Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.820
Filtrar
1.
J Environ Sci (China) ; 150: 477-489, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306422

RESUMO

Harmful algal blooms (HABs) have emerged as a critical global environmental and ecological concern. Timely and accurate monitoring of the prevalent bloom-forming genera is crucial for HAB management. Conventional microscope-based methods are time-consuming, labor-intensive, and specialized expertise-dependent, often making them impractical for large-scale surveillance. Molecular methods, such as metabarcoding, provide efficient technical solutions; however, the lack of competent PCR primers and further field validation present obstacles to their wide use. Here, we successfully developed Aphanizomenon-specific primers and validated the application of environmental DNA (eDNA) metabarcoding for field-based monitoring of Aphanizomenon in 37 sites across lentic and lotic freshwater ecosystems in Beijing. The sensitivity and specificity tests of newly developed primers demonstrated high performance - comprehensive recovery of biodiversity in Aphanizomenon communities and high ratios (>95%) of Aphanizomenon sequences in datasets. We observed significant correlations between the sequence abundance derived from eDNA metabarcoding and the total cell density determined through microscopic identification across all the sampling sites, both in the spring (r = 0.8086, p < 0.0001) and summer (r = 0.7902, p < 0.0001), thus validating the utility of eDNA metabarcoding based on the newly developed primers for monitoring in the field. Further, we identified key environmental variables that were primary drivers responsible for the spatiotemporal distribution of Aphanizomenon abundance. These variables included temperature, total nitrogen, and dissolved oxygen in lentic ecosystems, and total phosphorus in lotic ecosystems. The method developed and validated here offers an accurate, efficient, and high-throughput tool for the monitoring of Aphanizomenon blooms in freshwater ecosystems.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Monitoramento Ambiental , Proliferação Nociva de Algas , Monitoramento Ambiental/métodos , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/análise , Biodiversidade , Ecossistema
2.
Cell Mol Biol (Noisy-le-grand) ; 70(9): 86-90, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380274

RESUMO

Dactylobiotus parthenogeneticus is one of the widespread species of tardigrade all over the world. Tardigrades of this species were collected from the Greater Zab River in Erbil City-Iraq by filtering water of the river through a plankton net with a mesh of 45 µm pore. The samples were mounted on a slide with a cover slip and examined under the microscope to determine morphological characteristics and measurements. Based on these characters the species identified to be D. parthenogeneticus. To support this diagnosis, DNA barcoding techniques were applied to do molecular analysis and sequencing on the cytochrome oxidase subunit I (COI) gene. The sequence was subjected to the GenBank database of NCBI and recorded with the accession number PP140905. The result of the sequencing and molecular analysis of the cytochrome oxidase subunit I (COI) gene confirmed to be the same species diagnosed by relying upon morphological characters. This study represents one of the pioneer researches and documents on tardigrades and found D. parthenogeneticus for the first time in the Greater Zab River in Kurdistan, North of Iraq. Tardigrades play a magnificent role in different trophic levels and can be utilized as an indicator of ecosystem health.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Filogenia , Rios , Tardígrados , Animais , Iraque , Tardígrados/genética , Tardígrados/classificação , Tardígrados/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Código de Barras de DNA Taxonômico/métodos , Água Doce
3.
PLoS One ; 19(10): e0300992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39413078

RESUMO

The use of environmental DNA (eDNA) to assess the presence of biological communities has emerged as a promising monitoring tool in the marine conservation landscape. Moreover, advances in Next-Generation Sequencing techniques, such as DNA metabarcoding, enable multi-species detection in mixed samples, allowing the study of complex ecosystems such as oceanic ones. We aimed at using these molecular-based techniques to characterize cetacean communities, as well as potential prey on the northern coast of Mainland Portugal. During four seasonal campaigns (summer 2021 to winter 2022/2023), seawater samples were collected along with visual records of cetacean occurrence. The eDNA isolated from 64 environmental samples was sequenced in an Illumina platform, with universal primers targeting marine vertebrates. Five cetacean species were identified by molecular detection: common dolphin (Delphinus delphis), bottlenose dolphin (Tursiops truncatus), Risso's dolphin (Grampus griseus), harbor porpoise (Phocoena phocoena) and fin whale (Balaenoptera physalus). Overall, except for the latter (not sighted during the campaigns), this cetacean community composition was similar to that obtained through visual monitoring, and the complementary results suggest their presence in the region all year round. In addition, the positive molecular detections of Balaenoptera physalus are of special relevance since there are no records of this species reported on scientific bibliography in the area. The detection of multiple known prey of the identified dolphins indicates an overlap between predator and prey in the study area, which suggests that these animals may use this coastal area for feeding purposes. While this methodological approach remains in a development stage, the present work highlights the benefits of using eDNA to study marine communities, with specific applications for research on cetacean distribution and feeding ecology.


Assuntos
Biodiversidade , Cetáceos , DNA Ambiental , Animais , DNA Ambiental/análise , DNA Ambiental/genética , Cetáceos/genética , Código de Barras de DNA Taxonômico/métodos , Portugal , Ecossistema , Comportamento Alimentar , Monitoramento Ambiental/métodos , Estações do Ano , Sequenciamento de Nucleotídeos em Larga Escala
4.
Life Sci Alliance ; 7(12)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39353738

RESUMO

Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90-92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.


Assuntos
Centrômero , Cromossomos de Plantas , Glycine max , Glycine max/genética , Centrômero/genética , Cromossomos de Plantas/genética , Código de Barras de DNA Taxonômico/métodos , Domesticação , Genoma de Planta/genética , Histonas/genética , Histonas/metabolismo , Melhoramento Vegetal/métodos , DNA de Plantas/genética
5.
Mol Biol Rep ; 51(1): 1033, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354174

RESUMO

BACKGROUND: The butterfly assemblage of Ladakh Trans-Himalaya demands a thorough analysis of their population genetic structure owing to their typical biogeographic affinity and their adaptability to extreme cold-desert climates. No such effort has been taken till date, and in this backdrop, we created a COI barcode reference library of 60 specimens representing 23 species. METHODS AND RESULTS: Barcodes were generated from freshly collected leg samples using the Sanger sequencing method, followed by phylogenetic clade analyses and divergence calculation. Our data represents 22% of Ladakh's Rhopaloceran fauna with the novel barcode submission for six species, including one Schedule II species, Paralasa mani. Contrary to the 3% threshold rule, the interspecific divergence between two species pairs of typical mountain genus Hyponephele and Karanasa was found to be 2.3% and 2.2%, respectively. The addition of conspecific global barcodes revealed that most species showed little increase in divergence value, while a two-fold increase was noted in a few species. Bayesian clade clustering outcomes largely aligned with current morphological classifications, forming monophyletic clades of conspecific barcodes, with only minor exceptions observed for the taxonomically complicated genus Polyommatus and misidentified records of Aulocera in the database. We also observed variations within the same phylogenetic clades forming nested lineages, which may be attributed to the taxonomic intricacies present at the subspecies level globally, mostly among Eurasian species. CONCLUSIONS: Overall, our effort not only substantiated the effectiveness of DNA Barcoding for the identification and conservation of this climatically vulnerable assemblage but also highlighted the significance of deciphering the unique genetic composition among this geographically isolated population of Ladakh butterflies.


Assuntos
Borboletas , Código de Barras de DNA Taxonômico , Filogenia , Animais , Borboletas/genética , Borboletas/classificação , Código de Barras de DNA Taxonômico/métodos , Teorema de Bayes , Variação Genética/genética , Genética Populacional
6.
Cell Mol Biol (Noisy-le-grand) ; 70(9): 189-197, 2024 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380264

RESUMO

Termites are economically important wood-destroying and agricultural pests. The termite fauna almost consists of 2900 described species in 286 genera worldwide. In the present study, hundreds of termite samples from 42 different locations in the Riyadh province were collected. These samples were previously used for morphometric identification and reported two subterranean termite species, Coptotermes heimi and Psammotermes hypostoma, in the family Rhinotermitidae. In the present study, these samples were analysed using DNA barcoding with the mitochondrial cytochrome c oxidase subunit 1 gene to confirm the conventional taxonomical identification on a molecular basis. The obtained COI gene sequences of all 42 termite specimens were submitted to GenBank (accession numbers: ON529959-ON529969, OP825131-OP825132, and OP890882-OP890910). Eleven of the 42 samples were thus identified as C. heimi and the remaining 31 samples as P. hypostoma, which were phylogenetically analysed. All the 11 C. heimi sequences were grouped in a single clade, indicating close relatedness. While 31 sequences of P. hypostoma constituted two clades in the phylogenetic tree. Pairwise nucleotide sequence identity and divergence analysis showed that C. heimi sequences showed high nucleotide identities of 87.6-99.5% and less divergence ranging from 0.5% to 13.6%. Similarly, sequences of P. hypostoma also showed high nucleotide identity of 78.6-100% and low divergence among them ranging from 0-10.7%. A further application, significance, and shortcomings of COI-based DNA barcoding have been discussed. DNA barcoding using the COI gene is a reliable tool to distinguish C. heimi and P. hypostoma genotypes.


Assuntos
Código de Barras de DNA Taxonômico , DNA Mitocondrial , Complexo IV da Cadeia de Transporte de Elétrons , Isópteros , Filogenia , Animais , Isópteros/genética , Isópteros/classificação , Arábia Saudita , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Código de Barras de DNA Taxonômico/métodos , Análise de Sequência de DNA , Sequência de Bases
7.
PLoS One ; 19(10): e0309065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39361586

RESUMO

In microbial community sequencing, involving bacterial ribosomal 16S rDNA or fungal ITS, the targeted genes are the basis for taxonomical assignment. The traditional bioinformatical procedure has for decades made use of a clustering protocol by which sequences are pooled into packages of shared percent identity, typically at 97%, to yield Operational Technical Units (OTUs). Progress in the data processing methods has however led to the possibility of minimizing technical sequencers errors, which were the main reason for the OTU choice, and to analyze instead the exact Amplicon Sequence Variants (ASV) which is a choice yielding much less agglomerated reads. We have tested the two procedures on the same 16S metabarcoded bacterial amplicons dataset encompassing a series of samples from 17 adjacent habitats, taken across a 700 meter-long transect of different ecological conditions unfolding in a gradient spanning from cropland, through meadows, forest and all successional transitions up to the seashore, within the same coastal area. This design allowed to scan a high biodiversity basin and to measure alpha, beta and gamma diversity of the area, to verify the effect of the bioinformatics on the same data as concerns the values of ten different ecological indexes and other parameters. Two levels of progressive OTUs clustering, (99% and 97%) were compared with the ASV data. The results showed that the OTUs clustering proportionally led to a marked underestimation of the ecological indicators values for species diversity and to a distorted behaviour of the dominance and evenness indexes with respect to the direct use of the ASV data. Multivariate ordination analyses resulted also sensitive in terms of tree topology and coherence. Overall, data support the view that reference-based OTU clustering carries several misleading disadvantageous biases, including the risk of missing novel taxa which are yet unreferenced in databases. Since its alternatives as de novo clustering have on the other hand drawbacks due to heavier computational demand and results comparability, especially for environmental studies which contain several yet uncharacterized species, the direct ASV based analysis, at least for prokaryotes, appears to warrant significand advantages in comparison to OTU clustering at every level of percent identity cutoff.


Assuntos
Microbiota , RNA Ribossômico 16S , Microbiota/genética , RNA Ribossômico 16S/genética , Análise por Conglomerados , Código de Barras de DNA Taxonômico/métodos , Bactérias/genética , Bactérias/classificação , Biodiversidade , DNA Bacteriano/genética , Filogenia
8.
PeerJ ; 12: e17967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39421418

RESUMO

Sampling and sequencing marine environmental DNA (eDNA) provides a tool that can increase our ability to monitor biodiversity, but movement and mixing of eDNA after release from organisms before collection could affect our inference of species distributions. To assess how conditions at differing spatial scales influence the inferred species richness and compositional turnover, we conducted a paired eDNA metabarcoding and capture (beach seining) survey of fishes on the coast of British Columbia. We found more taxa were typically detected using eDNA compared to beach seining. eDNA identified more taxa with alternative habitat preferences, and this richness difference was greater in areas of high seawater movement, suggesting eDNA has a larger spatial grain influenced by water motion. By contrast, we found that eDNA consistently missed low biomass species present in seining surveys. Spatial turnover of communities surveyed using beach seining differed from that of the eDNA and was better explained by factors that vary at small (10-1000s meters) spatial scales. Specifically, vegetation cover and shoreline exposure explained most species turnover from seining, while eDNA turnover was not explained by those factors and showed a distance decay pattern (a change from 10% to 25% similarity from 2 km to 10 km of distance), suggesting unmeasured environmental variation at larger scales drives its turnover. Our findings indicate that the eDNA sample grain is larger than that of capture surveys. Whereas seining can detect differences in fish distributions at scales of 10s-100s of meters, eDNA can best summarize fish biodiversity at larger scales possibly more relevant to regional biodiversity assessments.


Assuntos
Biodiversidade , DNA Ambiental , Peixes , Animais , DNA Ambiental/análise , DNA Ambiental/genética , Peixes/genética , Colúmbia Britânica , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Monitoramento Ambiental/métodos
9.
Sci Rep ; 14(1): 24128, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406839

RESUMO

This study employed Environmental DNA (eDNA) barcoding technology to delve into the influence of the tributaries and mainstem on fish diversity and spatiotemporal distribution in a hotspot fish conservation area in the upper Yangtze River. A total of 123 fish species were detected, belonging to 7 orders, 19 families, and 77 genera. The composition of fish species in tributaries is similar to that in mainstem, with higher fish community diversity in tributaries during the spring and summer. Exploration of fish ecotypes revealed significant differences between mainstem and tributaries. The fish community is mainly influenced by key environmental factors such as water temperature, dissolved oxygen, electrical conductivity, and ammonia nitrogen, with a higher impact of these factors on tributaries than on mainstem. In conclusion, while tributaries and mainstem in the Jiangjin section exhibit similarities in fish community composition, there are notable differences in community structure and diversity. Therefore, the protection of not only mainstem but also tributaries and their associated fish habitats is crucial for promoting the overall health and sustainability.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Peixes , Rios , Animais , Código de Barras de DNA Taxonômico/métodos , Peixes/genética , Peixes/classificação , China , DNA Ambiental/genética , DNA Ambiental/análise , Conservação dos Recursos Naturais , Ecossistema , Estações do Ano
10.
Int J Mol Sci ; 25(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39337663

RESUMO

Genome skimming is a novel approach that enables obtaining large-scale genomic information based on high-copy DNA fractions from shallow whole-genome sequencing. The simplicity of this method, low analysis costs, and large amounts of generated data have made it widely used in plant research, including species identification, especially in the case of protected or endangered taxa. This task is particularly difficult in the case of closely related taxa. The Pinus mugo complex includes several dozen closely related taxa occurring in the most important mountain ranges in Europe. The taxonomic rank, origin, or distribution of many of these taxa have been debated for years. In this study, we used genome skimming and multilocus DNA barcoding approaches to obtain different sequence data sets and also to determine their genetic diversity and suitability for distinguishing closely related taxa in the Pinus mugo complex. We generated seven different data sets, which were then analyzed using three discrimination methods, i.e., tree based, distance based, and assembling species by automatic partitioning. Genetic diversity among populations and taxa was also investigated using haplotype network analysis and principal coordinate analysis. The proposed data set based on divergence hotspots is even twenty-times more variable than the other analyzed sets and improves the phylogenetic resolution of the Pinus mugo complex. In light of the obtained results, Pinus × rhaetica does not belong to the Pinus mugo complex and should not be identified with either Pinus uliginosa or Pinus rotundata. It seems to represent a fixed hybrid or introgressant between Pinus sylvestris and Pinus mugo. In turn, Pinus mugo and Pinus uncinata apparently played an important role in the origins of Pinus uliginosa and Pinus rotundata.


Assuntos
Variação Genética , Genoma de Planta , Filogenia , Pinus , Pinus/genética , Pinus/classificação , Código de Barras de DNA Taxonômico/métodos , Haplótipos/genética , Genômica/métodos
11.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337711

RESUMO

Mantidis Ootheca (sangpiaoxiao), the egg case of the mantis, is a type of insect-derived traditional medicine widely used in East Asia. However, species identification based on egg morphology is challenging, leading to the distribution of counterfeit and adulterated products. The use of inauthentic ingredients can pose serious health risks to consumers. This study aimed to develop PCR markers that can rapidly and accurately differentiate between authentic and counterfeit Mantidis Ootheca. The mitochondrial cytochrome c oxidase I (COI) region was sequenced in thirteen samples from four mantis species: Tenodera angustipennis, Statilia maculata, Hierodula patellifera, and T. sinensis. Four sets of SCAR primers were designed based on species-specific nucleotide polymorphisms, and a multiplex SCAR assay was developed by combining all sets of the primers. The sequence-characterized amplified region (SCAR) primers successfully produced amplicons for each target species, even with low-DNA templates or templates containing DNA from multiple samples. No amplification was observed for nontarget species. This study presents a novel approach for identifying authentic Mantidis Ootheca species using DNA-based diagnostic marker assays, which enable rapid and precise species identification. The SCAR assays developed in this study will aid in maintaining quality control and promoting the standardization of commercial Mantidis Ootheca products.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Código de Barras de DNA Taxonômico/métodos , Animais , Reação em Cadeia da Polimerase/métodos , Especificidade da Espécie , Mantódeos/genética , Mantódeos/classificação , Testes de Diagnóstico Rápido
12.
BMC Genomics ; 25(1): 842, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251911

RESUMO

BACKGROUND: DNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads. RESULTS: We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12-15 h of sequencing. CONCLUSION: Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.


Assuntos
Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Nanoporos , Código de Barras de DNA Taxonômico/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL , Sequenciamento por Nanoporos/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Zooplâncton/genética , Zooplâncton/classificação , Análise de Sequência de DNA/métodos
13.
Parasit Vectors ; 17(1): 400, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300564

RESUMO

BACKGROUND: Clinical cases of leishmaniasis caused by Leishmania (Mundinia) parasites have been increasingly reported in Southeast Asia, particularly Thailand. Recent evidence has shown that Leishmania (Mundinia) parasites successfully developed into infective metacyclic promastigotes in Culicoides biting midges, strongly supporting their putative role in disease transmission. However, Culicoides diversity, host preference, and Leishmania prevalence in endemic areas remain largely unknown. METHODS: We investigated the seasonal dynamics, infection prevalence, and blood meal identification of Culicoides collected from the emerging focus of visceral leishmaniasis in Lampang Province, Northern Thailand, during 2021-2023. Midge samples were molecularly screened for Leishmania using SSU rRNA-qPCR and ITS1-PCR, followed by Sanger plasmid sequencing, and parasite haplotype diversity was analyzed. Host blood meal origins were comparatively identified using host-specific Cytb-PCRs and a nanopore-based metabarcoding approach. RESULTS: A total of 501 parous and gravid females and 46 blood-engorged ones belonging to at least 17 species of five subgenera (Remmia, Trithecoides, Avaritia, Hoffmania, and Meijerehelea) and two species groups (Shortti and Calvipalpis) were collected with temporal differences in abundance. Leishmania was detected by SSU rRNA-qPCR in 31 samples of at least 11 midge species, consisting of Culicoides oxystoma, C. guttifer, C. orientalis, C. mahasarakhamense, C (Trithecoides) spp., C. innoxius, C. shortti, C. arakawae, C. sumatrae, C. actoni, and C. fulvus, with the overall infection prevalence of 5.7%. The latter six species represent the new records as putative leishmaniasis vectors in Northern Thailand. The ITS1-PCR and plasmid sequencing revealed that Leishmania martiniquensis was predominantly identified in all qPCR-positive species, whereas L. orientalis was identified only in three C. oxystoma samples. The most dominant haplotype of L. martiniquensis in Thailand was genetically intermixed with those from other geographical regions, confirming its globalization. Neutrality test statistics were also significantly negative on regional and country-wide scales, suggesting rapid population expansion or selective sweeps. Nanopore-based blood meal analysis revealed that most Culicoides species are mammalophilic, with peridomestic and wild mammals (cow, pig, deer, and goat-like species) and humans as hosts, while C. guttifer and C. mahasarakhamense fed preferentially on chickens. CONCLUSIONS: This study revealed seasonal dynamics and sympatric circulation of L. martiniquensis and L. orientalis in different species of Culicoides. Evidence of human blood feeding was also demonstrated, implicating Culicoides as putative vectors of human leishmaniasis in endemic areas. Further research is therefore urgently needed to develop vector control strategies and assess the infection status of their reservoir hosts to effectively minimize disease transmission.


Assuntos
Ceratopogonidae , Insetos Vetores , Leishmania , Estações do Ano , Animais , Ceratopogonidae/parasitologia , Ceratopogonidae/classificação , Tailândia/epidemiologia , Leishmania/genética , Leishmania/classificação , Leishmania/isolamento & purificação , Insetos Vetores/parasitologia , Insetos Vetores/classificação , Feminino , Código de Barras de DNA Taxonômico/métodos , Nanoporos , Leishmaniose/transmissão , Leishmaniose/epidemiologia , Leishmaniose/parasitologia , Variação Genética , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/transmissão , Leishmaniose Visceral/parasitologia , Humanos
14.
Mol Biol Rep ; 51(1): 987, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283359

RESUMO

BACKGROUND: Over the last decade, increasing attention has been directed to using different substrates as sources of environmental DNA (eDNA) in ecological research. Reports on the use of environmental DNA located on the surface of plant leaves and flowers have highlighted the utility of this DNA source in studies including, but not limited to, biodiversity, invasive species, and pollination ecology. The current study assesses grass inflorescence as a source of eDNA for detecting invertebrate taxa. METHODS AND RESULTS: Inflorescences from four common grass species in a central South African grassland were collected for high-throughput sequencing analysis. Universal COI primers were utilised to detect Metazoan diversity. The sequencing results allowed for the detection of three Arthropoda orders, with most OTUs assigned to fungal taxa (Ascomycota and Basidiomycota). Some biases were detected while observing the relative read abundance (RRA) results. DISCUSSION: The observed biases could be explained by the accidental inclusion of invertebrate specimens during sample collection and DNA extraction. Primer biases towards the amplified taxa could be another reason for the observed RRA results. This study provided insight into the invertebrate community associated with the four sampled grass species. It should be noted that with the lack of negative field controls, it is impossible to rule out the influence of airborne eDNA on the observed diversity associated with each grass species. The lack of the inclusion of PCR and extraction blanks in the sequencing step, as well as the inclusion of negative field controls, including other areas for refinement were highlighted, and suggestions were provided to improve the outcomes of future studies.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Inflorescência , Poaceae , Código de Barras de DNA Taxonômico/métodos , Poaceae/genética , DNA Ambiental/genética , Animais , Inflorescência/genética , Biodiversidade , Monitoramento Biológico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pradaria , África do Sul , DNA de Plantas/genética
15.
Harmful Algae ; 138: 102698, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39244233

RESUMO

Marine phytoplankton communities are pivotal in biogeochemical cycles and impact global climate change. However, the dynamics of the dinoflagellate community, its co-occurrence relationship with other eukaryotic plankton communities, and environmental factors remain poorly understood. In this study, we aimed to analyze the temporal changes in the eukaryotic plankton community using a 18S rDNA metabarcoding approach. We performed intensive monitoring for 439 days at intervals of three days during the period from November 2018 to June 2020 (n = 260) in Jangmok Bay Time-series Monitoring Site in South Korea. Among the 16,224 amplicon sequence variants (ASVs) obtained, dinoflagellates were the most abundant in the plankton community (38 % of total relative abundance). The dinoflagellate community was divided into 21 groups via cluster analysis, which showed an annually similar distribution of low-temperature periods. Additionally, we selected 11 taxa that had an occurrence mean exceeding 1 % of the total dinoflagellate abundance, accounting for 93 % of the total dinoflagellate community: namely Heterocapsa rotundata, Gymnodinium sp., Akashiwo sanguinea, Amoebophrya sp., Euduboscquella sp., Spiniferites ramosus, Dissodinium pseudolunula, Sinophysis sp., Karlodinium veneficum, and Katodinium glaucum. The key dinoflagellate species were well represented at temporally variable levels over an entire year. Heterocapsa rotundata was not significantly affected by water temperature, whereas its dynamics were largely influenced by strong predation pressure, competition, and/or the supplementation of food sources. The growth of A. sanguinea was associated with dissolved inorganic phosphorus concentrations, while Euduboscquella sp. showed a significant relationship with D. pseudolunula and K. glaucum, largely representing a positive association that implies possible parasitic mechanisms. This study demonstrated interactions between key dinoflagellate species and the environment, as well as parasites, predators, competitors, and feeders.


Assuntos
Código de Barras de DNA Taxonômico , Dinoflagellida , Dinoflagellida/genética , Dinoflagellida/fisiologia , Dinoflagellida/classificação , República da Coreia , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Fitoplâncton/genética , Fitoplâncton/fisiologia , RNA Ribossômico 18S/análise , RNA Ribossômico 18S/genética
16.
Mol Ecol Resour ; 24(8): e14018, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39285627

RESUMO

For two decades, DNA barcoding and, more recently, DNA metabarcoding have been used for molecular species identification and estimating biodiversity. Despite their growing use, few studies have systematically evaluated these methods. This study aims to evaluate the efficacy of barcoding methods in identifying species and estimating biodiversity, by assessing their consistency with traditional morphological identification and evaluating how assignment consistency is influenced by taxonomic group, sequence similarity thresholds and geographic distance. We first analysed 951 insect specimens across three taxonomic groups: butterflies, bumblebees and parasitic wasps, using both morphological taxonomy and single-specimen COI DNA barcoding. An additional 25,047 butterfly specimens were identified by COI DNA metabarcoding. Finally, we performed a systematic review of 99 studies to assess average consistency between insect species identity assigned via morphology and COI barcoding and to examine the distribution of research effort. Species assignment consistency was influenced by taxonomic group, sequence similarity thresholds and geographic distance. An average assignment consistency of 49% was found across taxonomic groups, with parasitic wasps displaying lower consistency due to taxonomic impediment. The number of missing matches doubled with a 100% sequence similarity threshold and COI intraspecific variation increased with geographic distance. Metabarcoding results aligned well with morphological biodiversity estimates and a strong positive correlation between sequence reads and species abundance was found. The systematic review revealed an 89% average consistency and also indicated taxonomic and geographic biases in research effort. Together, our findings demonstrate that while problems persist, barcoding approaches offer robust alternatives to traditional taxonomy for biodiversity assessment.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Insetos , Animais , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Insetos/classificação , Insetos/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Vespas/genética , Vespas/classificação , Vespas/anatomia & histologia
17.
PeerJ ; 12: e18025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329134

RESUMO

Background: Symbiotic relationships with diverse microorganisms are crucial for many aspects of insect biology. However, while our understanding of insect taxonomic diversity and the distribution of insect species in natural communities is limited, we know much less about their microbiota. In the era of rapid biodiversity declines, as researchers increasingly turn towards DNA-based monitoring, developing and broadly implementing approaches for high-throughput and cost-effective characterization of both insect and insect-associated microbial diversity is essential. We need to verify whether approaches such as high-throughput barcoding, a powerful tool for identifying wild insects, would permit subsequent microbiota reconstruction in these specimens. Methods: High-throughput barcoding ("megabarcoding") methods often rely on non-destructive approaches for obtaining template DNA for PCR amplification by leaching DNA out of insect specimens using alkaline buffers such as HotSHOT. This study investigated the impact of HotSHOT on microbial abundance estimates and the reconstructed bacterial community profiles. We addressed this question by comparing quantitative 16S rRNA amplicon sequencing data for HotSHOT-treated or untreated specimens of 16 insect species representing six orders and selected based on the expectation of limited variation among individuals. Results: We find that in 13 species, the treatment significantly reduced microbial abundance estimates, corresponding to an estimated 15-fold decrease in amplifiable 16S rRNA template on average. On the other hand, HotSHOT pre-treatment had a limited effect on microbial community composition. The reconstructed presence of abundant bacteria with known significant effects was not affected. On the other hand, we observed changes in the presence of low-abundance microbes, those close to the reliable detection threshold. Alpha and beta diversity analyses showed compositional differences in only a few species. Conclusion: Our results indicate that HotSHOT pre-treated specimens remain suitable for microbial community composition reconstruction, even if abundance may be hard to estimate. These results indicate that we can cost-effectively combine barcoding with the study of microbiota across wild insect communities. Thus, the voucher specimens obtained using megabarcoding studies targeted at characterizing insect communities can be used for microbiome characterizations. This can substantially aid in speeding up the accumulation of knowledge on the microbiomes of abundant and hyperdiverse insect species.


Assuntos
Código de Barras de DNA Taxonômico , Insetos , Microbiota , RNA Ribossômico 16S , Animais , Código de Barras de DNA Taxonômico/métodos , Microbiota/genética , Insetos/microbiologia , Insetos/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Reação em Cadeia da Polimerase/métodos , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos
18.
Acta Trop ; 259: 107377, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39245155

RESUMO

The genus Haemagogus (Diptera: Culicidae) includes species that are important vectors of pathogens such as the yellow fever virus. The accurate identification of these species is essential for the control of zoonoses. Females of Hg. capricornii and Hg. janthinomys are morphologically indistinguishable, which makes the use of alternative identification techniques desirable. This study aimed to obtain sequences of the mitochondrial cytochrome c oxidase I (COI) gene, in the region widely used for DNA barcoding, of Haemagogus specimens from the state of São Paulo, Brazil, to evaluate the effectiveness of these sequences in the molecular identification of the species. A total of 37 female and 2 male mosquitoes were collected in various locations in the state of São Paulo, using methods such as hand-nets, Shannon traps, CDC light traps with CO2 bait and Nasci aspirators. The sequences of a 710 bp fragment of the COI gene were amplified by PCR and sequenced. A phylogenetic tree reconstruction was conducted using the Bayesian approach implemented in MrBayes v3.2.2, providing support values for taxa where genetic clusters may indicate the presence of new or cryptic species. We obtained 39 COI sequences representing three species: Haemagogus capricornii, Haemagogus leucocelaenus, and Haemagogus janthinomys. Bayesian analysis of the sequences produced clades that corroborate the morphological identification of the species. The separation of Hg. capricornii and Hg. janthinomys received 100 % statistical support and the Hg. capricornii was very well supported (91 %). The two sequences from male specimens, morphologically identified as Hg. capricornii, were grouped in the same clade, a sister clade of Hg. janthinomys. It is important to highlight that the Hg. janthinomys were positioned in several subclades, showing a polymorphism of this species within the state, a situation not observed for Hg. capricornii. For the first time, sequences of the mtCOI gene from Hg. capricornii were obtained and related to morphologically identified specimens. COI sequences proved effective in the molecular identification of Haemagogus species. This study contributes to the expansion of the GenBank database, providing the first sequences of Hg. capricornii and new sequences for Hg. janthinomys and Hg. leucocelaenus.


Assuntos
Culicidae , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Filogenia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Código de Barras de DNA Taxonômico/métodos , Culicidae/classificação , Culicidae/genética , Masculino , Feminino , Brasil , Análise de Sequência de DNA
19.
Mol Biol Rep ; 51(1): 967, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249572

RESUMO

BACKGROUND: Protists are diverse single-celled eukaryotes found in various habitats. They exhibit a wide range of forms and functions, representing a significant portion of the eukaryotic tree of life, which also includes animals, plants, and fungi. Due to their high sensitivity to environmental changes, these organisms are widely used as biological indicators of organic pollution. METHODS AND RESULTS: We investigated the molecular diversity of ciliate protists at seven strategic points along the Sapucaí River (Itajubá, Minas Gerais State, Brazil), to assess the impact of urban pollution on the richness, abundance, and diversity indexes of these communities. For each sampling point, values of physicochemical parameters were also recorded. DNA sequences were obtained by high-throughput sequencing (HTS) and analyzed using the V4 18S-rRNA molecular marker, employing the DNA metabarcoding method. We recorded 125 ciliate taxonomic units (OTUs), with nearly 80% corresponding to the classes Spirotrichea, Oligohymenophorea, and Litostomatea. At the genus level, 54 OTUs (43.2%) were identified, spanning 28 genera. CONCLUSIONS: The composition of ciliates varied significantly along the river's course, from upstream to downstream of Itajubá city. Samples collected from the urban area displayed the lowest richness and diversity, corroborating the influence of the pollution gradient on these communities. The physicochemical parameters showed little variation among the samples and were not linked to the observed changes in ciliate communities, revealing that these organisms are strongly affected by environmental changes and respond more sensitively to these disturbances than physicochemical parameters, emphasizing their potential as bioindicators.


Assuntos
Biodiversidade , Cilióforos , Código de Barras de DNA Taxonômico , Rios , Brasil , Rios/parasitologia , Código de Barras de DNA Taxonômico/métodos , Cilióforos/genética , RNA Ribossômico 18S/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...