Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
1.
Nagoya J Med Sci ; 86(2): 292-303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38962405

RESUMO

Endothelial dysfunction is important in the pathology of pulmonary hypertension, and circulating endothelial progenitor cells (EPCs) have been studied to evaluate endothelial dysfunction. In patients with chronic thromboembolic pulmonary hypertension (CTEPH), riociguat reportedly increases the number of circulating EPCs. However, the relationship between EPC numbers at baseline and changes in clinical parameters after riociguat administration has not been fully elucidated. Here, we evaluated 27 treatment-naïve patients with CTEPH and analyzed the relationships between EPC number at diagnosis and clinical variables (age, hemodynamics, atrial blood gas parameters, brain natriuretic peptide, and exercise tolerance) before and after riociguat initiation. EPCs were defined as CD45dim CD34+ CD133+ cells and measured by flow cytometry. A low number of circulating EPCs at diagnosis was significantly correlated with increased reductions in mean pulmonary arterial pressure (mPAP) (correlation coefficient = 0.535, P = 0.004) and right atrial pressure (correlation coefficient = 0.618, P = 0.001) upon riociguat treatment. We then divided the study population into two groups according to the mPAP change: a weak-response group (a decrease in mPAP of 4 mmHg or less) and a strong-response group (a decrease in mPAP of more than 4 mmHg). The number of EPCs at diagnosis was significantly lower in the strong-response group than in the weak-response group (P = 0.022), but there were no significant differences in other clinical variables or in medication profiles. In conclusion, circulating EPC numbers could be a potential predictor of the therapeutic effect of riociguat in CTEPH patients.


Assuntos
Células Progenitoras Endoteliais , Hipertensão Pulmonar , Pirazóis , Pirimidinas , Humanos , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Hipertensão Pulmonar/tratamento farmacológico , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Idoso , Doença Crônica , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/sangue , Resultado do Tratamento
2.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704134

RESUMO

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Assuntos
Células Progenitoras Endoteliais , Hematopoese , PPAR delta , Espécies Reativas de Oxigênio , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , NADPH Oxidases/metabolismo , PPAR delta/metabolismo , PPAR delta/genética , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo
3.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38697011

RESUMO

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeos Semelhantes ao Glucagon , Glucose , Fragmentos Fc das Imunoglobulinas , Dinâmica Mitocondrial , Proteínas Recombinantes de Fusão , Sirtuína 1 , Animais , Fragmentos Fc das Imunoglobulinas/farmacologia , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Sirtuína 1/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Camundongos , Glucose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Humanos , Isquemia/metabolismo , Isquemia/tratamento farmacológico , Isquemia/patologia
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732080

RESUMO

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Assuntos
Movimento Celular , Proliferação de Células , Di-Hidrotestosterona , Células Progenitoras Endoteliais , Neovascularização Fisiológica , Receptores Androgênicos , Di-Hidrotestosterona/farmacologia , Humanos , Movimento Celular/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Animais , Células Cultivadas , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Androgênios/farmacologia , Androgênios/metabolismo , Masculino
5.
Clin Pharmacol Ther ; 116(1): 128-135, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38529793

RESUMO

Transdermal nicotine patches (TNPs), administering nicotine into the bloodstream through skin, have been widely used as nicotine replacement therapy, and exposure to nicotine can be detected by measurement of plasma cotinine concentration. In animal studies, nicotine treatment could increase the number of endothelial progenitor cells (EPCs), but the effect of TNPs on circulating EPCs and their activity in humans remained unclear. This study aimed to explore the influence of TNPs on circulating EPCs with surface markers of CD34, CD133, and/or KDR, and colony-forming function plus migration activity of early EPCs derived from cultured peripheral blood mononuclear cells before and after TNP treatments in young healthy nonsmokers. In parallel, pulse wave analysis (PWA) was applied to evaluate the vascular effect of TNP treatments. Twenty-one participants (25.8 ± 3.6 years old, 10 males) used TNP (nicotine: 4.2 mg/day) for 7 consecutive days. During the treatment, the CD34+ EPCs progressively increased in number. In addition, the number of EPCs positive for CD34/KDR, CD133, and CD34/CD133 were also increased on day 7 of the treatment. Furthermore, the early EPC colony-forming function and migration activity were increased with the plasma cotinine level positively correlating with change in colony-forming unit number. PWA analyses on day 7, compared with pretreatment, did not show significant change except diastolic pressure time index, which was prolonged and implied potential vascular benefit. In conclusion, 7-day TNP treatments could be a practical strategy to enhance angiogenesis of circulating EPCs to alleviate tissue ischemia without any hemodynamic concern.


Assuntos
Movimento Celular , Cotinina , Células Progenitoras Endoteliais , Hemodinâmica , Nicotina , Adesivo Transdérmico , Humanos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Masculino , Adulto , Nicotina/administração & dosagem , Nicotina/sangue , Feminino , Adulto Jovem , Cotinina/sangue , Movimento Celular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , não Fumantes , Células Cultivadas , Análise de Onda de Pulso , Dispositivos para o Abandono do Uso de Tabaco/efeitos adversos , Administração Cutânea
6.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511325

RESUMO

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glicólise , Membro Posterior , Isquemia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Transdução de Sinais , Animais , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Isquemia/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicólise/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Membro Posterior/irrigação sanguínea , Masculino , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Indutores da Angiogênese/farmacologia , Fragmentos de Peptídeos/farmacologia , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Modelos Animais de Doenças , Incretinas/farmacologia , Angiogênese
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4993-5004, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38183447

RESUMO

Diabetes mellitus (DM) is a metabolic disease with multiple complications, including diabetic cutaneous wounds, which lacks effective treating strategies and severely influences the patients' life. Endothelial progenitor cells (EPCs) are reported to participate in maintaining the normal function of blood vessels, which plays a critical role in diabetic wound healing. TLQP-21 is a VGF-derived peptide with promising therapeutic functions on DM. Herein, the protective effects of TLQP-21 on diabetic cutaneous wound and the underlying mechanism will be investigated. Cutaneous wound model was established in T2DM mice, followed by administering 120 nmol/kg and 240 nmol/kg TLQP-21 once a day for 12 days. Decreased wound closure, reduced number of capillaries and EPCs, declined tube formation function of EPCs, and inactivated PI3K/AKT/eNOS signaling in EPCs were observed in T2DM mice, which were sharply alleviated by TLQP-21. Normal EPCs were extracted from mice and stimulated by high glucose (HG), followed by incubated with TLQP-21 in the presence or absence of LY294002, an inhibitor of PI3K. The declined cell viability, increased apoptotic rate, reduced number of migrated cells, declined migration distance, repressed tube formation function, and inactivated PI3K/AKT/eNOS signaling observed in HG-treated EPCs were markedly reversed by TLQP-21, which were dramatically abolished by the co-culture of LY294002. Collectively, TLQP-21 facilitated diabetic wound healing by inducing angiogenesis through alleviating HG-induced injuries on EPCs.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Glucose , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt , Cicatrização , Animais , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Cicatrização/efeitos dos fármacos , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Fosfatidilinositol 3-Quinases/metabolismo , Fragmentos de Peptídeos/farmacologia , Células Cultivadas , Angiogênese
8.
Korean J Ophthalmol ; 37(1): 31-41, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549303

RESUMO

CONCLUSIONS: Y-27632 enabled the isolation and expansion of HCEPs. It also enhanced the proliferation, viability, and migration of differentiated HCEPs. METHODS: HCEPs were isolated and expanded in a medium with and without 10µM Y-27632, and then differentiated into HCECs in a medium with fetal bovine serum. The characteristics of HCEPs and differentiated HCEPs were confirmed by immunofluorescence staining. The proliferation, viability, morphology, and wound-healing ability of differentiated HCEPs were assessed in the presence of different concentrations of Y-27632. PURPOSE: Human corneal endothelial progenitor cells (HCEPs), which has been selectively isolated and differentiated into human corneal endothelial cells (HCECs), are crucial for repairing corneal endothelial damage. In this study, we evaluated the roles of a Rho-assisted kinase (ROCK) inhibitor, Y-27632, on the isolation and expansion of HCEPs, and assessed the in vitro effects of different concentrations of Y-27632 on the differentiated HCEPs. RESULTS: Y-27632 enabled the isolation and expansion of HCEPs from the corneal endothelium. The differentiated HCEPs showed an optimal increase in proliferation and survival in the presence of 10µM Y-27632. As the concentration of Y-27632 increased, differentiated HCEPs became elongated, and actin filaments were redistributed to the periphery of cells. Y-27632 also caused a concentration-dependent enhancement in the wound-healing ability of differentiated HCEPs.


Assuntos
Células Progenitoras Endoteliais , Quinases Associadas a rho , Humanos , Amidas/farmacologia , Proliferação de Células , Células Cultivadas , Células Progenitoras Endoteliais/efeitos dos fármacos , Endotélio Corneano , Quinases Associadas a rho/antagonistas & inibidores
9.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806336

RESUMO

Oxidized low-density lipoprotein (ox-LDL) is the most harmful form of cholesterol associated with vascular atherosclerosis and hepatic injury, mainly due to inflammatory cell infiltration and subsequent severe tissue injury. Lox-1 is the central ox-LDL receptor expressed in endothelial and immune cells, its activation regulating inflammatory cytokines and chemotactic factor secretion. Recently, a Lox-1 truncated protein isoform lacking the ox-LDL binding domain named LOXIN has been described. We have previously shown that LOXIN overexpression blocked Lox-1-mediated ox-LDL internalization in human endothelial progenitor cells in vitro. However, the functional role of LOXIN in targeting inflammation or tissue injury in vivo remains unknown. In this study, we investigate whether LOXIN modulated the expression of Lox-1 and reduced the inflammatory response in a high-fat-diet mice model. Results indicate that human LOXIN blocks Lox-1 mediated uptake of ox-LDL in H4-II-E-C3 cells. Furthermore, in vivo experiments showed that overexpression of LOXIN reduced both fatty streak lesions in the aorta and inflammation and fibrosis in the liver. These findings were associated with the down-regulation of Lox-1 in endothelial cells. Then, LOXIN prevents hepatic and aortic tissue damage in vivo associated with reduced Lox-1 expression in endothelial cells. We encourage future research to understand better the underlying molecular mechanisms and potential therapeutic use of LOXIN.


Assuntos
Aterosclerose , Células Progenitoras Endoteliais , Ftalazinas , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Camundongos , Ftalazinas/farmacologia , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
10.
Cerebrovasc Dis ; 51(6): 697-705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35512667

RESUMO

BACKGROUND: Ischemic stroke, a common central nervous system disease that seriously threatens human life and health, is characterized by rapid progress and a high disability fatality rate. Ischemic tissue can produce a large amount of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1) to promote the mobilization of endothelial progenitor cells (EPCs). SUMMARY: As newly discovered stem cells, EPCs can promote angiogenesis in ischemic tissue, repair the damaged vascular endothelium, and maintain vascular homeostasis. Thus, EPCs have become a new research hotspot in this field. This review focuses on the mechanism of EPCs and the intervention of various novel drugs, including small molecules and biomolecules, which will promote the capture, proliferation, and differentiation of EPCs. Then, we explore the promotion of vascular health and the prospect of its application in the treatment of cerebral ischemic stroke (CIS). KEY MESSAGE: It is clinically significant to study the potential of new drug therapy to target EPCs. More effective cytokines, signal pathways, and other drugs should be explored in the future and their specific mechanisms determined. Research should reveal more biological functions of EPCs and achieve their efficient amplification to improve therapy against CIS stroke.


Assuntos
Células Progenitoras Endoteliais , AVC Isquêmico , Neovascularização Fisiológica , Humanos , Células Progenitoras Endoteliais/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Commun Biol ; 5(1): 124, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145192

RESUMO

Statins play a major role in reducing circulating cholesterol levels and are widely used to prevent coronary artery disease. Although they are recently confirmed to up-regulate mitophagy, little is known about the molecular mechanisms and its effect on endothelial progenitor cell (EPC). Here, we explore the role and mechanism underlying statin (pitavastatin, PTV)-activated mitophagy in EPC proliferation. ApoE-/- mice are fed a high-fat diet for 8 weeks to induce atherosclerosis. In these mice, EPC proliferation decreases and is accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway. PTV reverses mitophagy and reduction in proliferation. Pink1 knockout or silencing Atg7 blocks PTV-induced proliferation improvement, suggesting that mitophagy contributes to the EPC proliferation increase. PTV elicits mitochondrial calcium release into the cytoplasm and further phosphorylates CAMK1. Phosphorylated CAMK1 contributes to PINK1 phosphorylation as well as mitophagy and mitochondrial function recover in EPCs. Together, our findings describe a molecular mechanism of mitophagy activation, where mitochondrial calcium release promotes CAMK1 phosphorylation of threonine177 before phosphorylation of PINK1 at serine228, which recruits PARK2 and phosphorylates its serine65 to activate mitophagy. Our results further account for the pleiotropic effects of statins on the cardiovascular system and provide a promising and potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Sinalização do Cálcio , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Células Progenitoras Endoteliais , Proteínas Quinases , Quinolinas , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Mitofagia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Quinolinas/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
12.
J Diabetes Res ; 2022: 4067812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155684

RESUMO

Systemic vascular impairment is the most common complication of diabetes. Advanced glycation end products (AGEs) can exacerbate diabetes-related vascular damage by affecting the intima and media through a variety of mechanisms. In the study, we demonstrated that AGEs and their membrane receptor RAGE could induce the differentiation of EPCs into osteoblasts under certain circumstances, thereby promoting accelerated atherosclerosis. Differentiation into osteoblasts was confirmed by positive staining for DiI-acetylated fluorescently labeled low-density lipoprotein and FITC-conjugated Ulex europaeus agglutinin. During differentiation, expression of receptor for AGE (RAGE) was significantly upregulated. This upregulation was attenuated by transfection with RAGE-targeting small interfering (si)RNA. siRNA-mediated knockdown of RAGE expression significantly inhibited the upregulation of AGE-induced calcification-related proteins, such as runt-related transcription factor 2 (RUNX2) and osteoprotegerin (OPG). Additional experiments showed that AGE induction of EPCs significantly induced ERK, p38MAPK, and JNK activation. The AGE-induced upregulation of osteoblast proteins (RUNX2 and OPG) was suppressed by treatment with a p38MAPK inhibitor (SB203580) or JNK inhibitor (SP600125), but not by treatment with an ERK inhibitor (PD98059), which indicated that AGE-induced osteoblast differentiation from EPCs may be mediated by p38MAPK and JNK signaling, but not by ERK signaling. These data suggested that AGEs may bind to RAGE on the EPC membrane to trigger differentiation into osteoblasts. The underlying mechanism appears to involve the p38MAPK and JNK1/2 pathways, but not the ERK1/2 pathway.


Assuntos
Antígenos de Neoplasias/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Osteogênese/genética , Animais , Antígenos de Neoplasias/metabolismo , Medula Óssea , Modelos Animais de Doenças , Células Progenitoras Endoteliais/fisiologia , Produtos Finais de Glicação Avançada/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley/metabolismo
13.
Toxicol Lett ; 359: 31-45, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114313

RESUMO

OBJECTIVES: Tobacco hazard is one of the most severe public health issues in the world. It is believed that smoking is the most important factor leading to chronic obstructive pulmonary disease (COPD). Endothelial progenitor cells (EPCs) originate from the bone marrow and can effectively repair vascular endothelial damage and improve vascular endothelial function. Current studies suggest that EPCs senescence and EPCs depletion exist in smoking-related COPD, but the molecular mechanism remains unclear. METHODS: Co-immunoprecipitation was used to detect the interaction between USP7 and p300. EPCs from smoking COPD patients were isolated, and the expressions of USP7 and p300 were detected by RT-PCR and Western Blot. Different concentrations of cigarette smoke extract (CSE) and USP7 or p300 inhibitors were used to treat EPCs, then the expression of p53, p53 target genes and aging-related genes were detected. Cell Counting Kit - 8 (CCK8) was used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, ß-galactosidase (ß-gal) staining and Lamp1 immunofluorescence was used to detect the proportion of aging cells. COPD mouse models were used to confirm the molecular mechanism. RESULTS: USP7 and p300 interacted with each other, and USP7 affected the protein stability of p300 by regulating the ubiquitination of p300. There existed high expressions of USP7 and p300 proteins in EPCs of smoking COPD patients and COPD mouse model. CSE promoted the high expressions of USP7 and p300 in EPCs. Further studies showed that CSE mediated the USP7/p300-dependent high expression of p53 and activated the expression of p53 target genes especially p21. Activation of p53 - p21 pathway finally inhibited cell activity, led to cell cycle arrest and premature senescence of EPCs. CONCLUSION: CSE mediated up-regulation of USP7 and p300 activated p53 - p21 pathway was a molecular mechanism that might lead to COPD.


Assuntos
Proteína p300 Associada a E1A/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Nicotiana/química , Extratos Vegetais/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumaça , Produtos do Tabaco , Peptidase 7 Específica de Ubiquitina/efeitos dos fármacos , Animais , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Proteína p300 Associada a E1A/metabolismo , Células Progenitoras Endoteliais/metabolismo , Voluntários Saudáveis , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Peptidase 7 Específica de Ubiquitina/metabolismo
14.
Front Immunol ; 12: 757393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867995

RESUMO

Inflammatory memory involves the molecular and cellular 'reprogramming' of innate immune cells following exogenous stimuli, leading to non-specific protection against subsequent pathogen exposure. This phenomenon has now also been described in non-hematopoietic cells, such as human fetal and adult endothelial cells. In this study we mapped the cell-specific DNA methylation profile and the transcriptomic remodelling during the establishment of inflammatory memory in two distinct fetal endothelial cell types - a progenitor cell (ECFC) and a differentiated cell (HUVEC) population. We show that both cell types have a core transcriptional response to an initial exposure to a viral-like ligand, Poly(I:C), characterised by interferon responsive genes. There was also an ECFC specific response, marked by the transcription factor ELF1, suggesting a non-canonical viral response pathway in progenitor endothelial cells. Next, we show that both ECFCs and HUVECs establish memory in response to an initial viral exposure, resulting in an altered subsequent response to lipopolysaccharide. While the capacity to train or tolerize the induction of specific sets of genes was similar between the two cell types, the progenitor ECFCs show a higher capacity to establish memory. Among tolerized cellular pathways are those involved in endothelial barrier establishment and leukocyte migration, both important for regulating systemic immune-endothelial cell interactions. These findings suggest that the capacity for inflammatory memory may be a common trait across different endothelial cell types but also indicate that the specific downstream targets may vary by developmental stage.


Assuntos
Metilação de DNA , Células Progenitoras Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/patologia , Transcriptoma , Animais , Separação Celular , Células Cultivadas , Células Progenitoras Endoteliais/efeitos dos fármacos , Feto/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Recém-Nascido , Inflamação/embriologia , Inflamação/genética , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Subfamília D de Receptores Semelhantes a Lectina de Células NK/biossíntese , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas Nucleares/metabolismo , Poli I-C/farmacologia , RNA/biossíntese , RNA/genética , Fatores de Transcrição/metabolismo
15.
Plast Reconstr Surg ; 148(6): 936e-945e, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644264

RESUMO

BACKGROUND: Endothelial progenitor cells have shown the ability to enhance neovascularization. In this study, the authors tested whether intraosseous delivery of simvastatin could mobilize endothelial progenitor cells and enhance recovery in a hindlimb ischemia model. METHODS: There are eight groups of rats in this study: normal control; type 1 diabetes mellitus control group control without drug intervention; and type 1 diabetes mellitus rats that randomly received intraosseous simvastatin (0, 0.5, or 1 mg) or oral simvastatin administration (0, 20, or 400 mg). All type 1 diabetes mellitus rats had induced hindlimb ischemia. The number of endothelial progenitor cells in peripheral blood, and serum markers, were detected. The recovery of blood flow at 21 days after treatment was used as the main outcome. RESULTS: The authors demonstrated that endothelial progenitor cell mobilization was increased in the simvastatin 0.5- and 1-mg groups compared with the type 1 diabetes mellitus control and simvastatin 0-mg groups at 1, 2, and 3 weeks. Serum vascular endothelial growth factor levels were significantly increased at 2 weeks in the simvastatin 0.5- and 1-mg groups, in addition to the increase of the blood flow and the gastrocnemius weight at 3 weeks. Similar increase can also been seen in simvastatin 400 mg orally but not in simvastatin 20 mg orally. CONCLUSION: These findings demonstrate that a single intraosseous administration of simvastatin mobilized endothelial progenitor cells at a dose one-hundredth of the required daily oral dose in rats, and this potent mobilization of endothelial progenitor cells markedly improved diabetic limb ischemia by means of neovascularization.


Assuntos
Isquemia Crônica Crítica de Membro/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Células Progenitoras Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Sinvastatina/administração & dosagem , Animais , Isquemia Crônica Crítica de Membro/etiologia , Circulação Colateral/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/induzido quimicamente , Células Progenitoras Endoteliais/fisiologia , Membro Posterior/irrigação sanguínea , Humanos , Infusões Intraósseas , Masculino , Ratos , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
16.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575860

RESUMO

Immunosuppressants are a mandatory therapy for transplant patients to avoid rejection of the transplanted organ by the immune system. However, there are several known side effects, including alterations of the vasculature, which involve a higher occurrence of cardiovascular events. While the effects of the commonly applied immunosuppressive drugs cyclosporine A (CsA) and tacrolimus (Tac) on mature endothelial cells have been addressed in several studies, we focused our research on the unexplored effects of CsA and Tac on endothelial colony-forming cells (ECFCs), a subgroup of endothelial progenitor cells, which play an important role in vascular repair and angiogenesis. We hypothesized that CsA and Tac induce functional defects and activate an inflammatory cascade via NF-κB signaling in ECFCs. ECFCs were incubated with different doses (0.01 µM-10 µM) of CsA or Tac. ECFC function was determined using in vitro models. The expression of inflammatory cytokines and adhesion molecules was explored by quantitative real-time PCR and flow cytometry. NF-κB subunit modification was assessed by immunoblot and immunofluorescence. CsA and Tac significantly impaired ECFC function, including proliferation, migration, and tube formation. TNF-α, IL-6, VCAM, and ICAM mRNA expression, as well as PECAM and VCAM surface expression, were enhanced. Furthermore, CsA and Tac led to NF-κB p65 subunit phosphorylation and nuclear translocation. Pharmacological inhibition of NF-κB by parthenolide diminished CsA- and Tac-mediated proinflammatory effects. The data of functional impairment and activation of inflammatory signals provide new insight into mechanisms associated with CsA and Tac and cardiovascular risk in transplant patients.


Assuntos
Ciclosporina/farmacologia , Células Endoteliais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , Tacrolimo/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/imunologia , Movimento Celular , Proliferação de Células , Quimiotaxia , Citocinas/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Imunossupressores , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Neovascularização Patológica , Sesquiterpenos/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
J Diabetes Res ; 2021: 6626627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557552

RESUMO

BACKGROUND: Circulating endothelial progenitor cells (EPCs) play important roles in vascular repair. However, the mechanisms of high-glucose- (HG-) induced cord blood EPC senescence and the role of B2 receptor (B2R) remain unknown. METHODS: Cord blood samples from 26 patients with gestational diabetes mellitus (GDM) and samples from 26 healthy controls were collected. B2R expression on circulating CD34+ cells of cord blood mononuclear cells (CBMCs) was detected using flow cytometry. The plasma concentrations of 8-isoprostaglandin F2α (8-iso-PGF2α) and nitric oxide (NO) were measured. EPCs were treated with HG (40 mM) alone or with bradykinin (BK) (1 nM). The B2R and eNOS small interfering RNAs (siRNAs) and the PI3K antagonist LY294002 were added to block B2R, eNOS, and PI3K separately. To determine the number of senescent cells, senescence-associated ß-galactosidase (SA-ß-gal) staining was performed. The level of mitochondrial reactive oxygen species (ROS) in EPCs was assessed by Mito-Sox staining. Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assays. Mitochondrial DNA (mtDNA) copy number and the relative length of telomeres were detected by real time-PCR. The distribution of human telomerase reverse transcriptase (hTERT) in the nucleus, cytosol, and mitochondria of EPCs was detected by immunofluorescence. The expression of B2R, p16, p21, p53, P-Ser473AKT, T-AKT, eNOS, and hTERT was demonstrated by Western blot. RESULTS: B2R expression on circulating CD34+ cells of CBMCs was significantly reduced in patients with GDM compared to healthy controls. Furthermore, B2R expression on circulating CD34+ cells of CBMCs was inversely correlated with plasma 8-iso-PGF2α concentrations and positively correlated with plasma NO levels. BK treatment decreased EPC senescence and ROS generation. Furthermore, BK treatment of HG-exposed cells led to elevated P-Ser473AKT and eNOS protein expression compared with HG treatment alone. BK reduced hTERT translocation in HG-induced senescent EPCs. B2R siRNA, eNOS siRNA, and antagonist of the PI3K signalling pathway blocked the protective effects of BK. CONCLUSION: BK, acting through PI3K-AKT-eNOS signalling pathways, reduced hTERT translocation, increased the relative length of telomeres while reducing mtDNA copy number, and finally protected against EPC senescence induced by HG.


Assuntos
Bradicinina/farmacologia , Senescência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Receptor B2 da Bradicinina/metabolismo , Estudos de Casos e Controles , Células Cultivadas , DNA Mitocondrial/genética , Diabetes Gestacional , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Células Progenitoras Endoteliais/citologia , Feminino , Sangue Fetal , Dosagem de Genes , Glucose/farmacologia , Humanos , Recém-Nascido , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo III/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Telomerase , Telômero
18.
J Steroid Biochem Mol Biol ; 214: 105956, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34348182

RESUMO

BACKGROUND: The role of calcitriol (1,25-dihydroxyvitamin D3 or 1,25-(OH)2D3) in physiological processes, such as anti-fibrosis, anti-inflammation, and immunoregulation is known; however, its role in the remodeling of the glomerular capillary endothelium in rats with chronic renal failure (CRF) remains unclear. METHODS: Here, we analyzed the role/number of endothelial progenitor cells (EPCs), renal function, and pathological alterations in rats with CRF, and compared the results before and after supplementation with calcitriol in vivo. RESULTS: Amongst the three experimental groups (sham group, CRF group, and calcitriol-treated group (0.03 µg/kg/d), we observed substantially elevated cell adhesion and vasculogenesis in vivo in the calcitriol-treated group. Additionally, lower levels of serum creatinine (Scr) and blood urea nitrogen (BUN) was recorded in the calcitriol-treated group than the CRF group (p > 0.05). Calcitriol treatment also resulted in an improvement in renal pathological injury. CONCLUSIONS: Thus, calcitriol could ameliorate the damage of glomerular arterial structural and renal tubules vascular network integrity, maybe through regulating the number and function of EPCs in the peripheral blood of CRF rats. Treatment with it may improve outcomes in patients with renal insufficiency or combined cardiac insufficiency. Calcitriol could ameliorate CRF-induced renal pathological injury and renal dysfunction by remodeling of the glomerular capillary endothelium, thus, improving the function of glomerular endothelial cells.


Assuntos
Calcitriol/farmacologia , Creatinina/sangue , Células Progenitoras Endoteliais/efeitos dos fármacos , Falência Renal Crônica/tratamento farmacológico , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Nitrogênio da Ureia Sanguínea , Adesão Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/patologia , Técnicas In Vitro , Rim/patologia , Falência Renal Crônica/patologia , Glomérulos Renais , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/patologia
19.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359843

RESUMO

Glomerulonephritis are renal inflammatory processes characterized by increased permeability of the Glomerular Filtration Barrier (GFB) with consequent hematuria and proteinuria. Glomerular endothelial cells (GEC) and podocytes are part of the GFB and contribute to the maintenance of its structural and functional integrity through the release of paracrine mediators. Activation of the complement cascade and pro-inflammatory cytokines (CK) such as Tumor Necrosis Factor α (TNF-α) and Interleukin-6 (IL-6) can alter GFB function, causing acute glomerular injury and progression toward chronic kidney disease. Endothelial Progenitor Cells (EPC) are bone-marrow-derived hematopoietic stem cells circulating in peripheral blood and able to induce angiogenesis and to repair injured endothelium by releasing paracrine mediators including Extracellular Vesicles (EVs), microparticles involved in intercellular communication by transferring proteins, lipids, and genetic material (mRNA, microRNA, lncRNA) to target cells. We have previously demonstrated that EPC-derived EVs activate an angiogenic program in quiescent endothelial cells and renoprotection in different experimental models. The aim of the present study was to evaluate in vitro the protective effect of EPC-derived EVs on GECs and podocytes cultured in detrimental conditions with CKs (TNF-α/IL-6) and the complement protein C5a. EVs were internalized in both GECs and podocytes mainly through a L-selectin-based mechanism. In GECs, EVs enhanced the formation of capillary-like structures and cell migration by modulating gene expression and inducing the release of growth factors such as VEGF-A and HGF. In the presence of CKs, and C5a, EPC-derived EVs protected GECs from apoptosis by decreasing oxidative stress and prevented leukocyte adhesion by inhibiting the expression of adhesion molecules (ICAM-1, VCAM-1, E-selectin). On podocytes, EVs inhibited apoptosis and prevented nephrin shedding induced by CKs and C5a. In a co-culture model of GECs/podocytes that mimicked GFB, EPC-derived EVs protected cell function and permeselectivity from inflammatory-mediated damage. Moreover, RNase pre-treatment of EVs abrogated their protective effects, suggesting the crucial role of RNA transfer from EVs to damaged glomerular cells. In conclusion, EPC-derived EVs preserved GFB integrity from complement- and cytokine-induced damage, suggesting their potential role as therapeutic agents for drug-resistant glomerulonephritis.


Assuntos
Complemento C5a/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Interleucina-6/farmacologia , Podócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Vesículas Extracelulares/química , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Selectina L/genética , Selectina L/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Comunicação Parácrina/efeitos dos fármacos , Podócitos/citologia , Podócitos/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Genes (Basel) ; 12(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356074

RESUMO

Exposure to fine particulate matter (PM2.5) air pollution is associated with quantitative deficits of circulating endothelial progenitor cells (EPCs) in humans. Related exposures of mice to concentrated ambient PM2.5 (CAP) likewise reduces levels of circulating EPCs and induces defects in their proliferation and angiogenic potential as well. These changes in EPC number or function are predictive of larger cardiovascular dysfunction. To identify global, PM2.5-dependent mRNA and miRNA expression changes that may contribute to these defects, we performed a transcriptomic analysis of cells isolated from exposed mice. Compared with control samples, we identified 122 upregulated genes and 44 downregulated genes in EPCs derived from CAP-exposed animals. Functions most impacted by these gene expression changes included regulation of cell movement, cell and tissue development, and cellular assembly and organization. With respect to miRNA changes, we found that 55 were upregulated while 53 were downregulated in EPCs from CAP-exposed mice. The top functions impacted by these miRNA changes included cell movement, cell death and survival, cellular development, and cell growth and proliferation. A subset of these mRNA and miRNA changes were confirmed by qRT-PCR, including some reciprocal relationships. These results suggest that PM2.5-induced changes in gene expression may contribute to EPC dysfunction and that such changes may contribute to the adverse cardiovascular outcomes of air pollution exposure.


Assuntos
Poluição do Ar/efeitos adversos , Medula Óssea/patologia , Células Progenitoras Endoteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Material Particulado/toxicidade , RNA Mensageiro/metabolismo , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Movimento Celular , Proliferação de Células , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...