Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.075
Filtrar
1.
Nature ; 632(8026): 885-892, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112698

RESUMO

Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.


Assuntos
Movimento Celular , Imunidade Inata , Fator Inibidor de Leucemia , Pulmão , Linfócitos , Animais , Feminino , Masculino , Camundongos , Alérgenos/imunologia , Movimento Celular/imunologia , Quimiocina CCL21/metabolismo , Quimiocina CCL21/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Imunidade Inata/imunologia , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/imunologia , Pulmão/imunologia , Pulmão/virologia , Linfonodos/citologia , Linfonodos/imunologia , Vasos Linfáticos/citologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/metabolismo , Linfócitos/classificação , Linfócitos/citologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Receptores CCR7/metabolismo , Receptores CCR7/imunologia
2.
STAR Protoc ; 5(3): 103195, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39096495

RESUMO

Conventional type 1 dendritic cells (cDC1s) are critical for innate sensing of cancer, yet they are scarce in the tumor microenvironment (TME). Here, we present a protocol to identify and isolate cDC1 subsets from murine implantable tumors for subsequent transcriptomic profiling using a flow sorting-based strategy. We describe steps for cell culture of mouse tumors, tumoral growth, dissociation and isolation of tumoral cells, extracellular staining, and cell sorting. We then detail procedures for RNA isolation, mRNA library preparation, and sequencing. For complete details on the use and execution of this protocol, please refer to Papadas et al.1.


Assuntos
Células Dendríticas , Perfilação da Expressão Gênica , Animais , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Camundongos , Perfilação da Expressão Gênica/métodos , Citometria de Fluxo/métodos , Microambiente Tumoral/genética , Transcriptoma/genética , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Separação Celular/métodos , Camundongos Endogâmicos C57BL
3.
Biophys J ; 123(18): 3051-3064, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38961624

RESUMO

We present phalloidin-based points accumulation for imaging in nanoscale topography (phalloidin-PAINT), enabling quantitative superresolution imaging of filamentous actin (F-actin) in the cell body and delicate membrane protrusions. We demonstrate that the intrinsic phalloidin dissociation enables PAINT superresolution microscopy in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-PAINT are its ability to consistently quantify F-actin at the nanoscale throughout the entire cell and its enhanced preservation of fragile cellular structures. In a proof-of-concept study, we employed phalloidin-PAINT to superresolve F-actin structures in U2OS and dendritic cells (DCs). We demonstrate more consistent F-actin quantification in the cell body and structurally delicate membrane protrusions of DCs compared with direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse DCs as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane protrusions on the culture glass surface after lipopolysaccharide exposure. The concept of our work opens new possibilities for quantitative protein-specific PAINT using commercially available reagents.


Assuntos
Actinas , Células Dendríticas , Faloidina , Faloidina/metabolismo , Faloidina/química , Actinas/metabolismo , Animais , Camundongos , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Nanotecnologia/métodos , Linhagem Celular Tumoral
4.
Biophys J ; 123(18): 3120-3132, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38993114

RESUMO

Dendritic cells (DCs) are antigen-presenting cells that reside in peripheral tissues and are responsible for initiating adaptive immune responses. As gatekeepers of the immune system, DCs need to continuously explore their surroundings, for which they can rapidly move through various types of connective tissue and basement membranes. DC motility has been extensively studied on flat 2D surfaces, yet the influences of a contextual 3D fibrous environment still need to be described. Using ECM-mimicking suspended fiber networks, we show how immature DCs (iDCs) engage in migratory cycles that allow them to transition from persistent migration to slow migratory states. For a subset of iDCs with high migratory potential, we report the organization of protrusions at the front of the cell body, which reverses upon treatment with inflammation agent PGE2. We identify an unusual migratory response to aligned fiber networks, whereby iDCs use filamentous protrusions to attach laterally and exert forces on fibers to migrate independent of fiber alignment. Increasing the fiber diameter from 200 to 500 nm does not significantly affect the migratory response; however, iDCs respond by forming denser actin bundles around larger diameters. Overall, the correlation between force-coupling and random migration of iDCs in aligned fibrous topography offers new insights into how iDCs might move in fibrous environments in vivo.


Assuntos
Movimento Celular , Células Dendríticas , Células Dendríticas/citologia , Animais , Dinoprostona/metabolismo , Fenômenos Biomecânicos , Fenômenos Mecânicos , Matriz Extracelular/metabolismo , Camundongos
5.
STAR Protoc ; 5(3): 103208, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39068659

RESUMO

Protein kinase C-δ (PKC-δ) is a key enzyme controlling growth, differentiation, and apoptosis in various cells, including immune cells. Here, we present a protocol to determine PKC-δ activation in response to increased membrane-bound diacylglycerol or phorbol-12-myristate-13-acetate treatment in murine bone-marrow-derived dendritic cells. We describe steps for dendritic cell differentiation, the isolation of plasma membrane lipids, and the quantification of diacylglycerol. We then detail procedures for measuring PKC-δ kinase activity by in vitro assay, indirect immunofluorescence, and western blotting experiments. For complete details on the use and execution of this protocol, please refer to Parsons et al.1.


Assuntos
Células da Medula Óssea , Células Dendríticas , Proteína Quinase C-delta , Animais , Camundongos , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteína Quinase C-delta/metabolismo , Diferenciação Celular/fisiologia , Diglicerídeos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
6.
STAR Protoc ; 5(3): 103151, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38990726

RESUMO

Dendritic cells (DCs) populate nearly all tissues and represent the central orchestrators of immunity. Here, we present a protocol for the mild but efficient preparation of single-cell suspensions from multiple murine tissues and the downstream analysis of the DC network via high-parameter flow cytometry. Additionally, we provide evaluation strategies that facilitate the stringent separation of the DC family from other myeloid cells, particularly macrophages and monocytes, and include an in-depth assessment of DC-intrinsic heterogeneity. For complete details on the use and execution of this protocol, please refer to Amon et al.1.


Assuntos
Células Dendríticas , Citometria de Fluxo , Animais , Células Dendríticas/citologia , Citometria de Fluxo/métodos , Camundongos , Camundongos Endogâmicos C57BL , Macrófagos/citologia , Macrófagos/metabolismo
7.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960622

RESUMO

A pleiotropic immunoregulatory cytokine, TGF-ß, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA , Células Dendríticas , Proteínas Proto-Oncogênicas , Fator de Transcrição STAT3 , Proteína Smad3 , Animais , Camundongos , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Ligação a DNA/metabolismo
8.
Nature ; 631(8021): 645-653, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987596

RESUMO

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.


Assuntos
Células Dendríticas , Homeostase , Megacariócitos , Trombopoese , Animais , Feminino , Humanos , Masculino , Camundongos , Apoptose , Plaquetas/citologia , Medula Óssea , Linhagem da Célula , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/citologia , Retroalimentação Fisiológica , Imunidade Inata , Microscopia Intravital , Megacariócitos/citologia , Megacariócitos/imunologia , Camundongos Endogâmicos C57BL , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/virologia
9.
J Vis Exp ; (207)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856194

RESUMO

An advanced intestine-on-chip model recreating epithelial 3D organotypic villus-like and crypt-like structures has been developed. The immunocompetent model includes Human Umbilical Vein Endothelial Cells (HUVEC), Caco-2 intestinal epithelial cells, tissue-resident macrophages, and dendritic cells, which self-organize within the tissue, mirroring characteristics of the human intestinal mucosa. A unique aspect of this platform is its capacity to integrate circulating human primary immune cells, enhancing physiological relevance. The model is designed to investigate the intestinal immune system's response to bacterial and fungal colonization and infection. Due to its enlarged cavity size, the model offers diverse functional readouts such as permeation assays, cytokine release, and immune cell infiltration, and is compatible with immunofluorescence measurement of 3D structures formed by the epithelial cell layer. It hereby provides comprehensive insights into cell differentiation and function. The intestine-on-chip platform has demonstrated its potential in elucidating complex interactions between surrogates of a living microbiota and human host tissue within a microphysiological perfused biochip platform.


Assuntos
Mucosa Intestinal , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/citologia , Células CACO-2 , Células Endoteliais da Veia Umbilical Humana , Imunidade nas Mucosas/imunologia , Dispositivos Lab-On-A-Chip , Células Dendríticas/imunologia , Células Dendríticas/citologia , Macrófagos/imunologia , Macrófagos/citologia
10.
Bull Exp Biol Med ; 176(5): 672-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38733483

RESUMO

A culture of cells expressing markers of mesenchymal stem cells (MSC) (CD73, CD90, CD44, CD29, and CD49b), but not hematopoietic cell markers, and capable of multilineage differentiation was isolated from the deciduous tooth pulp. Co-culturing with immature dendritic cells in the presence of LPS did not reveal an ability of the MSC to suppress the maturation of dendritic cells. On the contrary, co-culturing of MSC with monocytes in the presence of granulocyte-macrophage CSF and IL-4 led to complete suppression of monocyte differentiation into dendritic cells. However, long-term culturing of MSC from dental pulp showed that by the passage 11, they almost completely lose their suppressor ability. These results indicate that the immunological properties of MSC can change during culturing without changing their phenotypic markers. This should be taken into account when creating biomedical cell products.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Células Dendríticas , Polpa Dentária , Células-Tronco Mesenquimais , Dente Decíduo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Polpa Dentária/citologia , Células Dendríticas/citologia , Humanos , Dente Decíduo/citologia , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia
11.
Cell Mol Immunol ; 21(7): 752-769, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822080

RESUMO

The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.


Assuntos
Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular , Células Dendríticas , Homeostase , Fatores Reguladores de Interferon , Camundongos Endogâmicos C57BL , Fatores de Transcrição , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Transcrição Gênica , Apoptose , RNA Polimerase II/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Knockout , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia
12.
Cytometry A ; 105(6): 430-436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634730

RESUMO

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.


Assuntos
Células Dendríticas , Citometria de Fluxo , Imunofenotipagem , Linfócitos T , Humanos , Células Dendríticas/imunologia , Células Dendríticas/citologia , Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Linfócitos T/imunologia , Linfócitos T/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/citologia , Sistema Imunitário/citologia , Fenótipo , Biomarcadores
13.
Cytometry A ; 105(7): 493-500, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38651815

RESUMO

Obesity-induced chronic low-grade inflammation, also known as metaflammation, results from alterations of the immune response in metabolic organs and contributes to the development of fatty liver diseases and type 2 diabetes. The diversity of tissue-resident leukocytes involved in these metabolic dysfunctions warrants an in-depth immunophenotyping in order to elucidate disease etiology. Here, we present a 30-color, full spectrum flow cytometry panel, designed to (i) identify the major innate and adaptive immune cell subsets in murine liver and white adipose tissues and (ii) discriminate various tissue-specific myeloid subsets known to contribute to the development of metabolic dysfunctions. This panel notably allows for distinguishing embryonically-derived liver-resident Kupffer cells from newly recruited monocyte-derived macrophages and KCs. Furthermore, several adipose tissue macrophage (ATM) subsets, including perivascular macrophages, lipid-associated macrophages, and pro-inflammatory CD11c+ ATMs, can also be identified. Finally, the panel includes cell-surface markers that have been associated with metabolic activation of different macrophage and dendritic cell subsets. Altogether, our spectral flow cytometry panel allows for an extensive immunophenotyping of murine metabolic tissues, with a particular focus on metabolically-relevant myeloid cell subsets, and can easily be adjusted to include various new markers if needed.


Assuntos
Citometria de Fluxo , Imunofenotipagem , Fígado , Macrófagos , Animais , Citometria de Fluxo/métodos , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Imunofenotipagem/métodos , Fígado/imunologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Inflamação/imunologia , Inflamação/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/imunologia , Masculino
14.
Cell Rep ; 43(4): 114107, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613785

RESUMO

The production of type 1 conventional dendritic cells (cDC1s) requires high expression of the transcription factor IRF8. Three enhancers at the Irf8 3' region function in a differentiation stage-specific manner. However, whether and how these enhancers interact physically and functionally remains unclear. Here, we show that the Irf8 3' enhancers directly interact with each other and contact the Irf8 gene body during cDC1 differentiation. The +56 kb enhancer, which functions from multipotent progenitor stages, activates the other 3' enhancers through an IRF8-dependent transcription factor program, that is, in trans. Then, the +32 kb enhancer, which operates in cDC1-committed cells, reversely acts in cis on the other 3' enhancers to maintain the high expression of Irf8. Indeed, mice with compound heterozygous deletion of the +56 and +32 kb enhancers are unable to generate cDC1s. These results illustrate how multiple enhancers cooperate to induce a lineage-determining transcription factor gene during cell differentiation.


Assuntos
Diferenciação Celular , Células Dendríticas , Elementos Facilitadores Genéticos , Fatores Reguladores de Interferon , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Animais , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Camundongos , Camundongos Endogâmicos C57BL
15.
Nature ; 627(8003): 399-406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448581

RESUMO

Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.


Assuntos
Linfócitos B , Linfócitos T CD8-Positivos , Comunicação Celular , Células Dendríticas , Células Epiteliais , Células T Auxiliares Foliculares , Linfócitos T Reguladores , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Ligantes , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células T Auxiliares Foliculares/citologia , Células T Auxiliares Foliculares/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Centro Germinativo/citologia , Análise da Expressão Gênica de Célula Única , Células Epiteliais/citologia , Células Epiteliais/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Especificidade de Órgãos
16.
ACS Appl Mater Interfaces ; 15(14): 17577-17591, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976830

RESUMO

Migrating neutrophils are found to leave behind subcellular trails in vivo, but the underlying mechanisms remain unclear. Here, an in vitro cell migration test plus an in vivo observation was applied to monitor neutrophil migration on intercellular cell adhesion molecule-1 (ICAM-1) presenting surfaces. Results indicated that migrating neutrophils left behind long-lasting, chemokine-containing trails. Trail formation tended to alleviate excessive cell adhesion enhanced by the trans-binding antibody and maintain efficient cell migration, which was associated with differential instantaneous edge velocity between the cell front and rear. CD11a and CD11b worked differently in inducing trail formation with polarized distributions on the cell body and uropod. Trail release at the cell rear was attributed to membrane ripping, in which ß2-integrin was disrupted from the cell membrane through myosin-mediated rear contraction and integrin-cytoskeleton dissociation, potentiating a specialized strategy of integrin loss and cell deadhesion to maintain efficient migration. Moreover, neutrophil trails left on the substrate served as immune forerunners to recruit dendritic cells. These results provided an insight in elucidating the mechanisms of neutrophil trail formation and deciphering the roles of trail formation in efficient neutrophil migration.


Assuntos
Movimento Celular , Neutrófilos , Adesão Celular , Neutrófilos/citologia , Neutrófilos/metabolismo , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células Cultivadas , Espectroscopia de Infravermelho com Transformada de Fourier , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo
17.
J Virol ; 96(18): e0124022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094317

RESUMO

Viruses have evolved numerous strategies to impair immunity so that they can replicate more efficiently. Among those, the immunosuppressive effects of morbillivirus infection can be particularly problematic, as they allow secondary infections to take hold in the host, worsening disease prognosis. In the present work, we hypothesized that the highly contagious morbillivirus peste des petits ruminants virus (PPRV) could target monocytes and dendritic cells (DC) to contribute to the immunosuppressive effects produced by the infection. Monocytes isolated from healthy sheep, a natural host of the disease, were able be infected by PPRV and this impaired the differentiation and phagocytic ability of immature monocyte-derived DC (MoDC). We also assessed PPRV capacity to infect differentiated MoDC. Ovine MoDC could be productively infected by PPRV, and this drastically reduced MoDC capacity to activate allogeneic T cell responses. Transcriptomic analysis of infected MoDC indicated that several tolerogenic DC signature genes were upregulated upon PPRV infection. Furthermore, PPRV-infected MoDC could impair the proliferative response of autologous CD4+ and CD8+ T cell to the mitogen concanavalin A (ConA), which indicated that DC targeting by the virus could promote immunosuppression. These results shed new light on the mechanisms employed by morbillivirus to suppress the host immune responses. IMPORTANCE Morbilliviruses pose a threat to global health given their high infectivity. The morbillivirus peste des petits ruminants virus (PPRV) severely affects small-ruminant-productivity and leads to important economic losses in communities that rely on these animals for subsistence. PPRV produces in the infected host a period of severe immunosuppression that opportunistic pathogens exploit, which worsens the course of the infection. The mechanisms of PPRV immunosuppression are not fully understood. In the present work, we demonstrate that PPRV can infect professional antigen-presenting cells called dendritic cells (DC) and disrupt their capacity to elicit an immune response. PPRV infection promoted a DC activation profile that favored the induction of tolerance instead of the activation of an antiviral immune response. These results shed new light on the mechanisms employed by morbilliviruses to suppress the immune responses.


Assuntos
Células Dendríticas , Ativação Linfocitária , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Antivirais , Diferenciação Celular , Concanavalina A/genética , Concanavalina A/imunologia , Células Dendríticas/citologia , Células Dendríticas/virologia , Cabras , Terapia de Imunossupressão , Ativação Linfocitária/imunologia , Mitógenos/imunologia , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/virologia , Fenótipo , Ovinos , Linfócitos T/imunologia , Linfócitos T/virologia
18.
Cell Death Dis ; 13(8): 739, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030251

RESUMO

Inflammasomes are multiprotein platforms responsible for the release of pro-inflammatory cytokines interleukin (IL)-1ß and IL-18. Mouse studies have identified inflammasome activation within dendritic cells (DC) as pivotal for driving tubulointerstitial fibrosis and inflammation, the hallmarks of chronic kidney disease (CKD). However, translation of this work to human CKD remains limited. Here, we examined the complex tubular cell death pathways mediating inflammasome activation in human kidney DC and, thus, CKD progression. Ex vivo patient-derived proximal tubular epithelial cells (PTEC) cultured under hypoxic (1% O2) conditions modelling the CKD microenvironment showed characteristics of ferroptotic cell death, including mitochondrial dysfunction, reductions in the lipid repair enzyme glutathione peroxidase 4 (GPX4) and increases in lipid peroxidation by-product 4-hydroxynonenal (4-HNE) compared with normoxic PTEC. The addition of ferroptosis inhibitor, ferrostatin-1, significantly reduced hypoxic PTEC death. Human CD1c+ DC activated in the presence of hypoxic PTEC displayed significantly increased production of inflammasome-dependent cytokines IL-1ß and IL-18. Treatment of co-cultures with VX-765 (caspase-1/4 inhibitor) and MCC950 (NLRP3 inflammasome inhibitor) significantly attenuated IL-1ß/IL-18 levels, supporting an NLRP3 inflammasome-dependent DC response. In line with these in vitro findings, in situ immunolabelling of human fibrotic kidney tissue revealed a significant accumulation of tubulointerstitial CD1c+ DC containing active inflammasome (ASC) specks adjacent to ferroptotic PTEC. These data establish ferroptosis as the primary pattern of PTEC necrosis under the hypoxic conditions of CKD. Moreover, this study identifies NLRP3 inflammasome signalling driven by complex tubulointerstitial PTEC-DC interactions as a key checkpoint for therapeutic targeting in human CKD.


Assuntos
Células Dendríticas , Células Epiteliais , Ferroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR , Insuficiência Renal Crônica , Antígenos CD1 , Caspase 1 , Citocinas , Células Dendríticas/citologia , Células Epiteliais/citologia , Fibrose , Glicoproteínas , Humanos , Inflamassomos , Interleucina-18 , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Insuficiência Renal Crônica/patologia
19.
Proc Natl Acad Sci U S A ; 119(34): e2207009119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969760

RESUMO

Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.


Assuntos
Montagem e Desmontagem da Cromatina , Células Dendríticas , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/citologia , Regulação da Expressão Gênica , Camundongos
20.
J Control Release ; 349: 18-31, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780954

RESUMO

Tumor immunotherapy has emerged as a promising approach to tumor treatment. Currently, immune adjuvant-based therapeutic modalities are rarely curative in solid tumors owing to challenges including the low permeability and extremely poor water solubility of these adjuvants, limiting their ability to effectively promote dendritic cell (DC) maturation. Herein, we employed ultrasound-mediated cavitation (UMC) to promote the delivery of Toll-like receptor agonist (R837)-loaded pH-responsive liposomes (PEOz-Lip@R837) to tumors. The tumor-associated antigens (TAAs) produced by UMC treatment exhibited vaccinal activity, particularly in the presence of immune adjuvants, together promoting the maturation of DC and inducing cytokine production. Importantly, UMC can down-regulate immune checkpoint molecules, like Cd274, Foxp3 and Ctla4, synergistically stimulating the activation and proliferation of T cells in the body to facilitate tumor treatment. This UMC-enhanced PEOz-Lip@R837 approach was able to induce a robust antitumor immune response capable of arresting primary and distant tumor growth, while also developing immunological memory, protecting against tumor rechallenge following initial tumor clearance. Overall, these results highlight a promising UMC- and pH-sensitive immune adjuvant delivery-based treatment for tumors with the potential for clinical application.


Assuntos
Células Dendríticas , Lipossomos , Neoplasias , Linfócitos T , Adjuvantes Imunológicos/farmacologia , Antígeno CTLA-4 , Citocinas , Células Dendríticas/citologia , Fatores de Transcrição Forkhead , Humanos , Imiquimode/farmacologia , Proteínas de Checkpoint Imunológico , Imunoterapia/métodos , Ativação Linfocitária , Neoplasias/terapia , Linfócitos T/citologia , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...