Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.609
Filtrar
1.
Methods Mol Biol ; 2856: 309-324, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283461

RESUMO

Polymer modeling has been playing an increasingly important role in complementing 3D genome experiments, both to aid their interpretation and to reveal the underlying molecular mechanisms. This chapter illustrates an application of Hi-C metainference, a Bayesian approach to explore the 3D organization of a target genomic region by integrating experimental contact frequencies into a prior model of chromatin. The method reconstructs the conformational ensemble of the target locus by combining molecular dynamics simulation and Monte Carlo sampling from the posterior probability distribution given the data. Using prior chromatin models at both 1 kb and nucleosome resolution, we apply this approach to a 30 kb locus of mouse embryonic stem cells consisting of two well-defined domains linking several gene promoters together. Retaining the advantages of both physics-based and data-driven strategies, Hi-C metainference can provide an experimentally consistent representation of the system while at the same time retaining molecular details necessary to derive physical insights.


Assuntos
Teorema de Bayes , Cromatina , Simulação de Dinâmica Molecular , Animais , Camundongos , Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Genoma , Genômica/métodos , Método de Monte Carlo , Células-Tronco Embrionárias Murinas/metabolismo
2.
Int J Mol Sci ; 25(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39408725

RESUMO

As a reader of tri-methylated lysine 36 on histone H3 (H3K36me3), Npac has been shown to have a significant role in gene transcription elongation. However, its potential implication in RNA splicing remains unknown. Here, we characterized the phenotypes of Npac knockout in mES cells. We discovered that loss of Npac disrupts pluripotency and identity in mESCs. We also found that Npac is associated with many cellular activities, including cell proliferation, differentiation, and transcription regulation. Notably, we uncovered that Npac is associated with RNA splicing machinery. Furthermore, we found that Npac regulates alternative splicing through its interaction with the splicing factors, including Srsf1. Our research thus highlights the important role of Npac in maintaining ESC identity through the regulation of pre-mRNA splicing.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Murinas , Precursores de RNA , Splicing de RNA , Fatores de Processamento de Serina-Arginina , Animais , Camundongos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Diferenciação Celular/genética , Processamento Alternativo , Histonas/metabolismo , Proliferação de Células/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
3.
Elife ; 132024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392462

RESUMO

The interplay between G4s and R-loops are emerging in regulating DNA repair, replication, and transcription. A comprehensive picture of native co-localized G4s and R-loops in living cells is currently lacking. Here, we describe the development of HepG4-seq and an optimized HBD-seq methods, which robustly capture native G4s and R-loops, respectively, in living cells. We successfully employed these methods to establish comprehensive maps of native co-localized G4s and R-loops in human HEK293 cells and mouse embryonic stem cells (mESCs). We discovered that co-localized G4s and R-loops are dynamically altered in a cell type-dependent manner and are largely localized at active promoters and enhancers of transcriptional active genes. We further demonstrated the helicase Dhx9 as a direct and major regulator that modulates the formation and resolution of co-localized G4s and R-loops. Depletion of Dhx9 impaired the self-renewal and differentiation capacities of mESCs by altering the transcription of co-localized G4s and R-loops -associated genes. Taken together, our work established that the endogenous co-localized G4s and R-loops are prevalently persisted in the regulatory regions of active genes and are involved in the transcriptional regulation of their linked genes, opening the door for exploring broader roles of co-localized G4s and R-loops in development and disease.


Assuntos
Quadruplex G , Estruturas R-Loop , Humanos , Camundongos , Animais , Estruturas R-Loop/genética , Células HEK293 , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Células-Tronco Embrionárias Murinas/metabolismo , Mapeamento Cromossômico
4.
Chromosome Res ; 32(4): 12, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390295

RESUMO

Mouse embryonic stem cells (ESCs) possess a pluripotent developmental potential and a stable karyotype. An exception is the frequent loss of one X chromosome in female ESCs derived from inbred mice. In contrast, female ESCs from crosses between different Mus musculus subspecies often maintain two X chromosomes and can model X chromosome inactivation. Here we report that combined mutations of Hira and Cdk8 induce rapid loss of one X chromosome in a Mus musculus castaneus hybrid female ESC line that originally maintains two X chromosomes. We show that MEK1 inhibition, which is used for culturing naive pluripotent ESCs is sufficient to induce X chromosome loss. In conventional ESC media, Hira and Cdk8 mutant ESCs maintain both X chromosomes. Induction of X chromosome loss by switching to naive culture media allows us to perform kinetic measurements for calculating the chromosome loss rate. Our analysis shows that X chromosome loss is not explained by selection of XO cells, but likely driven by a process of chromosome elimination. We show that elimination of the X chromosome occurs with a rate of 0.3% per cell per division, which exceeds reported autosomal loss rates by 3 orders of magnitude. We show that chromosomes 8 and 11 are stably maintained. Notably, Xist expression from one of the two X chromosomes rescues X chromosomal instability in ΔHiraΔCdk8 ESCs. Our study defines mutations of Hira and Cdk8 as molecular drivers for X chromosome elimination in naive female ESCs and describes a cell system for elucidating the underlying mechanism.


Assuntos
Quinase 8 Dependente de Ciclina , Células-Tronco Embrionárias Murinas , Mutação , Inativação do Cromossomo X , Cromossomo X , Animais , Feminino , Camundongos , Cromossomo X/genética , Quinase 8 Dependente de Ciclina/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas de Ciclo Celular/genética , Fatores de Transcrição/genética
5.
Nat Commun ; 15(1): 7879, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251582

RESUMO

Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localisation of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and sufficient for the activation of the formative pluripotency-specific GRN. Our work uncovers a pivotal role for FoxO TFs in establishing formative post-implantation pluripotency, a critical early embryonic cell fate transition.


Assuntos
Redes Reguladoras de Genes , Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Fosforilação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
6.
Cells ; 13(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273031

RESUMO

DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage sites and serves as a marker for DSBs. DSB repair primarily occurs through Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). NHEJ directly ligates DNA ends, employing proteins such as DNA-PKcs, while HR, involving proteins such as Rad54, uses a sister chromatid template for accurate repair and functions in the S and G2 phases of the cell cycle. Both pathways are crucial, as illustrated by the IR sensitivity in cells lacking DNA-PKcs or Rad54. We generated mouse embryonic stem (mES) cells which are knockout (KO) for DNA-PKcs and Rad54 to explore the combined role of HR and NHEJ in DSB repair. We found that cells lacking both DNA-PKcs and Rad54 are hypersensitive to X-ray radiation, coinciding with impaired 53BP1 focus resolution and a more persistent G2 phase cell cycle block. Additionally, mES cells deficient in DNA-PKcs or both DNA-PKcs and Rad54 exhibit an increased nuclear size approximately 18-24 h post-irradiation. To further explore the role of Rad54 in the absence of DNA-PKcs, we generated DNA-PKcs KO mES cells expressing GFP-tagged wild-type (WT) or ATPase-defective Rad54 to track the Rad54 foci over time post-irradiation. Cells lacking DNA-PKcs and expressing ATPase-defective Rad54 exhibited a similar phenotypic response to IR as those lacking both DNA-PKcs and Rad54. Despite a strong G2 phase arrest, live-cell imaging showed these cells eventually progress through mitosis, forming micronuclei. Additionally, mES cells lacking DNA-PKcs showed increased Rad54 foci over time post-irradiation, indicating an enhanced reliance on HR for DSB repair without DNA-PKcs. Our findings underscore the essential roles of HR and NHEJ in maintaining genomic stability post-IR in mES cells. The interplay between these pathways is crucial for effective DSB repair and cell cycle progression, highlighting potential targets for enhancing radiotherapy outcomes.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Células-Tronco Embrionárias Murinas , Radiação Ionizante , Animais , Camundongos , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/efeitos da radiação , Células-Tronco Embrionárias Murinas/citologia , Recombinação Homóloga/efeitos da radiação , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteínas Nucleares
7.
Cells ; 13(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39273072

RESUMO

RNA sequencing (RNA-Seq) has become a widely adopted technique for studying gene expression. However, conventional RNA-Seq analyses rely on gene expression (GE) values that aggregate all the transcripts produced under a single gene identifier, overlooking the complexity of transcript variants arising from different transcription start sites or alternative splicing. Transcript variants may encode proteins with diverse functional domains, or noncoding RNAs. This study explored the implications of neglecting transcript variants in RNA-Seq analyses. Among the 1334 transcription factor (TF) genes expressed in mouse embryonic stem (ES) or trophoblast stem (TS) cells, 652 were differentially expressed in TS cells based on GE values (365 upregulated and 287 downregulated, ≥absolute 2-fold changes, false discovery rate (FDR) p-value ≤ 0.05). The 365 upregulated genes expressed 883 transcript variants. Further transcript expression (TE) based analyses identified only 174 (<20%) of the 883 transcripts to be upregulated. The remaining 709 transcripts were either downregulated or showed no significant changes. Meanwhile, the 287 downregulated genes expressed 856 transcript variants and only 153 (<20%) of the 856 transcripts were downregulated. The other 703 transcripts were either upregulated or showed no significant change. Additionally, the 682 insignificant TF genes (GE values < absolute 2-fold changes and/or FDR p-values > 0.05) between ES and TS cells expressed 2215 transcript variants. These included 477 (>21%) differentially expressed transcripts (276 upregulated and 201 downregulated, ≥absolute 2-fold changes, FDR p-value ≤ 0.05). Hence, GE based RNA-Seq analyses do not represent accurate expression levels due to divergent transcripts expression from the same gene. Our findings show that by including transcript variants in RNA-Seq analyses, we can generate a precise understanding of a gene's functional and regulatory landscape; ignoring the variants may result in an erroneous interpretation.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Trofoblastos/metabolismo , Análise de Sequência de RNA , Processamento Alternativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Murinas/metabolismo
8.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273102

RESUMO

Embryonic stem cells are crucial for studying developmental biology due to their self-renewal and pluripotency capabilities. This research investigates the differentiation of mouse ESCs into adipocytes, offering insights into obesity and metabolic disorders. Using a monolayer differentiation approach over 30 days, lipid accumulation and adipogenic markers, such as Cebpb, Pparg, and Fabp4, confirmed successful differentiation. RNA sequencing revealed extensive transcriptional changes, with over 15,000 differentially expressed genes linked to transcription regulation, cell cycle, and DNA repair. This study utilized Robust Rank Aggregation to identify critical regulatory genes like PPARG, CEBPA, and EP300. Network analysis further highlighted Atf5, Ccnd1, and Nr4a1 as potential key players in adipogenesis and its mature state, validated through RT-PCR. While key adipogenic factors showed plateaued expression levels, suggesting early differentiation events, this study underscores the value of ESCs in modeling adipogenesis. These findings contribute to our understanding of adipocyte differentiation and have significant implications for therapeutic strategies targeting metabolic diseases.


Assuntos
Adipócitos , Adipogenia , Diferenciação Celular , Células-Tronco Embrionárias Murinas , Animais , Adipogenia/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Diferenciação Celular/genética , Adipócitos/metabolismo , Adipócitos/citologia , PPAR gama/metabolismo , PPAR gama/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcrição Gênica , Regulação da Expressão Gênica
9.
Nat Commun ; 15(1): 7758, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237615

RESUMO

Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Histona Desmetilases , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Ubiquitina-Proteína Ligases , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Células-Tronco Embrionárias Murinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histonas/metabolismo , Proliferação de Células , Ubiquitinação
10.
PLoS One ; 19(9): e0311120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39348365

RESUMO

Enhancers have critical functions in the precise, spatiotemporal control of transcription during development. It is thought that enhancer grammar, or the characteristics and arrangements of transcription factor binding sites, underlie the specific functions of developmental enhancers. In this study, we sought to identify grammatical constraints that direct enhancer activity in the naïve state of pluripotency, focusing on the enhancers for the naïve-state specific gene, Klf4. Using a combination of biochemical tests, reporter assays, and endogenous mutations in mouse embryonic stem cells, we have studied the binding sites for the transcription factors OCT4 and SOX2. We have found that the three Klf4 enhancers contain suboptimal OCT4-SOX2 composite binding sites. Substitution with a high-affinity OCT4-SOX2 binding site in Klf4 enhancer E2 rescued enhancer function and Klf4 expression upon loss of the ESRRB and STAT3 binding sites. We also observed that the low-affinity of the OCT4-SOX2 binding site is crucial to drive the naïve-state specific activities of Klf4 enhancer E2. Altogether, our work suggests that the affinity of OCT4-SOX2 binding sites could facilitate enhancer functions in specific states of pluripotency.


Assuntos
Elementos Facilitadores Genéticos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Fator 3 de Transcrição de Octâmero , Fatores de Transcrição SOXB1 , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Camundongos , Sítios de Ligação , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
11.
Cell Death Dis ; 15(9): 710, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349437

RESUMO

The spalt (Sal) gene family has four members (Sall1-4) in vertebrates, all of which play pivotal roles in various biological processes and diseases. However, the expression and function of SALL2 in development are still less clear. Here, we first charted SALL2 protein expression pattern during mouse embryo development by immunofluorescence, which revealed its dominant expression in the developing nervous system. With the establishment of Sall2 deficient mouse embryonic stem cells (ESCs), the in vitro neural differentiation system was leveraged to interrogate the function of SALL2, which showed impaired neural differentiation of Sall2 knockout (KO) ESCs. Furthermore, neural stem cells (NSCs) could not be derived from Sall2 KO ESCs and the generation of neural tube organoids (NTOs) was greatly inhibited in the absence of SALL2. Meanwhile, transgenic expression of E1 isoform of SALL2 restored the defects of neural differentiation in Sall2 KO ESCs. By chromatin immunoprecipitation sequencing (ChIP-seq), Tuba1a was identified as downstream target of SALL2, whose function in neural differentiation was confirmed by rescuing neural phenotypes of Sall2 KO ESCs when overexpressed. In sum, by elucidating SALL2 expression dynamics during early mouse development and mechanistically characterizing its indispensable role in neural differentiation, this study offers insights into SALL2's function in human nervous system development, associated pathologies stemming from its mutations and relevant therapeutic strategy.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Murinas , Fatores de Transcrição , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Camundongos Knockout , Regulação da Expressão Gênica no Desenvolvimento
12.
Nat Commun ; 15(1): 7860, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251590

RESUMO

Pluripotent mouse embryonic stem cells (ESCs) can differentiate to all germ layers and serve as an in vitro model of embryonic development. To better understand the differentiation paths traversed by ESCs committing to different lineages, we track individual differentiating ESCs by timelapse imaging followed by multiplexed high-dimensional Imaging Mass Cytometry (IMC) protein quantification. This links continuous live single-cell molecular NANOG and cellular dynamics quantification over 5-6 generations to protein expression of 37 different molecular regulators in the same single cells at the observation endpoints. Using this unique data set including kinship history and live lineage marker detection, we show that NANOG downregulation occurs generations prior to, but is not sufficient for neuroectoderm marker Sox1 upregulation. We identify a developmental cell type co-expressing both the canonical Sox1 neuroectoderm and FoxA2 endoderm markers in vitro and confirm the presence of such a population in the post-implantation embryo. RNASeq reveals cells co-expressing SOX1 and FOXA2 to have a unique cell state characterized by expression of both endoderm as well as neuroectoderm genes suggesting lineage potential towards both germ layers.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Fator 3-beta Nuclear de Hepatócito , Células-Tronco Embrionárias Murinas , Fatores de Transcrição SOXB1 , Animais , Camundongos , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Rastreamento de Células/métodos , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Linhagem da Célula , Endoderma/metabolismo , Endoderma/citologia , Análise de Célula Única/métodos , Desenvolvimento Embrionário/genética , Placa Neural/metabolismo , Placa Neural/embriologia , Placa Neural/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia
13.
ACS Synth Biol ; 13(10): 3246-3255, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39318128

RESUMO

Mammalian riboswitches that can regulate transgene expression via RNA-small molecule interaction have promising applications in medicine and biotechnology, as they involve no protein factors that can induce immunogenic reactions and are not dependent on specially engineered promoters. However, the lack of cell-permeable and low-toxicity small molecules and cognate aptamers that can be exploited as riboswitches and the modest switching performance of mammalian riboswitches have limited their applications. In this study, we systematically optimized the design of a riboswitch that regulates exon skipping via an RNA aptamer that binds ASP2905. We examined two design strategies to modulate the stability of the aptamer base stem that blocks the 5' splice site to fine-tune the riboswitch characteristics. Furthermore, an optimized riboswitch was used to generate a mouse embryonic stem cell line that can be chemically induced to differentiate into myogenic cells by activating Myod1 expression and a human embryonic kidney cell line that can be induced to trigger apoptosis by activating BAX expression. The results demonstrate the tight chemical regulation of transgenes in mammalian cells to control their phenotype without exogenous protein factors.


Assuntos
Aptâmeros de Nucleotídeos , Éxons , Proteína MyoD , Riboswitch , Camundongos , Animais , Riboswitch/genética , Humanos , Aptâmeros de Nucleotídeos/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Éxons/genética , Células HEK293 , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Diferenciação Celular , Apoptose/efeitos dos fármacos , Apoptose/genética , Células-Tronco Embrionárias Murinas/metabolismo , Transgenes , Linhagem Celular
14.
STAR Protoc ; 5(3): 103147, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116200

RESUMO

Characterizing multi-protein complexes using mass spectrometry is crucial for understanding complex biochemical activities that govern cell fate. Investigating dynamic protein-protein interactions requires diverse qualitative and quantitative approaches. We present a protocol for differential analysis of Trim71-associated proteins in mouse embryonic stem cells under two conditions. We describe steps for cytoplasmic extraction, protein immunoprecipitation, sample preparation for mass spectrometry, and data analysis with Perseus. Our versatile tool enables in-depth exploration of protein complex compositional changes, contributing to a deeper understanding of cellular dynamics and making it suitable for various research domains. For complete details on the use and execution of this protocol, please refer to Rapone et al.1.


Assuntos
Espectrometria de Massas , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Espectrometria de Massas/métodos , Proteínas com Motivo Tripartido/metabolismo , Imunoprecipitação/métodos
15.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39209535

RESUMO

Chromatin regulators alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein's access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes are a group of ATPase-dependent chromatin remodelers. In mouse embryonic stem cells, there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF). Nkx2-9 is bivalent, meaning nucleosomes at the locus have active and repressive modifications. In this study, we used unique BAF subunits to recruit each of the three complexes to Nkx2-9 using dCas9-mediated inducible recruitment (FIRE-Cas9). We show that recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 histone mark and polycomb repressive-1 and repressive-2 complex proteins, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.


Assuntos
Histonas , Nucleossomos , Proteínas do Grupo Polycomb , Fatores de Transcrição , Animais , Camundongos , Histonas/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Código das Histonas , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias Murinas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Adenosina Trifosfatases
16.
Toxicology ; 508: 153930, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39159712

RESUMO

Benzophenones (BPs) are widely used as photoinitiators (PIs) or printing inks in food packaging, which may migrate into foods. However, the toxicity information of some BP analogues, such as 4,4'-bis(diethylamino)-benzophenone (DEAB), 4-phenylbenzophenone (4-PBP), 4 (hydroxymethyl)benzophenone (4-HMBP), those are used as PIs is lacking. Developmental toxicity is a health concern associated with PIs exposure. Recently, alternative non-in vivo methods have been proposed to evaluate the concerned chemicals or better understand the modes of action of certain toxicological endpoints. In this study, using in silico methods, we predicted that BP, DEAB, 4-PBP and 4-HMBP might exhibit developmental toxicity. However, we found that only DEAB is strong embryotoxic and disturbs the early differentiation of mouse embryonic stem cells into three germ layers and cardiomyocytes. DEAB treatment also prevented cardiomyocyte differentiation in human induced pluripotent stem cells (hiPSCs) on day 10. However, BP, 4-PBP and 4-HMBP had no similar effects on cardiomyocyte differentiation on day 10. Transcriptomic analysis revealed that treatment with DEAB significantly decreased the mRNA levels of differentiation-related transcription factors SOX17 and FOXA1, in hiPSCs on day 4. Furthermore, DEAB treatment caused tail malformations and yolk sac edema in zebrafish embryos. To conclude, DEAB may be embryotoxic because it disturbs the early differentiation of stem cells. Further studies are warranted to better understand the health effects of DEAB exposure.


Assuntos
Benzofenonas , Diferenciação Celular , Embrião não Mamífero , Células-Tronco Pluripotentes Induzidas , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/anormalidades , Benzofenonas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/anormalidades , Camundongos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Teratogênicos/toxicidade
17.
Mol Cell ; 84(18): 3455-3468.e6, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39208807

RESUMO

Mammalian gene expression is controlled by transcription factors (TFs) that engage sequence motifs in a chromatinized genome, where nucleosomes can restrict DNA access. Yet, how nucleosomes affect individual TFs remains unclear. Here, we measure the ability of over one hundred TF motifs to recruit TFs in a defined chromosomal locus in mouse embryonic stem cells. This identifies a set sufficient to enable the binding of TFs with diverse tissue specificities, functions, and DNA-binding domains. These chromatin-competent factors are further classified when challenged to engage motifs within a highly phased nucleosome. The pluripotency factors OCT4-SOX2 preferentially engage non-nucleosomal and entry-exit motifs, but not nucleosome-internal sites, a preference that also guides binding genome wide. By contrast, factors such as BANP, REST, or CTCF engage throughout, causing nucleosomal displacement. This supports that TFs vary widely in their sensitivity to nucleosomes and that genome access is TF specific and influenced by nucleosome position in the cell.


Assuntos
Células-Tronco Embrionárias Murinas , Nucleossomos , Fatores de Transcrição , Nucleossomos/metabolismo , Nucleossomos/genética , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Embrionárias Murinas/metabolismo , Sítios de Ligação , Ligação Proteica , Genoma/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Cromatina/metabolismo , Cromatina/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Montagem e Desmontagem da Cromatina
18.
Hum Mol Genet ; 33(20): 1758-1770, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39087769

RESUMO

Investigating the sevoflurane-induced perturbation in the differentiation of mouse embryonic stem cells (mESCs) into neural stem cells (mNSCs), our study delineates a novel SIRT1/PRRX1/DRD2/PKM2/NRF2 axis as a key player in this intricate process. Sevoflurane treatment hindered mESC differentiation, evidenced by altered expression patterns of pluripotency and neural lineage markers. Mechanistically, sevoflurane downregulated Sirt1, setting in motion a signaling cascade. Sevoflurane may inhibit PKM2 dimerization and NRF2 signaling pathway activation by inhibiting the expression of SIRT1 and its downstream genes Prrx1 and DRD2, ultimately inhibiting mESCs differentiation into mNSCs. These findings contribute to our understanding of the molecular basis of sevoflurane-induced neural toxicity, presenting a potential avenue for therapeutic intervention in sevoflurane-induced perturbation in the differentiation of mESCs into mNSCs by modulating the SIRT1/PRRX1/DRD2/PKM2/NRF2 axis.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio , Células-Tronco Embrionárias Murinas , Fator 2 Relacionado a NF-E2 , Células-Tronco Neurais , Receptores de Dopamina D2 , Sevoflurano , Transdução de Sinais , Sirtuína 1 , Sirtuína 1/metabolismo , Sirtuína 1/genética , Animais , Camundongos , Sevoflurano/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética
19.
Biomolecules ; 14(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39199410

RESUMO

Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional gene expression regulatory mechanism in eukaryotic cells. NMD eliminates aberrant mRNAs with premature termination codons to surveil transcriptome integrity. Furthermore, NMD fine-tunes gene expression by destabilizing RNAs with specific NMD features. Thus, by controlling the quality and quantity of the transcriptome, NMD plays a vital role in mammalian development, stress response, and tumorigenesis. Deficiencies of NMD factors result in early embryonic lethality, while the underlying mechanisms are poorly understood. SMG5 is a key NMD factor. In this study, we generated an Smg5 conditional knockout mouse model and found that Smg5-null results in early embryonic lethality before E13.5. Furthermore, we produced multiple lines of Smg5 knockout mouse embryonic stem cells (mESCs) and found that the deletion of Smg5 in mESCs does not compromise cell viability. Smg5-null delays differentiation of mESCs. Mechanistically, our study reveals that the c-MYC protein, but not c-Myc mRNA, is upregulated in SMG5-deficient mESCs. The overproduction of c-MYC protein could be caused by enhanced protein synthesis upon SMG5 loss. Furthermore, SMG5-null results in dysregulation of alternative splicing on multiple stem cell differentiation regulators. Overall, our findings underscore the importance of SMG5-NMD in regulating mESC cell-state transition.


Assuntos
Diferenciação Celular , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Camundongos , Diferenciação Celular/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
20.
Nat Cardiovasc Res ; 3(3): 317-331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39196112

RESUMO

Human induced pluripotent stem cell (hiPSC) to cardiomyocyte (CM) differentiation has reshaped approaches to studying cardiac development and disease. In this study, we employed a genome-wide CRISPR screen in a hiPSC to CM differentiation system and reveal here that BRD4, a member of the bromodomain and extraterminal (BET) family, regulates CM differentiation. Chemical inhibition of BET proteins in mouse embryonic stem cell (mESC)-derived or hiPSC-derived cardiac progenitor cells (CPCs) results in decreased CM differentiation and persistence of cells expressing progenitor markers. In vivo, BRD4 deletion in second heart field (SHF) CPCs results in embryonic or early postnatal lethality, with mutants demonstrating myocardial hypoplasia and an increase in CPCs. Single-cell transcriptomics identified a subpopulation of SHF CPCs that is sensitive to BRD4 loss and associated with attenuated CM lineage-specific gene programs. These results highlight a previously unrecognized role for BRD4 in CM fate determination during development and a heterogenous requirement for BRD4 among SHF CPCs.


Assuntos
Sistemas CRISPR-Cas , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Fatores de Transcrição , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula/genética , Células Cultivadas , Análise de Célula Única , Proteínas que Contêm Bromodomínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...