Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520398

RESUMO

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.


Assuntos
Arginase/fisiologia , Neoplasias da Mama/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Tolerância Imunológica , Células Mieloides/enzimologia , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , AMP Cíclico/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 12: 628156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046031

RESUMO

Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer's disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM restriction during amyloidosis affects fundamental neurodegenerative pathways at the transcriptome level. By applying several bioinformatic tools and analyses, we found that amyloid-ß (Aß) stimulated transcriptomic signatures in autophagy-related pathways and myeloid cells' inflammatory response. At the same time, myeloid Arg1 deficiency during amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of myeloid cells. Focusing on Aß associated glial transcriptomic signatures, we found myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with Aß plaque burden. We also observed that Aß preferentially activated disease-associated microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency selectively promoted homeostatic microglial signature that is non-phagocytic. These transcriptomic findings suggest a critical role for proper Arg1 function during normal and pathological challenges associated with amyloidosis. Furthermore, understanding pathways that govern Arg1 metabolism may provide new therapeutic opportunities to rebalance immune function and improve microglia/macrophage fitness.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Arginase/metabolismo , Encéfalo/enzimologia , Perfilação da Expressão Gênica , Microglia/enzimologia , Células Mieloides/enzimologia , Degeneração Neural , Transcriptoma , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Arginase/genética , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Haploinsuficiência , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Mutação , Células Mieloides/patologia
3.
Blood ; 137(26): 3591-3594, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971000

RESUMO

VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease of adulthood caused by somatic mutations in UBA1 in hematopoietic progenitor cells. Patients develop inflammatory and hematologic symptoms. Myeloid-driven autoinflammation and progressive bone marrow failure lead to substantial morbidity and mortality. Effective medical treatments need to be identified. Reports in the current issue of Blood describe novel UBA1 genetic variants, treatment options, and insight into disease pathophysiology. VEXAS syndrome represents a prototype for a new class of diseases.


Assuntos
Genes Ligados ao Cromossomo X , Doenças Genéticas Inatas , Mutação , Transtornos Mieloproliferativos , Enzimas Ativadoras de Ubiquitina/genética , Células Eritroides/enzimologia , Doenças Genéticas Inatas/diagnóstico por imagem , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Humanos , Masculino , Células Mieloides/enzimologia , Transtornos Mieloproliferativos/diagnóstico por imagem , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Síndrome
4.
Basic Res Cardiol ; 116(1): 31, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33929610

RESUMO

Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.


Assuntos
Artérias/enzimologia , Encéfalo/enzimologia , Encefalite/prevenção & controle , Microglia/enzimologia , Muramidase/deficiência , Células Mieloides/enzimologia , Ruído dos Transportes/efeitos adversos , Doenças Vasculares Periféricas/prevenção & controle , Aeronaves , Animais , Artérias/fisiopatologia , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/enzimologia , Encefalite/etiologia , Encefalite/patologia , Deleção de Genes , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Muramidase/genética , Estresse Oxidativo , Doenças Vasculares Periféricas/enzimologia , Doenças Vasculares Periféricas/etiologia , Doenças Vasculares Periféricas/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
6.
Basic Res Cardiol ; 116(1): 7, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523326

RESUMO

A preclinical model of troponin I-induced myocarditis (AM) revealed a prominent role of the immunoproteasome (ip), the main immune cell-resident proteasome isoform, in heart-directed autoimmunity. Viral infection of the heart is a known trigger of cardiac autoimmunity, with the ip enhancing systemic inflammatory responses after infection with a cardiotropic coxsackievirusB3 (CV). Here, we used ip-deficient A/J-LMP7-/- mice to investigate the role of ip-mediated effects on adaptive immunity in CV-triggered myocarditis and found no alteration of the inflammatory heart tissue damage or cardiac function in comparison to wild-type controls. Aiming to define the impact of the systemic inflammatory storm under the control of ip proteolysis during CV infection, we targeted the ip in A/J mice with the inhibitor ONX 0914 after the first cycle of infection, when systemic inflammation has set in, well before cardiac inflammation. During established acute myocarditis, the ONX 0914 treatment group had the same reduction in cardiac output as the controls, with inflammatory responses in heart tissue being unaffected by the compound. Based on these findings and with regard to the known anti-inflammatory role of ONX 0914 in CV infection, we conclude that the efficacy of ip inhibitors for CV-triggered myocarditis in A/J mice relies on their immunomodulatory effects on the systemic inflammatory reaction.


Assuntos
Anti-Inflamatórios/farmacologia , Infecções por Coxsackievirus/tratamento farmacológico , Inflamação/tratamento farmacológico , Células Mieloides/efeitos dos fármacos , Miocardite/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Células Cultivadas , Infecções por Coxsackievirus/enzimologia , Infecções por Coxsackievirus/imunologia , Modelos Animais de Doenças , Enterovirus Humano B/imunologia , Enterovirus Humano B/patogenicidade , Interações Hospedeiro-Patógeno , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/virologia , Masculino , Camundongos Knockout , Células Mieloides/enzimologia , Células Mieloides/imunologia , Células Mieloides/virologia , Miocardite/enzimologia , Miocardite/imunologia , Miocardite/virologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/virologia , Complexo de Endopeptidases do Proteassoma/genética , Proteólise
7.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562184

RESUMO

The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.


Assuntos
Linhagem da Célula , Monócitos/enzimologia , Células Mieloides/enzimologia , Serina Proteases/metabolismo , Animais , Catepsina G/metabolismo , Humanos , Elastase de Leucócito/metabolismo , Monócitos/citologia , Mieloblastina/metabolismo , Células Mieloides/citologia
8.
Cardiovasc Res ; 117(1): 162-177, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077922

RESUMO

AIMS: Heart failure (HF) ensuing myocardial infarction (MI) is characterized by the initiation of a systemic inflammatory response. We aimed to elucidate the impact of myelomonocytic cells and their activation by angiotensin II on vascular endothelial function in a mouse model of HF after MI. METHODS AND RESULTS: HF was induced in male C57BL/6J mice by permanent ligation of the left anterior descending coronary artery. Compared to sham, HF mice had significantly impaired endothelial function accompanied by enhanced mobilization of Sca-1+c-Kit+ haematopoietic stem cells and Sca-1-c-Kit+ common myeloid and granulocyte-macrophage progenitors in the bone marrow as well as increased vascular infiltration of CD11b+Ly6G-Ly6Chigh monocytes and accumulation of CD11b+ F4/80+ macrophages, assessed by flow cytometry. Using mice with Cre-inducible expression of diphtheria toxin receptor in myeloid cells, we selectively depleted lysozyme M+ myelomonocytic cells for 10 days starting 28 days after MI. While the cardiac phenotype remained unaltered until 38 days post-MI, myeloid cell depletion attenuated vascular accumulation of Nox2+CD45+ cells, endothelial dysfunction, oxidative stress, and vascular expression of adhesion molecules and angiotensin II receptor type 1 (AT1R). Pharmacological blockade of this receptor for 4 weeks did not significantly alter cardiac function, but mimicked the effects of myeloid cell depletion: telmisartan (20 mg/kg/day, fed to C57BL/6J mice) diminished bone marrow myelopoesis and myeloid reactive oxygen species production, attenuated endothelial leucocyte rolling and vascular accumulation of CD11b+Ly6G-Ly6Chigh monocytes and macrophages, resulting in improved vascular function with less abundance of Nox2+CD45+ cells. CONCLUSION: Endothelial dysfunction in HF ensuing MI is mediated by inflammatory Nox2+ myeloid cells infiltrating the vessel wall that can be targeted by AT1R blockade.


Assuntos
Angiotensina II/metabolismo , Células Endoteliais/metabolismo , Insuficiência Cardíaca/etiologia , Células Mieloides/enzimologia , Infarto do Miocárdio/complicações , NADPH Oxidase 2/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Vasculite/etiologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/imunologia , Migração e Rolagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Muramidase/genética , Muramidase/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/imunologia , Estresse Oxidativo , Transdução de Sinais , Telmisartan/farmacologia , Vasculite/tratamento farmacológico , Vasculite/enzimologia , Vasculite/imunologia
9.
Oxid Med Cell Longev ; 2020: 7095902, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312338

RESUMO

The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.


Assuntos
Carcinogênese , Leucemia , Mutação , NADPH Oxidase 2 , Proteínas de Neoplasias , Espécies Reativas de Oxigênio , Microambiente Tumoral , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/metabolismo , Humanos , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/imunologia , Leucemia/enzimologia , Leucemia/genética , Leucemia/imunologia , Linfócitos do Interstício Tumoral/enzimologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/enzimologia , Células Mieloides/imunologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , NADPH Oxidase 2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
10.
Front Immunol ; 11: 938, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499785

RESUMO

Amino acid metabolism is a critical regulator of the immune response, and its modulating becomes a promising approach in various forms of immunotherapy. Insufficient concentrations of essential amino acids restrict T-cells activation and proliferation. However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and ARG2, have been found to be present in tumors and their increased activity usually correlates with more advanced disease and worse clinical prognosis. Nearly all types of myeloid cells were reported to produce arginases and the increased numbers of various populations of myeloid-derived suppressor cells and macrophages correlate with inferior clinical outcomes of cancer patients. Here, we describe the role of arginases produced by myeloid cells in regulating various populations of immune cells, discuss molecular mechanisms of immunoregulatory processes involving L-arginine metabolism and outline therapeutic approaches to mitigate the negative effects of arginases on antitumor immune response. Development of potent arginase inhibitors, with improved pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies based on targeting immunoregulatory pathways controlled by L-arginine degradation.


Assuntos
Arginase/imunologia , Arginina/metabolismo , Células Mieloides/enzimologia , Neoplasias/imunologia , Animais , Antineoplásicos/uso terapêutico , Arginase/antagonistas & inibidores , Ensaios Clínicos como Assunto , Humanos , Macrófagos/imunologia , Camundongos , Células Progenitoras Mieloides/metabolismo , Neoplasias/tratamento farmacológico
11.
Cell Death Dis ; 11(5): 305, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366830

RESUMO

Death-associated protein kinase 1 (DAPK1, DAPk, DAPK) is known for its involvement in apoptosis and autophagy-associated cell death. Here, we identified an unexpected function of DAPK1 in suppressing necroptosis. DAPK1-deficiency renders macrophages and dendritic cells susceptible to necroptotic death. We also observed an inhibitory role for DAPK1 in necroptosis in HT-29 cells, since knockdown or knockout of DAPK1 in such cells increased their sensitivity to necroptosis. Increased necroptosis was associated with enhanced formation of the RIPK1-RIPK3-MLKL complex in these DAPK1-deficient cells. We further found that DAPK1-deficiency led to decreased MAPK activated kinase 2 (MK2) activation and reduced RIPK1 S321 phosphorylation, with this latter representing a critical step controlling necrosome formation. Most TNF signaling pathways, including ERK, JNK, and AKT, were not regulated by DAPK. In contrast, DAPK bound p38 MAPK and selectively promoted p38 MAPK activation, resulting in enhanced MK2 phosphorylation. Our results reveal a novel role for DAPK1 in inhibiting necroptosis and illustrate an unexpected selectivity for DAPK1 in promoting p38 MAPK-MK2 activation. Importantly, our study suggests that modulation of necroptosis and p38/MK2-mediated inflammation may be achieved by targeting DAPK1.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Necroptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Caspase 8/metabolismo , Sobrevivência Celular , Proteínas Quinases Associadas com Morte Celular/deficiência , Regulação para Baixo , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas/metabolismo , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/enzimologia , Células Mieloides/patologia , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Choque Séptico/metabolismo , Choque Séptico/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa
12.
J Immunol ; 204(8): 2088-2097, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32188756

RESUMO

DNase 1-like 3 (DNase1L3), which belongs to DNase1 family, was originally identified as one of apoptosis- and necrosis-related endonucleases that fragmentate intranucleosomal DNA. A loss-of-function mutation has been reported in murine models of systemic lupus erythematosus (SLE) and in familial SLE patients. These reports suggest DNase1L3 plays an important role in the prevention of developing SLE; however, expression and function of DNase1L3 in human immune systems have been largely unclarified. As previous reports showed DNase1L3 is expressed in hematopoietic organs, we first analyzed expression levels of DNase1L3 in each subset of human peripheral blood cells by quantitative real-time PCR. Plasmacytoid dendritic cells showed the highest expression levels of DNase1L3 mRNA among peripheral blood cells. IL-4 enhanced DNase1L3 expression in monocytes, monocyte-derived dendritic cells, and monocyte-derived macrophages (MDMs), but not in T cells, B cells, or plasmacytoid dendritic cells. Together with IL-4, all-trans retinoic acid and apoptotic cells efficiently upregulated expression of DNalse1L3 in MDMs. As a result of intracellular signaling analysis, Jak1-IRS2-ERK/PI3K pathway was essential for IL-4-induced DNase1L3 expression. IL-4-treated monocyte-derived dendritic cells and MDMs secreted active DNase1L3 protein that could degrade liposome-DNA complexes, which were resistant to DNase1. Our results indicate DNase1L3 is secreted by innate immune cells and may play a critical role in the tissue homeostasis and on prevention of developing autoimmunity by degrading self-DNA.


Assuntos
Endodesoxirribonucleases/biossíntese , Homeostase , Células Mieloides/enzimologia , Células Cultivadas , DNA/imunologia , DNA/metabolismo , Endodesoxirribonucleases/genética , Humanos
13.
Mol Neurobiol ; 57(5): 2447-2460, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146679

RESUMO

Microglial dysregulation, pertaining to impairment in phagocytosis, clearance and containment of amyloid-ß (Aß), and activation of neuroinflammation, has been posited to contribute to the pathogenesis of Alzheimer's disease (AD). Detailed cellular mechanisms that are disrupted during the disease course to display such impairment in microglia, however, remain largely undetermined. We hypothesize that loss of hematopoietic cell kinase (HCK), a phagocytosis-regulating member of the Src family tyrosine kinases that mediate signals from triggering receptor expressed on myeloid cells 2 and other immunoreceptors, impairs microglial homeostasis and Aß clearance, leading to the accelerated buildup of Aß pathology and cognitive decline during the early stage of neuropathological development. To elucidate the pivotal role of HCK in AD, we generated a constitutive knockout of HCK in the Tg2576 mouse model of AD. We found that HCK deficiency accelerated cognitive decline along with elevated Aß level and plaque burden, attenuated microglial Aß phagocytosis, induced iNOS expression in microglial clusters, and reduced pre-synaptic protein at the hippocampal regions. Our findings substantiate that HCK plays a prominent role in regulating microglial neuroprotective functions and attenuating early AD neuropathology.


Assuntos
Doença de Alzheimer/enzimologia , Microglia/enzimologia , Proteínas Proto-Oncogênicas c-hck/deficiência , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Comportamento Exploratório , Feminino , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/patologia , Teste do Labirinto Aquático de Morris , Células Mieloides/enzimologia , Neuroimunomodulação , Fagocitose , Placa Amiloide , Proteínas Proto-Oncogênicas c-hck/genética , Reconhecimento Psicológico
14.
Hepatology ; 72(4): 1191-1203, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31953865

RESUMO

BACKGROUND AND AIMS: Indole is a microbiota metabolite that exerts anti-inflammatory responses. However, the relevance of indole to human non-alcoholic fatty liver disease (NAFLD) is not clear. It also remains largely unknown whether and how indole acts to protect against NAFLD. The present study sought to examine the association between the circulating levels of indole and liver fat content in human subjects and explore the mechanisms underlying indole actions in mice with diet-induced NAFLD. APPROACH AND RESULTS: In a cohort of 137 subjects, the circulating levels of indole were reversely correlated with body mass index. In addition, the circulating levels of indole in obese subjects were significantly lower than those in lean subjects and were accompanied with increased liver fat content. At the whole-animal level, treatment of high-fat diet (HFD)-fed C57BL/6J mice with indole caused significant decreases in the severity of hepatic steatosis and inflammation. In cultured cells, indole treatment stimulated the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a master regulatory gene of glycolysis, and suppressed macrophage proinflammatory activation in a PFKFB3-dependent manner. Moreover, myeloid cell-specific PFKFB3 disruption exacerbated the severity of HFD-induced hepatic steatosis and inflammation and blunted the effect of indole on alleviating diet-induced NAFLD phenotype. CONCLUSIONS: Taken together, our results demonstrate that indole is relevant to human NAFLD and capable of alleviating diet-induced NAFLD phenotypes in mice in a myeloid cell PFKFB3-dependent manner. Therefore, indole mimetic and/or macrophage-specific PFKFB3 activation may be the viable preventive and/or therapeutic approaches for inflammation-associated diseases including NAFLD.


Assuntos
Indóis/uso terapêutico , Inflamação/tratamento farmacológico , Células Mieloides/enzimologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfofrutoquinase-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Dieta Hiperlipídica , Feminino , Hepatócitos/metabolismo , Humanos , Indóis/sangue , Indóis/farmacologia , Lipogênese/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
15.
Front Immunol ; 11: 604785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613525

RESUMO

c-Jun N-terminal protein kinase 1 (JNK1) is involved in multiple biological processes but its implication in inflammatory skin diseases is still poorly defined. Herein, we studied the role of JNK1 in the context of Aldara®-induced skin inflammation. We observed that constitutive ablation of JNK1 reduced Aldara®-induced acanthosis and expression of inflammatory markers. Conditional deletion of JNK1 in myeloid cells led to reduced skin inflammation, a finding that was associated with impaired Aldara®-induced inflammasome activation in vitro. Next, we evaluated the specific role of JNK1 in epidermal cells. We observed reduced Aldara®-induced acanthosis despite similar levels of inflammatory markers. Transcriptomic and epigenomic analysis of keratinocytes revealed the potential involvement of JNK1 in the EGFR signaling pathway. Finally, we show that inhibition of the EGFR pathway reduced Aldara®-induced acanthosis. Taken together, these data indicate that JNK1 plays a dual role in the context of psoriasis by regulating the production of inflammatory cytokines by myeloid cells and the sensitivity of keratinocytes to EGFR ligands. These results suggest that JNK1 could represent a valuable therapeutic target in the context of psoriasis.


Assuntos
Receptores ErbB/metabolismo , Queratinócitos/enzimologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Células Mieloides/enzimologia , Psoríase/enzimologia , Pele/enzimologia , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Epigenoma , Receptores ErbB/genética , Feminino , Imiquimode , Mediadores da Inflamação/metabolismo , Queratinócitos/imunologia , Queratinócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Células Mieloides/imunologia , Psoríase/induzido quimicamente , Psoríase/imunologia , Psoríase/patologia , Transdução de Sinais , Pele/imunologia , Pele/patologia , Transcriptoma
16.
Biochem Biophys Res Commun ; 520(3): 573-579, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31615657

RESUMO

BACKGROUND: Macrophages are ubiquitous in all stages of atherosclerosis, exerting tremendous impact on lesion progression and plaque stability. Because macrophages in atherosclerotic plaques express angiotensin-converting enzyme (ACE), current dogma posits that local myeloid-mediated effects worsen the disease. In contrast, we previously reported that myeloid ACE overexpression augments macrophage resistance to various immune challenges, including tumors, bacterial infection and Alzheimer's plaque deposition. Here, we sought to assess the impact of myeloid ACE on atherosclerosis. METHODS: A mouse model in which ACE is overexpressed in myelomonocytic lineage cells, called ACE10, was generated and sequentially crossed with ApoE-deficient mice to create ACE10/10ApoE-/- (ACE10/ApoE). Control mice were ACEWT/WTApoE-/- (WT/ApoE). Atherosclerosis was induced using an atherogenic diet alone, or in combination with unilateral nephrectomy plus deoxycorticosterone acetate (DOCA) salt for eight weeks. RESULTS: With an atherogenic diet alone or in combination with DOCA, the ACE10/ApoE mice showed significantly less atherosclerotic plaques compared to their WT/ApoE counterparts (p < 0.01). When recipient ApoE-/- mice were reconstituted with ACE10/10 bone marrow, these mice showed significantly reduced lesion areas compared to recipients reconstituted with wild type bone marrow. Furthermore, transfer of ACE-deficient bone marrow had no impact on lesion area. CONCLUSION: Our data indicate that while myeloid ACE may not be required for atherosclerosis, enhanced ACE expression paradoxically reduced disease progression.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Células Mieloides/enzimologia , Peptidil Dipeptidase A/metabolismo , Animais , Aterosclerose/genética , Pressão Sanguínea , Transplante de Medula Óssea , Linhagem da Célula/genética , Colesterol/sangue , Dieta Aterogênica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células Mieloides/patologia , Peptidil Dipeptidase A/genética , Regulação para Cima
17.
J Biol Chem ; 294(43): 15836-15849, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31495784

RESUMO

Cholesterol esters are a key ingredient of foamy cells in atherosclerotic lesions; their formation is catalyzed by two enzymes: acyl-CoA:cholesterol acyltransferases (ACATs; also called sterol O-acyltransferases, or SOATs) ACAT1 and ACAT2. ACAT1 is present in all body cells and is the major isoenzyme in macrophages. Whether blocking ACAT1 benefits atherosclerosis has been under debate for more than a decade. Previously, our laboratory developed a myeloid-specific Acat1 knockout (KO) mouse (Acat1-M/-M), devoid of ACAT1 only in macrophages, microglia, and neutrophils. In previous work using the ApoE KO (ApoE-/-) mouse model for early lesions, Acat1-M/-M significantly reduced lesion macrophage content and suppressed atherosclerosis progression. In advanced lesions, cholesterol crystals become a prominent feature. Here we evaluated the effects of Acat1-M/-M in the ApoE KO mouse model for more advanced lesions and found that mice lacking myeloid Acat1 had significantly reduced lesion cholesterol crystal contents. Acat1-M/-M also significantly reduced lesion size and macrophage content without increasing apoptotic cell death. Cell culture studies showed that inhibiting ACAT1 in macrophages caused cells to produce less proinflammatory responses upon cholesterol loading by acetyl low-density lipoprotein. In advanced lesions, Acat1-M/-M reduced but did not eliminate foamy cells. In advanced plaques isolated from ApoE-/- mice, immunostainings showed that both ACAT1 and ACAT2 are present. In cell culture, both enzymes are present in macrophages and smooth muscle cells and contribute to cholesterol ester biosynthesis. Overall, our results support the notion that targeting ACAT1 or targeting both ACAT1 and ACAT2 in macrophages is a novel strategy to treat advanced lesions.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Inflamação/patologia , Macrófagos Peritoneais/enzimologia , Células Mieloides/enzimologia , Esterol O-Aciltransferase/metabolismo , Animais , Apolipoproteínas E , Apoptose , Aterosclerose/patologia , Colesterol/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Inativação Gênica , Hidroxicolesteróis/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Células Mieloides/patologia , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
18.
J Am Soc Nephrol ; 30(9): 1674-1685, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315922

RESUMO

BACKGROUND: Following an acute insult, macrophages regulate renal fibrogenesis through the release of various factors that either encourage the synthesis of extracellular matrix synthesis or the degradation of matrix via endocytosis, proteolysis, or both. However, the roles of infiltrating versus resident myeloid cells in these opposing processes require elucidation. The transcription factor Twist1 controls diverse essential cellular functions through induction of several downstream targets, including matrix metalloproteinases (MMPs). In macrophages, Twist1 can influence patterns of cytokine generation, but the role of macrophage Twist1 in renal fibrogenesis remains undefined. METHODS: To study Twist1 functions in different macrophage subsets during kidney scar formation, we used two conditional mutant mouse models in which Twist1 was selectively ablated either in infiltrating, inflammatory macrophages or in resident tissue macrophages. We assessed fibrosis-related parameters, matrix metallopeptidase 13 (MMP13, or collagen 3, which catalyzes collagen degradation), inflammatory cytokines, and other factors in these Twist1-deficient mice compared with wild-type controls after subjecting the animals to unilateral ureteral obstruction. We also treated wild-type and Twist1-deficient mice with an MMP13 inhibitor after unilateral ureteral obstruction. RESULTS: Twist1 in infiltrating inflammatory macrophages but not in resident macrophages limited kidney fibrosis after ureteral obstruction by driving extracellular matrix degradation. Moreover, deletion of Twist1 in infiltrating macrophages attenuated the expression of MMP13 in CD11b+Ly6Clo myeloid cells. Inhibition of MMP13 abrogated the protection from renal fibrosis afforded by macrophage Twist1. CONCLUSIONS: Twist1 in infiltrating myeloid cells mitigates interstitial matrix accumulation in the injured kidney by promoting MMP13 production, which drives extracellular matrix degradation. These data highlight the complex cell-specific actions of Twist1 in the pathogenesis of kidney fibrosis.


Assuntos
Matriz Extracelular/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Rim/patologia , Macrófagos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Actinas/metabolismo , Animais , Benzofuranos/farmacologia , Receptor 1 de Quimiocina CX3C/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Expressão Gênica , Hidroxiprolina/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Macrófagos Peritoneais/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Morfolinas/farmacologia , Células Mieloides/enzimologia , Proteína 1 Relacionada a Twist/genética , Obstrução Ureteral/complicações
19.
Am J Physiol Heart Circ Physiol ; 317(2): H364-H374, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149833

RESUMO

Reduced vasodilator properties of insulin in obesity are caused by changes in perivascular adipose tissue and contribute to microvascular dysfunction in skeletal muscle. The causes of this dysfunction are unknown. The effects of a short-term Western diet on JNK2-expressing cells in perivascular adipose tissue (PVAT) on insulin-induced vasodilation and perfusion of skeletal muscle were assessed. In vivo, 2 wk of Western diet (WD) reduced whole body insulin sensitivity and insulin-stimulated muscle perfusion, determined using contrast ultrasonography during the hyperinsulinemic clamp. Ex vivo, WD triggered accumulation of PVAT in skeletal muscle and blunted its ability to facilitate insulin-induced vasodilation. Labeling of myeloid cells with green fluorescent protein identified bone marrow as a source of PVAT in muscle. To study whether JNK2-expressing inflammatory cells from bone marrow were involved, we transplanted JNK2-/- bone marrow to WT mice. Deletion of JNK2 in bone marrow rescued the vasodilator phenotype of PVAT during WD exposure. JNK2 deletion in myeloid cells prevented the WD-induced increase in F4/80 expression. Even though WD and JNK2 deletion resulted in specific changes in gene expression of PVAT; epididymal and subcutaneous adipose tissue; expression of tumor necrosis factor-α, interleukin-1ß, interleukin-6, or protein inhibitor of STAT1 was not affected. In conclusion, short-term Western diet triggers infiltration of JNK2-positive myeloid cells into PVAT, resulting in PVAT dysfunction, nonclassical inflammation, and loss of insulin-induced vasodilatation in vivo and ex vivo.NEW & NOTEWORTHY We demonstrate that in the earliest phase of weight gain, changes in perivascular adipose tissue in muscle impair insulin-stimulated muscle perfusion. The hallmark of these changes is infiltration by inflammatory cells. Deletion of JNK2 from the bone marrow restores the function of perivascular adipose tissue to enhance insulin's vasodilator effects in muscle, showing that the bone marrow contributes to regulation of muscle perfusion.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Resistência à Insulina , Insulina/farmacologia , Microvasos/efeitos dos fármacos , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Músculo Esquelético/irrigação sanguínea , Células Mieloides/enzimologia , Obesidade/enzimologia , Vasodilatação/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Transplante de Medula Óssea , Dieta Hiperlipídica , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/fisiopatologia , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/genética , Obesidade/etiologia , Obesidade/fisiopatologia , Fluxo Sanguíneo Regional , Fatores de Tempo , Aumento de Peso
20.
J Exp Med ; 216(7): 1700-1723, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126966

RESUMO

The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed Regnase-3-deficient mice, which develop hypertrophic lymph nodes. We used various mice with immune cell-specific deletions of Regnase-3 to demonstrate that Regnase-3 acts specifically within myeloid cells. Regnase-3 deficiency systemically increased IFN signaling, which increased the proportion of immature B and innate immune cells, and suppressed follicle and germinal center formation. Expression analysis revealed that Regnase-3 and Regnase-1 share protein degradation pathways. Unlike Regnase-1, Regnase-3 expression is high specifically in macrophages and is transcriptionally controlled by IFN signaling. Although direct targets in macrophages remain unknown, Regnase-3 can bind, degrade, and regulate mRNAs, such as Zc3h12a (Regnase-1), in vitro. These data indicate that Regnase-3, like Regnase-1, is an RNase essential for immune homeostasis but has diverged as key regulator in the IFN pathway in macrophages.


Assuntos
Homeostase/imunologia , Imunidade Inata , Interferons/metabolismo , Células Mieloides/metabolismo , Ribonucleases/metabolismo , Regiões 3' não Traduzidas , Animais , Autoimunidade , Linfócitos B/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Ribonucleases/genética , Transdução de Sinais , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...