions and provide product selectivity, demonstrating that coacervates could have functioned as enzyme-like catalytic microcompartments at the origins of life.


Assuntos
Células Artificiais , Catálise , Células Artificiais/química , Células Artificiais/metabolismo , Origem da Vida
20.
Nat Commun ; 15(1): 5645, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969629

RESUMO

Many critical biological processes, like wound healing, require densely packed cell monolayers/tissues to transition from a jammed solid-like to a fluid-like state. Although numerical studies anticipate changes in the cell shape alone can lead to unjamming, experimental support for this prediction is not definitive because, in living systems, fluidization due to density changes cannot be ruled out. Additionally, a cell's ability to modulate its motility only compounds difficulties since even in assemblies of rigid active particles, changing the nature of self-propulsion has non-trivial effects on the dynamics. Here, we design and assemble a monolayer of synthetic cell-mimics and examine their collective behaviour. By systematically increasing the persistence time of self-propulsion, we discovered a cell shape-driven, density-independent, re-entrant jamming transition. Notably, we observed cell shape and shape variability were mutually constrained in the confluent limit and followed the same universal scaling as that observed in confluent epithelia. Dynamical heterogeneities, however, did not conform to this scaling, with the fast cells showing suppressed shape variability, which our simulations revealed is due to a transient confinement effect of these cells by their slower neighbors. Our experiments unequivocally establish a morphodynamic link, demonstrating that geometric constraints alone can dictate epithelial jamming/unjamming.


Assuntos
Forma Celular , Células Artificiais , Movimento Celular , Modelos Biológicos , Animais , Células Epiteliais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...