Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.261
Filtrar
1.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957039

RESUMO

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doenças Cardiovasculares , Senescência Celular , Células Progenitoras Endoteliais , Leucócitos Mononucleares , MicroRNAs , Proteínas Quinases p38 Ativadas por Mitógeno , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Células Progenitoras Endoteliais/metabolismo , Senescência Celular/genética , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Masculino , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Feminino , Idoso , Neovascularização Fisiológica/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Adulto , Fatores de Risco
2.
Nagoya J Med Sci ; 86(2): 292-303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38962405

RESUMO

Endothelial dysfunction is important in the pathology of pulmonary hypertension, and circulating endothelial progenitor cells (EPCs) have been studied to evaluate endothelial dysfunction. In patients with chronic thromboembolic pulmonary hypertension (CTEPH), riociguat reportedly increases the number of circulating EPCs. However, the relationship between EPC numbers at baseline and changes in clinical parameters after riociguat administration has not been fully elucidated. Here, we evaluated 27 treatment-naïve patients with CTEPH and analyzed the relationships between EPC number at diagnosis and clinical variables (age, hemodynamics, atrial blood gas parameters, brain natriuretic peptide, and exercise tolerance) before and after riociguat initiation. EPCs were defined as CD45dim CD34+ CD133+ cells and measured by flow cytometry. A low number of circulating EPCs at diagnosis was significantly correlated with increased reductions in mean pulmonary arterial pressure (mPAP) (correlation coefficient = 0.535, P = 0.004) and right atrial pressure (correlation coefficient = 0.618, P = 0.001) upon riociguat treatment. We then divided the study population into two groups according to the mPAP change: a weak-response group (a decrease in mPAP of 4 mmHg or less) and a strong-response group (a decrease in mPAP of more than 4 mmHg). The number of EPCs at diagnosis was significantly lower in the strong-response group than in the weak-response group (P = 0.022), but there were no significant differences in other clinical variables or in medication profiles. In conclusion, circulating EPC numbers could be a potential predictor of the therapeutic effect of riociguat in CTEPH patients.


Assuntos
Células Progenitoras Endoteliais , Hipertensão Pulmonar , Pirazóis , Pirimidinas , Humanos , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Pirazóis/uso terapêutico , Pirazóis/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Hipertensão Pulmonar/tratamento farmacológico , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Idoso , Doença Crônica , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/sangue , Resultado do Tratamento
5.
Med Sci Monit ; 30: e945471, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864115

RESUMO

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Rongfeng Zhang, Jianwei Liu, Shengpeng Yu, Dong Sun, Xiaohua Wang, Jingshu Fu, Jie Shen, Zhao Xie. Osteoprotegerin (OPG) Promotes Recruitment of Endothelial Progenitor Cells (EPCs) via CXCR4 Signaling Pathway to Improve Bone Defect Repair. Med Sci Monit, 2019; 25: 5572-5579. DOI: 10.12659/MSM.916838.


Assuntos
Células Progenitoras Endoteliais , Osteoprotegerina , Receptores CXCR4 , Transdução de Sinais , Células Progenitoras Endoteliais/metabolismo , Receptores CXCR4/metabolismo , Osteoprotegerina/metabolismo , Animais , Regeneração Óssea/efeitos dos fármacos , Humanos , Osso e Ossos/metabolismo , Osteogênese/efeitos dos fármacos , Masculino , Camundongos , Cicatrização/efeitos dos fármacos
6.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892272

RESUMO

Endothelial progenitor cells (EPCs) are circulating cells of various origins that possess the capacity for renewing and regenerating the endothelial lining of blood vessels. During physical activity, in response to factors such as hypoxia, changes in osmotic pressure, and mechanical forces, endothelial cells undergo intense physiological stress that results in endothelial damage. Circulating EPCs participate in blood vessel repair and vascular healing mainly through paracrine signalling. Furthermore, physical activity may play an important role in mobilising this important cell population. In this narrative review, we summarise the current knowledge on the biology of EPCs, including their characteristics, assessment, and mobilisation in response to both chronic and acute physical activity in healthy individuals.


Assuntos
Células Progenitoras Endoteliais , Exercício Físico , Humanos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Exercício Físico/fisiologia , Animais
7.
Mol Med ; 30(1): 84, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867168

RESUMO

BACKGROUND: Deep vein thrombosis (DVT) is a common vascular surgical disease caused by the coagulation of blood in the deep veins, and predominantly occur in the lower limbs. Endothelial progenitor cells (EPCs) are multi-functional stem cells, which are precursors of vascular endothelial cells. EPCs have gradually evolved into a promising treatment strategy for promoting deep vein thrombus dissolution and recanalization through the stimulation of various physical and chemical factors. METHODS: In this study, we utilized a mouse DVT model and performed several experiments including qRT-PCR, Western blot, tube formation, wound healing, Transwell assay, immunofluorescence, flow cytometry analysis, and immunoprecipitation to investigate the role of HOXD9 in the function of EPCs cells. The therapeutic effect of EPCs overexpressing HOXD9 on the DVT model and its mechanism were also explored. RESULTS: Overexpression of HOXD9 significantly enhanced the angiogenesis and migration abilities of EPCs, while inhibiting cell apoptosis. Additionally, results indicated that HOXD9 specifically targeted the HRD1 promoter region and regulated the downstream PINK1-mediated mitophagy. Interestingly, intravenous injection of EPCs overexpressing HOXD9 into mice promoted thrombus dissolution and recanalization, significantly decreasing venous thrombosis. CONCLUSIONS: The findings of this study reveal that HOXD9 plays a pivotal role in stimulating vascular formation in endothelial progenitor cells, indicating its potential as a therapeutic target for DVT management.


Assuntos
Modelos Animais de Doenças , Células Progenitoras Endoteliais , Proteínas de Homeodomínio , Mitofagia , Neovascularização Fisiológica , Trombose Venosa , Animais , Células Progenitoras Endoteliais/metabolismo , Camundongos , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/terapia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mitofagia/genética , Neovascularização Fisiológica/genética , Movimento Celular , Masculino , Apoptose , Humanos , Angiogênese
8.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899522

RESUMO

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Assuntos
Senescência Celular , Quimiocina CCL5 , Células Progenitoras Endoteliais , MicroRNAs , Neovascularização Fisiológica , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Neovascularização Fisiológica/genética , Camundongos , Proliferação de Células , Masculino , Receptores CCR5/metabolismo , Receptores CCR5/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Regulação para Baixo/genética , Isquemia/metabolismo , Isquemia/patologia , Isquemia/genética , Transdução de Sinais , Angiogênese
9.
Stem Cell Res Ther ; 15(1): 164, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853275

RESUMO

BACKGROUND: Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14-) and their engraftment into immunocompromised NOD/Shi-scid Il2rgnull (NOG) mice. METHODS: NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14- to generate CB-NOG, FL-NOG and FL-CD14--NOG, respectively. After 15-20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. RESULTS: We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. CONCLUSION: Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT.


Assuntos
Antígenos CD34 , Fígado , Animais , Humanos , Antígenos CD34/metabolismo , Camundongos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos NOD , Transplante de Células-Tronco Hematopoéticas , Camundongos SCID , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/transplante , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Sangue Fetal/citologia , Melanoma/patologia , Melanoma/imunologia
10.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732080

RESUMO

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Assuntos
Movimento Celular , Proliferação de Células , Di-Hidrotestosterona , Células Progenitoras Endoteliais , Neovascularização Fisiológica , Receptores Androgênicos , Di-Hidrotestosterona/farmacologia , Humanos , Movimento Celular/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Animais , Células Cultivadas , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Androgênios/farmacologia , Androgênios/metabolismo , Masculino
11.
J Am Heart Assoc ; 13(9): e032698, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38690710

RESUMO

BACKGROUND: Provoked anger is associated with an increased risk of cardiovascular disease events. The underlying mechanism linking provoked anger as well as other core negative emotions including anxiety and sadness to cardiovascular disease remain unknown. The study objective was to examine the acute effects of provoked anger, and secondarily, anxiety and sadness on endothelial cell health. METHODS AND RESULTS: Apparently healthy adult participants (n=280) were randomized to an 8-minute anger recall task, a depressed mood recall task, an anxiety recall task, or an emotionally neutral condition. Pre-/post-assessments of endothelial health including endothelium-dependent vasodilation (reactive hyperemia index), circulating endothelial cell-derived microparticles (CD62E+, CD31+/CD42-, and CD31+/Annexin V+) and circulating bone marrow-derived endothelial progenitor cells (CD34+/CD133+/kinase insert domain receptor+ endothelial progenitor cells and CD34+/kinase insert domain receptor+ endothelial progenitor cells) were measured. There was a group×time interaction for the anger versus neutral condition on the change in reactive hyperemia index score from baseline to 40 minutes (P=0.007) with a mean±SD change in reactive hyperemia index score of 0.20±0.67 and 0.50±0.60 in the anger and neutral conditions, respectively. For the change in reactive hyperemia index score, the anxiety versus neutral condition group by time interaction approached but did not reach statistical significance (P=0.054), and the sadness versus neutral condition group by time interaction was not statistically significant (P=0.160). There were no consistent statistically significant group×time interactions for the anger, anxiety, and sadness versus neutral condition on endothelial cell-derived microparticles and endothelial progenitor cells from baseline to 40 minutes. CONCLUSIONS: In this randomized controlled experimental study, a brief provocation of anger adversely affected endothelial cell health by impairing endothelium-dependent vasodilation.


Assuntos
Ira , Ansiedade , Endotélio Vascular , Vasodilatação , Humanos , Masculino , Feminino , Adulto , Endotélio Vascular/fisiopatologia , Ansiedade/psicologia , Células Progenitoras Endoteliais/metabolismo , Pessoa de Meia-Idade , Tristeza , Micropartículas Derivadas de Células/metabolismo , Hiperemia/fisiopatologia , Emoções , Adulto Jovem , Fatores de Tempo , Células Endoteliais
12.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L114-L125, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772902

RESUMO

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.


Assuntos
Displasia Broncopulmonar , Quimiocina CXCL12 , Modelos Animais de Doenças , Células Progenitoras Endoteliais , Hiperóxia , Macrófagos Alveolares , Animais , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patologia , Células Progenitoras Endoteliais/transplante , Células Progenitoras Endoteliais/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Quimiocina CXCL12/metabolismo , Hiperóxia/terapia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Pulmão/patologia , Pulmão/metabolismo , Humanos , Transferência Adotiva/métodos , Transplante de Células-Tronco/métodos
13.
Stem Cells Transl Med ; 13(7): 625-636, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733609

RESUMO

The management of diabetes mellitus and its resultant end organ dysfunction represents a major challenge to global health-care systems. Diabetic cardiac and kidney disease commonly co-occur and are significant contributors to the morbidity and mortality of patients with diabetes, carrying a poor prognosis. The tight link of these parallel end organ manifestations suggests a deeper common underlying pathology. Here, we outline the mechanistic link between diabetic cardiac and kidney disease, providing evidence for the role of endothelial dysfunction in both processes and the potential for cellular therapy to correct these disorders. Specifically, we review the preclinical and clinical evidence for endothelial progenitor cell therapy in cardiac, kidney, and cardio-renal disease applications. Finally, we outline novel approaches to endothelial progenitor cell therapy through cell enhancement and the use of extracellular vesicles, discussing published and future work.


Assuntos
Células Progenitoras Endoteliais , Humanos , Células Progenitoras Endoteliais/metabolismo , Animais , Nefropatias Diabéticas/terapia , Transplante de Células-Tronco/métodos , Vesículas Extracelulares/metabolismo
14.
Brain Inj ; 38(10): 835-847, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-38716911

RESUMO

BACKGROUND: Hyperlipidemia is a risk factor for stroke, and worsens neurological outcome after stroke. Endothelial progenitor cells (EPCs), which become dysfunctional in cerebral ischemia, hold capacity to promote revascularization. OBJECTIVE: We investigated the role of dyslipidemia in impairment of EPC-mediated angiogenesis in cerebral ischemic mice. METHODS AND RESULTS: The high fat diet (HFD)-fed mice following by ischemic stroke exhibited increased infarct volumes and neurological severity scores, and poorer angiogenesis. Bone marrow-EPCs treated with palmitic acid (PA) showed impaired functions and inhibited activity of AMP-activated protein kinase (AMPK). Notably, AMPK deficiency aggravated EPC dysfunction, further decreased mitochondrial membrane potential, and increased reactive oxygen species level in EPCs with PA treatment. Furthermore, the expression of fatty acid oxidation (FAO)-related genes was remarkably reduced, and carnitine palmitoyltransferase 1A (CPT1A) protein expression was downregulated in AMPK-deficient EPCs. AMPK deficiency aggravated neurological severity scores and angiogenesis in ischemic brain of HFD-fed mice, accompanied by suppressed protein level of CPT1A. EPC transplantation corrected impaired neurological severity scores and angiogenesis in AMPK-deficient mice. CONCLUSION: Our findings suggest that AMPK deficiency aggravates poor angiogenesis in ischemic brain by mediating FAO and oxidative stress thereby inducing EPC dysfunction in hyperlipidemic mice.


Assuntos
Células Progenitoras Endoteliais , Ácidos Graxos , Hiperlipidemias , AVC Isquêmico , Camundongos Endogâmicos C57BL , Animais , Células Progenitoras Endoteliais/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/complicações , Camundongos , Masculino , Ácidos Graxos/metabolismo , AVC Isquêmico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Oxirredução , Carnitina O-Palmitoiltransferase/metabolismo , Neovascularização Fisiológica/fisiologia , Camundongos Knockout , Angiogênese
15.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704134

RESUMO

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Assuntos
Células Progenitoras Endoteliais , Hematopoese , PPAR delta , Espécies Reativas de Oxigênio , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , NADPH Oxidases/metabolismo , PPAR delta/metabolismo , PPAR delta/genética , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo
16.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38697011

RESUMO

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeos Semelhantes ao Glucagon , Glucose , Fragmentos Fc das Imunoglobulinas , Dinâmica Mitocondrial , Proteínas Recombinantes de Fusão , Sirtuína 1 , Animais , Fragmentos Fc das Imunoglobulinas/farmacologia , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Sirtuína 1/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Camundongos , Glucose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Humanos , Isquemia/metabolismo , Isquemia/tratamento farmacológico , Isquemia/patologia
17.
Cell Transplant ; 33: 9636897241253144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798036

RESUMO

This study tested the hypothesis that ITRI Biofilm prevents adhesion of the chest cavity. Combined extracorporeal shock wave (ECSW) + bone marrow-derived autologous endothelial progenitor cell (EPC) therapy was superior to monotherapy for improving heart function (left ventricular ejection fraction [LVEF]) in minipigs with ischemic cardiomyopathy (IC) induced by an ameroid constrictor applied to the mid-left anterior descending artery. The minipigs (n = 30) were equally designed into group 1 (sham-operated control), group 2 (IC), group 3 (IC + EPCs/by directly implanted into the left ventricular [LV] myocardium; 3 [+]/3[-] ITRI Biofilm), group 4 (IC + ECSW; 3 [+]/[3] - ITRI Biofilm), and group 5 (IC + EPCs-ECSW; 3 [+]/[3] - ITRI Biofilm). EPC/ECSW therapy was administered by day 90, and the animals were euthanized, followed by heart harvesting by day 180. In vitro studies demonstrated that cell viability/angiogenesis/cell migratory abilities/mitochondrial concentrations were upregulated in EPCs treated with ECSW compared with those in EPCs only (all Ps < 0.001). The LVEF was highest in group 1/lowest in group 2/significantly higher in group 5 than in groups 3/4 (all Ps < 0.0001) by day 180, but there was no difference in groups 3/4. The adhesion score was remarkably lower in patients who received ITRI Biofilm treatment than in those who did not (all Ps <0.01). The protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein)/apoptotic (mitochondrial-Bax/caspase3/PARP)/fibrotic (TGF-ß/Smad3)/DNA/mitochondria-damaged (γ-H2AX/cytosolic-cytochrome-C/p-DRP1), and heart failure/pressure-overload (BNP [brain natriuretic peptide]/ß-MHC [beta myosin heavy chain]) biomarkers displayed a contradictory manner of LVEF among the groups (all Ps < 0.0001). The protein expression of endothelial biomarkers (CD31/vWF)/small-vessel density revealed a similar LVEF within the groups (all Ps < 0.0001). ITRI Biofilm treatment prevented chest cavity adhesion and was superior in restoring IC-related LV dysfunction when combined with EPC/ECSW therapy compared with EPC/ECSW therapy alone.


Assuntos
Biofilmes , Células Progenitoras Endoteliais , Isquemia Miocárdica , Porco Miniatura , Animais , Suínos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Isquemia Miocárdica/terapia , Isquemia Miocárdica/complicações , Tratamento por Ondas de Choque Extracorpóreas/métodos , Miocárdio/metabolismo , Miocárdio/patologia , Masculino
18.
Front Immunol ; 15: 1368099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665923

RESUMO

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Assuntos
Células Progenitoras Endoteliais , Proteínas de Membrana , Sepse , Animais , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/imunologia , Sepse/imunologia , Sepse/metabolismo , Camundongos , Camundongos Knockout , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/imunologia , Células Cultivadas , Masculino
19.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674031

RESUMO

Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.


Assuntos
Diabetes Gestacional , Células Progenitoras Endoteliais , Sangue Fetal , Retardo do Crescimento Fetal , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Diabetes Gestacional/metabolismo , Diabetes Gestacional/sangue , Pré-Eclâmpsia/sangue , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Diferenciação Celular
20.
J Thromb Haemost ; 22(7): 2027-2038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574861

RESUMO

BACKGROUND: Endothelial colony-forming cells (ECFCs) derived from patients can be used to investigate pathogenic mechanisms of vascular diseases like von Willebrand disease. Considerable phenotypic heterogeneity has been observed between ECFC clones derived from healthy donors. This heterogeneity needs to be well understood in order to use ECFCs as endothelial models for disease. OBJECTIVES: Therefore, we aimed to determine phenotypic and gene expression differences between control ECFCs. METHODS: A total of 34 ECFC clones derived from 16 healthy controls were analyzed. The transcriptome of a selection of ECFC clones (n = 15) was analyzed by bulk RNA sequencing and gene set enrichment analysis. Gene expression was measured in all ECFC clones by quantitative polymerase chain reaction. Phenotypic profiling was performed and migration speed of the ECFCs was measured using confocal microscopy, followed by automated quantification of cell morphometrics and migration speed. RESULTS: Through hierarchical clustering of RNA expression profiles, we could distinguish 2 major clusters within the ECFC cohort. Major differences were associated with proliferation and migration in cluster 1 and inflammation and endothelial-to-mesenchymal transition in cluster 2. Phenotypic profiling showed significantly more and smaller ECFCs in cluster 1, which contained more and longer Weibel-Palade bodies. Migration speed in cluster 1 was also significantly higher. CONCLUSION: We observed a range of different RNA expression patterns between ECFC clones, mostly associated with inflammation and clear differences in Weibel-Palade body count and structure. We developed a quantitative polymerase chain reaction panel that can be used for the characterization of ECFC clones, which is essential for the correct analysis of pathogenic mechanisms in vascular disorders.


Assuntos
Movimento Celular , Perfilação da Expressão Gênica , Inflamação , Fenótipo , Transcriptoma , Humanos , Inflamação/genética , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...