Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.903
Filtrar
2.
J Orthop Surg Res ; 19(1): 382, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943181

RESUMO

BACKGROUND: Tendon stem/progenitor cell (TSPC) senescence contributes to tendon degeneration and impaired tendon repair, resulting in age-related tendon disorders. Ferroptosis, a unique iron-dependent form of programmed cell death, might participate in the process of senescence. However, whether ferroptosis plays a role in TSPC senescence and tendon regeneration remains unclear. Recent studies reported that Platelet-derived exosomes (PL-Exos) might provide significant advantages in musculoskeletal regeneration and inflammation regulation. The effects and mechanism of PL-Exos on TSPC senescence and tendon regeneration are worthy of further study. METHODS: Herein, we examined the role of ferroptosis in the pathogenesis of TSPC senescence. PL-Exos were isolated and determined by TEM, particle size analysis, western blot and mass spectrometry identification. We investigated the function and underlying mechanisms of PL-Exos in TSPC senescence and ferroptosis via western blot, real-time quantitative polymerase chain reaction, and immunofluorescence analysis in vitro. Tendon regeneration was evaluated by HE staining, Safranin-O staining, and biomechanical tests in a rotator cuff tear model in rats. RESULTS: We discovered that ferroptosis was involved in senescent TSPCs. Furthermore, PL-Exos mitigated the aging phenotypes and ferroptosis of TSPCs induced by t-BHP and preserved their proliferation and tenogenic capacity. The in vivo animal results indicated that PL-Exos improved tendon-bone healing properties and mechanical strength. Mechanistically, PL-Exos activated AMPK phosphorylation and the downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, leading to the suppression of lipid peroxidation. AMPK inhibition or GPX4 inhibition blocked the protective effect of PL-Exos against t-BHP-induced ferroptosis and senescence. CONCLUSION: In conclusion, ferroptosis might play a crucial role in TSPC aging. AMPK/Nrf2/GPX4 activation by PL-Exos was found to inhibit ferroptosis, consequently leading to the suppression of senescence in TSPCs. Our results provided new theoretical evidence for the potential application of PL-Exos to restrain tendon degeneration and promote tendon regeneration.


Assuntos
Proteínas Quinases Ativadas por AMP , Senescência Celular , Exossomos , Ferroptose , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Regeneração , Transdução de Sinais , Células-Tronco , Tendões , Animais , Ferroptose/fisiologia , Exossomos/metabolismo , Exossomos/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Senescência Celular/fisiologia , Ratos , Transdução de Sinais/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Regeneração/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Tendões/metabolismo , Tendões/fisiologia , Masculino , Plaquetas/metabolismo , Ratos Sprague-Dawley , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/terapia , Lesões do Manguito Rotador/patologia , Modelos Animais de Doenças
3.
Adv Exp Med Biol ; 1441: 103-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884707

RESUMO

The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.


Assuntos
Linhagem da Célula , Animais , Humanos , Diferenciação Celular/genética , Linhagem da Célula/genética , Coração/fisiologia , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
4.
Braz Oral Res ; 38: e037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747824

RESUMO

Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.


Assuntos
Fosfatase Alcalina , Diferenciação Celular , Polpa Dentária , Lipopolissacarídeos , NF-kappa B , Nitrilas , Osteogênese , Ligamento Periodontal , Células-Tronco , Humanos , Lipopolissacarídeos/farmacologia , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatase Alcalina/análise , Diferenciação Celular/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Células Cultivadas , Nitrilas/farmacologia , Sulfonas/farmacologia , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem , Adolescente
5.
Ceska Gynekol ; 89(2): 151-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38704229

RESUMO

The human placenta serves as a vital barrier between the mother and the developing fetus during pregnancy. A defect in the early development of the placenta is associated with severe pregnancy disorders. Despite its complex development, various molecular processes control placental development, and the specialization of trophoblast cells is still not fully understood. One primary obstacle is the lack of suitable cell model systems. Traditional two-dimensional (2D) cell cultures fail to mimic in vivo conditions and do not capture the intricate intercellular interactions vital for studying placental development. However, three-dimensional (3D) organoid models derived from stem cells that replicate natural cell organization and architecture have greatly improved our understanding of trophoblast behavior and its medicinal applications. Organoids with relevant phenotypes provide a valuable platform to model both placental physiology and pathology, including the modeling of placental disorders. They hold great promise for personalized medicine, improved diagnostics, and the evaluation of pharmaceutical drug efficacy and safety. This article provides a concise overview of trophoblast stem cells, trophoblast invasion, and the evolving role of organoids in gynecology.


Assuntos
Organoides , Células-Tronco , Trofoblastos , Humanos , Trofoblastos/fisiologia , Organoides/fisiologia , Feminino , Gravidez , Células-Tronco/fisiologia , Placenta/citologia , Placenta/fisiologia , Placenta/patologia , Placentação/fisiologia
6.
Anim Biotechnol ; 35(1): 2356110, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38804592

RESUMO

The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/ß-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/ß-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/ß-catenin pathway in cashmere goats.


Assuntos
Proteína Forkhead Box M1 , Cabras , Folículo Piloso , MicroRNAs , Células-Tronco , Via de Sinalização Wnt , Animais , Cabras/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , Folículo Piloso/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Células-Tronco/fisiologia , Células-Tronco/metabolismo , Técnicas de Silenciamento de Genes
7.
J Dent Res ; 103(6): 652-661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38716736

RESUMO

The process of neovascularization during cell-based pulp regeneration is difficult to study. Here we developed a tube model that simulates root canal space and allows direct visualization of the vascularization process in vitro. Endothelial-like cells (ECs) derived from guiding human dental pulp stem cells (DPSCs) into expressing endothelial cell markers CD144, vWF, VEGFR1, and VEGFR2 were used. Human microvascular endothelial cells (hMVECs) were used as a positive control. DPSC-ECs formed tubules on Matrigel similar to hMVECs. Cells were mixed in fibrinogen/thrombin or mouse blood and seeded into wells of 96-well plates or injected into a tapered plastic tube (14 mm in length and 1 or 2 mm diameter of the apex opening) with the larger end sealed with MTA to simulate root canal space. Cells/gels in wells or tubes were incubated for various times in vitro and observed under the microscope for morphological changes. Samples were then fixed and processed for histological analysis to determine vessel formation. Vessel-like networks were observed in culture from 1 to 3 d after cell seeding. Cells/gels in 96-well plates were maintained up to 25 d. Histologically, both hMVECs and DPSC-ECs in 96-well plates or tubes showed intracellular vacuole formation. Some cells showed merged large vacuoles indicating the lumenization. Tubular structures were also observed resembling blood vessels. Cells appeared healthy throughout the tube except some samples (1 mm apical diameter) in the coronal third. Histological analysis also showed pulp-like soft tissue throughout the tube samples with vascular-like structures. hMVECs formed larger vascular lumen size than DPSC-ECs while the latter tended to have more lumen and tubular structure counts. We conclude that DPSC-ECs can form vascular structures and sustained in the 3-dimensional fibrin gel system in vitro. The tube model appears to be a proper and simple system simulating the root canal space for vascular formation and pulp regeneration studies.


Assuntos
Polpa Dentária , Combinação de Medicamentos , Células Endoteliais , Neovascularização Fisiológica , Proteoglicanas , Regeneração , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/irrigação sanguínea , Polpa Dentária/fisiologia , Neovascularização Fisiológica/fisiologia , Animais , Camundongos , Humanos , Regeneração/fisiologia , Células Endoteliais/fisiologia , Células-Tronco/fisiologia , Colágeno , Técnicas de Cultura de Células , Laminina , Fator de von Willebrand/análise , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Fibrinogênio , Cavidade Pulpar , Compostos de Cálcio , Compostos de Alumínio , Materiais Restauradores do Canal Radicular , Microvasos/citologia , Células Cultivadas , Óxidos , Silicatos , Antígeno CD146
8.
Life Sci Space Res (Amst) ; 41: 1-17, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670635

RESUMO

Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.


Assuntos
Medicina Regenerativa , Células-Tronco , Engenharia Tecidual , Ausência de Peso , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Humanos , Células-Tronco/citologia , Células-Tronco/fisiologia , Diferenciação Celular , Animais , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células/métodos
9.
Curr Top Dev Biol ; 158: 179-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670705

RESUMO

The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.


Assuntos
Microambiente Celular , Matriz Extracelular , Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Animais , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Matriz Extracelular/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/citologia , Adaptação Fisiológica , Nicho de Células-Tronco/fisiologia , Regeneração/fisiologia , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Células-Tronco/citologia , Células-Tronco/fisiologia
10.
Curr Top Dev Biol ; 158: 151-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670704

RESUMO

The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.


Assuntos
Homeostase , Músculo Esquelético , Regeneração , Nicho de Células-Tronco , Regeneração/fisiologia , Humanos , Músculo Esquelético/fisiologia , Músculo Esquelético/citologia , Animais , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Células-Tronco/metabolismo
11.
Curr Top Dev Biol ; 158: 279-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670710

RESUMO

Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.


Assuntos
Músculo Esquelético , Células-Tronco , Humanos , Animais , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Células-Tronco/metabolismo , Fenômenos Biomecânicos
12.
Brain Res ; 1836: 148936, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649134

RESUMO

The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), ß-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, ß-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.


Assuntos
Diferenciação Celular , Leite Humano , Humanos , Diferenciação Celular/fisiologia , Células Cultivadas , Alicerces Teciduais , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Neurônios/metabolismo , Hidrogéis , Sobrevivência Celular/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco/fisiologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Tubulina (Proteína)/metabolismo , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Peptídeos , Antígenos Nucleares
13.
FASEB J ; 38(8): e23612, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648494

RESUMO

Considerable progress has been made in understanding the function of alveolar epithelial cells in a quiescent state and regeneration mechanism after lung injury. Lung injury occurs commonly from severe viral and bacterial infections, inhalation lung injury, and indirect injury sepsis. A series of pathological mechanisms caused by excessive injury, such as apoptosis, autophagy, senescence, and ferroptosis, have been studied. Recovery from lung injury requires the integrity of the alveolar epithelial cell barrier and the realization of gas exchange function. Regeneration mechanisms include the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and proteins. While alveoli are damaged, alveolar type II (AT2) cells proliferate and differentiate into alveolar type I (AT1) cells to repair the damaged alveolar epithelial layer. Alveolar epithelial cells are surrounded by various cells, such as fibroblasts, endothelial cells, and various immune cells, which affect the proliferation and differentiation of AT2 cells through paracrine during alveolar regeneration. Besides, airway epithelial cells also contribute to the repair and regeneration process of alveolar epithelium. In this review, we mainly discuss the participation of epithelial progenitor cells and various niche cells involving several signaling pathways and transcription factors.


Assuntos
Células Epiteliais Alveolares , Lesão Pulmonar , Regeneração , Humanos , Regeneração/fisiologia , Animais , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Transdução de Sinais , Diferenciação Celular
14.
Glia ; 72(7): 1236-1258, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515287

RESUMO

The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.


Assuntos
Proliferação de Células , Células Ependimogliais , Proteínas Inibidoras de Diferenciação , Retina , Animais , Proliferação de Células/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Retina/metabolismo , Retina/citologia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Neurogênese/fisiologia , Neurogênese/efeitos dos fármacos , Embrião de Galinha , Células-Tronco Neurais/metabolismo , Galinhas , Neuroglia/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
15.
Exerc Sport Sci Rev ; 52(3): 87-94, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445901

RESUMO

Sexual dimorphism, driven by the sex hormones testosterone and estrogen, influences body composition, muscle fiber type, and inflammation. Research related to muscle stem cell (MuSC) responses to exercise has mainly focused on males. We propose a novel hypothesis that there are sex-based differences in MuSC regulation following exercise, such that males have more MuSCs, whereas females demonstrate a greater capacity for regeneration.


Assuntos
Exercício Físico , Músculo Esquelético , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Estrogênios/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Fatores Sexuais , Células-Tronco/fisiologia , Testosterona/metabolismo , Testosterona/sangue
16.
J Math Biol ; 88(4): 47, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520536

RESUMO

To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions and differentiation need to be tightly regulated. Mechanisms of homeostatic regulation often rely on crowding feedback control: cells are able to sense the cell density in their environment, via various molecular and mechanosensing pathways, and respond by adjusting division, differentiation, and cell state transitions appropriately. Here, we determine, via a mathematically rigorous framework, which general conditions for the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient, to allow the maintenance of homeostasis in renewing tissues. We show that those conditions naturally allow for a degree of robustness toward disruption of regulation. Furthermore, intrinsic to this feedback regulation is that stem cell identity is established collectively by the cell population, not by individual cells, which implies the possibility of 'quasi-dedifferentiation', in which cells committed to differentiation may reacquire stem cell properties upon depletion of the stem cell pool. These findings can guide future experimental campaigns to identify specific crowding feedback mechanisms.


Assuntos
Células-Tronco , Homeostase , Diferenciação Celular , Células-Tronco/fisiologia , Divisão Celular
17.
J Cosmet Dermatol ; 23(6): 2279-2287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429909

RESUMO

BACKGROUND: Injury to skin tissue is devastating for human health, making it imperative to devise strategies for hastening wound healing. Normal wound healing is a complex process comprising overlapping steps, including hemostasis, inflammatory response, proliferation, and matrix remodeling. This study investigated the effects of adipose stem cell-derived exosomes (ADSC-exos) on wound healing and the underlying mechanisms. METHODS: In vitro hydrogen peroxide (H2O2)-treated human keratinocyte (HaCaT) cell lines and in vivo animal wound models were established for this purpose. The cell migration was assessed using transwell and wound healing assays, while exosome biomarker expressions were studied using western blot. Moreover, adipose stem cells were identified using flow cytometry, alizarin red S and oil red O staining, and transmission electron microscopy. RESULTS: Results indicated that H2O2 treatment inhibited the cell viability and migration of HaCaT cells while being promoted by ADSC-exos. Mechanistic investigations revealed that microRNA-let-7i-5p (let-7i-5p) in ADSC-exos was carried into the HaCaT cells, inhibiting the expression of growth arrest-specific-7 (GAS7). Rescue experiments further verified these results, which indicated that GAS7 overexpression reversed the effect of let-7i-5p on the viability and migration of HaCaT cells, suggesting ADSC-exos promoted wound healing via the let-7i-5p/GAS7 axis. CONCLUSION: Adipose stem cell-derived-exos enhanced the viability and migration of HaCaT via carrying let-7i-5p and targeting GAS7, ultimately promoting wound healing in rats.


Assuntos
Tecido Adiposo , Movimento Celular , Exossomos , Peróxido de Hidrogênio , MicroRNAs , Cicatrização , Animais , Humanos , Ratos , Tecido Adiposo/citologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Exossomos/metabolismo , Células HaCaT , Peróxido de Hidrogênio/farmacologia , Queratinócitos/fisiologia , Queratinócitos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Cicatrização/efeitos dos fármacos
18.
Endocr J ; 71(6): 547-559, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38346768

RESUMO

The pituitary gland is endocrine tissue composed of two distinct parts with different origins: the adenohypophysis (adenohypophyseal placode origin) and the neurohypophysis (neuroectoderm origin). Differentiation of endocrine cells in the pituitary gland leads to hormone synthesis, secretion into the capillary network, and transportation to target organs. In 1988, the discovery of the pituitary transcription factor PIT1 sparked research on endocrine cell differentiation. In the twenty-first century, the discovery that SOX2-positive stem/progenitor cells give rise to all types of pituitary endocrine cells advanced research on differentiation processes using diverse marker molecules. Lineage tracing using specific marker genes from early embryos revealed that during construction of the anterior pituitary from the adenohypophyseal placodal cells the developing anterior pituitary incorporates diverse cell types originating from the neural crest-derived and ectodermal-derived cells. Consequently, the postnatal anterior pituitary becomes a mosaic of terminally differentiated cells of different origin and with different life histories. It has also been revealed that most of the postnatal stem/progenitor cells form at least solid clusters in the parenchyma. Moreover, the classification and role of S100ß-positive cells had been ambiguous, but now they are identified as a major component of postnatal stem/progenitor cells. This paper provides an updated overview of pituitary development.


Assuntos
Diferenciação Celular , Linhagem da Célula , Adeno-Hipófise , Células-Tronco , Adeno-Hipófise/citologia , Adeno-Hipófise/embriologia , Humanos , Animais , Células-Tronco/fisiologia , Células-Tronco/citologia
19.
Am J Sports Med ; 52(2): 406-422, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38193194

RESUMO

BACKGROUND: Tendons have limited regenerative potential, so healing of ruptured tendon tissue requires a prolonged period, and the prognosis is suboptimal. Although stem cell transplantation-based approaches show promise for accelerating tendon repair, the resultant therapeutic efficacy remains unsatisfactory. HYPOTHESIS: The transplantation of stem cells preassembled as 3-dimensional spheroids achieves a superior therapeutic outcome compared with the transplantation of single-cell suspensions. STUDY DESIGN: Controlled laboratory study. METHODS: Adipose-derived stem cells (ADSCs) were assembled as spheroids using a methylcellulose hydrogel system. The secretome of ADSC suspensions or spheroids was collected and utilized to treat tenocytes and macrophages to evaluate their therapeutic potential and investigate the mechanisms underlying their effects. RNA sequencing was performed to investigate the global difference in gene expression between ADSC suspensions and spheroids in an in vitro inflammatory microenvironment. For the in vivo experiment, rabbits that underwent Achilles tendon transection, followed by stump suturing, were randomly assigned to 1 of 3 groups: intratendinous injection of saline, rabbit ADSCs as conventional single-cell suspensions, or preassembled ADSC spheroids. The tendons were harvested for biomechanical testing and histological analysis at 4 weeks postoperatively. RESULTS: Our in vitro results demonstrated that the secretome of ADSCs assembled as spheroids exhibited enhanced modulatory activity in (1) tenocyte proliferation (P = .015) and migration (P = .001) by activating extracellular signal-regulated kinase (ERK) signaling and (2) the suppression of the secretion of interleukin-6 (P = .005) and interleukin-1α (P = .042) by M1 macrophages via the COX-2/PGE2/EP4 signaling axis. Gene expression profiling of cells exposed to an inflammatory milieu revealed significantly enriched terms that were associated with the immune response, cytokines, and tissue remodeling in preassembled ADSC spheroids. Ex vivo fluorescence imaging revealed that the engraftment efficiency of ADSCs in the form of spheroids was higher than that of ADSCs in single-cell suspensions (P = .003). Furthermore, the transplantation of ADSC spheroids showed superior therapeutic effects in promoting the healing of sutured stumps, as evidenced by improvements in the tensile strength (P = .019) and fiber alignment (P < .001) of the repaired tendons. CONCLUSION: The assembly of ADSCs as spheroids significantly advanced their potential to harness tenocytes and macrophages. As a proof of concept, this study clearly demonstrates the effectiveness of using ADSC spheroids to promote tendon regeneration. CLINICAL RELEVANCE: The present study lays a foundation for future clinical applications of stem cell spheroid-based therapy for the management of tendon injuries.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Animais , Coelhos , Tendão do Calcâneo/patologia , Tenócitos , Tecido Adiposo/patologia , Traumatismos dos Tendões/cirurgia , Macrófagos/patologia , Células-Tronco/fisiologia , Proliferação de Células
20.
J Dent Res ; 103(1): 101-110, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38058134

RESUMO

Adding dental pulp stem cells (DPSCs) to vascular endothelial cell-formed vessel-like structures can increase the longevity of these vessel networks. DPSCs display pericyte-like cell functions and closely assemble endothelial cells (ECs). However, the mechanisms of DPSC-derived pericyte-like cells in stabilizing the vessel networks are not fully understood. In this study, we investigated the functions of E-DPSCs, which were DPSCs isolated from the direct coculture of human umbilical vein endothelial cells (HUVECs) and DPSCs, and T-DPSCs, which were DPSCs treated by transforming growth factor beta 1 (TGF-ß1), in stabilizing blood vessels in vitro and in vivo. A 3-dimensional coculture spheroid sprouting assay was conducted to compare the functions of E-DPSCs and T-DPSCs in vitro. Dental pulp angiogenesis in the severe combined immunodeficiency (SCID) mouse model was used to explore the roles of E-DPSCs and T-DPSCs in vascularization in vivo. The results demonstrated that both E-DPSCs and T-DPSCs possess smooth muscle cell-like cell properties, exhibiting higher expression of the mural cell-specific markers and the suppression of HUVEC sprouting. E-DPSCs and T-DPSCs inhibited HUVEC sprouting by activating TEK tyrosine kinase (Tie2) signaling, upregulating vascular endothelial (VE)-cadherin, and downregulating vascular endothelial growth factor receptor 2 (VEGFR2). In vivo study revealed more perfused and total blood vessels in the HUVEC + E-DPSC group, HUVEC + T-DPSC group, angiopoietin 1 (Ang1) pretreated group, and vascular endothelial protein tyrosine phosphatase (VE-PTP) inhibitor pretreated group, compared to HUVEC + DPSC group. In conclusion, these data indicated that E-DPSCs and T-DPSCs could stabilize the newly formed blood vessels and accelerate their perfusion. The critical regulating pathways are Ang1/Tie2/VE-cadherin and VEGF/VEGFR2 signaling.


Assuntos
Células-Tronco , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco/fisiologia , Angiopoietina-1/farmacologia , Angiopoietina-1/metabolismo , Polpa Dentária , Células Endoteliais da Veia Umbilical Humana , Caderinas/metabolismo , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...