Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Exp Eye Res ; 241: 109859, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467175

RESUMO

It is known that the actin cytoskeleton and its associated cellular interactions in the trabecular meshwork (TM) and juxtacanalicular tissues mainly contribute to the formation of resistance to aqueous outflow of the eye. Fibulin-3, encoded by EFEMP1 gene, has a role in extracellular matrix (ECM) modulation, and interacts with enzymatic ECM regulators, but the effects of fibulin-3 on TM cells has not been explored. Here, we report a stop codon variant (c.T1480C, p.X494Q) of EFEMP1 that co-segregates with primary open angle glaucoma (POAG) in a Chinese pedigree. In the human TM cells, overexpression of wild-type fibulin-3 reduced intracellular actin stress fibers formation and the extracellular fibronectin levels by inhibiting Rho/ROCK signaling. TGFß1 up-regulated fibulin-3 protein levels in human TM cells by activating Rho/ROCK signaling. In rat eyes, overexpression of wild-type fibulin-3 decreased the intraocular pressure and the fibronectin expression of TM, however, overexpression of mutant fibulin-3 (c.T1480C, p.X494Q) showed opposite effects in cells and rat eyes. Taken together, the EFEMP1 variant may impair the regulatory capacity of fibulin-3 which has a role for modulating the cell contractile activity and ECM synthesis in TM cells, and in turn may maintain normal resistance of aqueous humor outflow. This study contributes to the understanding of the important role of fibulin-3 in TM pathophysiology and provides a new possible POAG therapeutic approach.


Assuntos
Humor Aquoso , Glaucoma de Ângulo Aberto , Humanos , Humor Aquoso/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Códon de Terminação/metabolismo , Malha Trabecular/metabolismo , Pressão Intraocular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339043

RESUMO

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Retroelementos/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo
3.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393970

RESUMO

Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.


Assuntos
Dictyostelium , Drosophila melanogaster , Animais , Camundongos , Códon de Terminação/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dictyostelium/genética , Proteínas Fúngicas/metabolismo , Glutamina/metabolismo
4.
Biol Pharm Bull ; 46(12): 1676-1682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044091

RESUMO

Galectin-2 (Gal-2) is an animal lectin with specificity for ß-galactosides. It is predominantly expressed and suggested to play a protective function in the gastrointestinal tract; therefore, it can be used as a protein drug. Recombinant proteins have been expressed using Escherichia coli and used to study the function of Gal-2. The recombinant human Gal-2 (hGal-2) protein purified via affinity chromatography after being expressed in E. coli was not completely homogeneous. Mass spectrometry confirmed that some recombinant Gal-2 were phosphogluconoylated. In contrast, the recombinant mouse Gal-2 (mGal-2) protein purified using affinity chromatography after being expressed in E. coli contained a different form of Gal-2 with a larger molecular weight. This was due to mistranslating the original mGal-2 stop codon TGA to tryptophan (TGG). In this report, to obtain a homogeneous Gal-2 protein for further studies, we attempted the following methods: for hGal-2, 1) replacement of the lysine (Lys) residues, which was easily phosphogluconoylated with arginine (Arg) residues, and 2) addition of histidine (His)-tag on the N-terminus of the recombinant protein and cleavage with protease after expression; for mGal-2, 3) changing the stop codon from TGA to TAA, which is commonly used in E. coli. We obtained an almost homogeneous recombinant Gal-2 protein (human and mouse). These results have important implications for using Gal-2 as a protein drug.


Assuntos
Escherichia coli , Galectina 2 , Camundongos , Animais , Humanos , Galectina 2/química , Escherichia coli/genética , Escherichia coli/metabolismo , Códon de Terminação/metabolismo , Proteínas Recombinantes/metabolismo , Processamento de Proteína Pós-Traducional
5.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958644

RESUMO

Cell-free molecular display techniques have been utilized to select various affinity peptides from peptide libraries. However, conventional techniques have difficulties associated with the translational termination through in-frame UAG stop codons and the amplification of non-specific peptides, which hinders the desirable selection of low-affinity peptides. To overcome these problems, we established a scheme for ribosome display selection of peptide epitopes bound to monoclonal antibodies and then applied genetic code expansion with synthetic X-tRNAUAG reprogramming of the UAG codons (X = Tyr, Trp, or p-benzoyl-l-phenylalanine (pBzo-Phe)) to the scheme. Based on the assessment of the efficiency of in vitro translation with X-tRNAUAG, we carried out ribosome display selection with genetic code expansion using Trp-tRNAUAG, and we verified that affinity peptides could be identified efficiently regardless of the presence of UAG codons in the peptide coding sequences. Additionally, after evaluating the photo-cross-linking reactions of pBzo-Phe-incorporated peptides, we performed ribosome display selection of low-affinity peptides in combination with genetic code expansion using pBzo-Phe-tRNAUAG and photo-irradiation. The results demonstrated that sub-micromolar low-affinity peptide epitopes could be identified through the formation of photo-induced covalent bonds with monoclonal antibodies. Thus, the developed ribosome display techniques could contribute to the promotion of diverse peptide-based research.


Assuntos
Código Genético , Ribossomos , Códon de Terminação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Epitopos/metabolismo
6.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862073

RESUMO

Chikungunya virus (CHIKV) is an alphavirus, transmitted by Aedes species mosquitoes. The CHIKV single-stranded positive-sense RNA genome contains two open reading frames, coding for the non-structural (nsP) and structural proteins of the virus. The non-structural polyprotein precursor is proteolytically cleaved to generate nsP1-4. Intriguingly, most isolates of CHIKV (and other alphaviruses) possess an opal stop codon close to the 3' end of the nsP3 coding sequence and translational readthrough is necessary to produce full-length nsP3 and the nsP4 RNA polymerase. Here we investigate the role of this stop codon by replacing the arginine codon with each of the three stop codons in the context of both a subgenomic replicon and infectious CHIKV. Both opal and amber stop codons were tolerated in mammalian cells, but the ochre was not. In mosquito cells all three stop codons were tolerated. Using SHAPE analysis we interrogated the structure of a putative stem loop 3' of the stop codon and used mutagenesis to probe the importance of a short base-paired region at the base of this structure. Our data reveal that this stem is not required for stop codon translational readthrough, and we conclude that other factors must facilitate this process to permit productive CHIKV replication.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Febre de Chikungunya/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Mamíferos/genética , Mamíferos/metabolismo
7.
Nucleic Acids Res ; 51(18): 9905-9919, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670559

RESUMO

Translational fidelity is critical for microbial fitness, survival and stress responses. Much remains unknown about the genetic and environmental control of translational fidelity and its single-cell heterogeneity. In this study, we used a high-throughput fluorescence-based assay to screen a knock-out library of Escherichia coli and identified over 20 genes critical for stop-codon readthrough. Most of these identified genes were not previously known to affect translational fidelity. Intriguingly, we show that several genes controlling metabolism, including cyaA and crp, enhance stop-codon readthrough. CyaA catalyzes the synthesis of cyclic adenosine monophosphate (cAMP). Combining RNA sequencing, metabolomics and biochemical analyses, we show that deleting cyaA impairs amino acid catabolism and production of ATP, thus repressing the transcription of rRNAs and tRNAs to decrease readthrough. Single-cell analyses further show that cAMP is a major driver of heterogeneity in stop-codon readthrough and rRNA expression. Our results highlight that carbon metabolism is tightly coupled with stop-codon readthrough.


Assuntos
Códon de Terminação , AMP Cíclico , Escherichia coli , Sequência de Bases , Códon de Terminação/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
8.
J Mol Biol ; 435(21): 168274, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714299

RESUMO

During translation, a stop codon on the mRNA signals the ribosomes to terminate the process. In certain mRNAs, the termination fails due to the recoding of the canonical stop codon, and ribosomes continue translation to generate C-terminally extended protein. This process, termed stop codon readthrough (SCR), regulates several cellular functions. SCR is driven by elements/factors that act immediately downstream of the stop codon. Here, we have analysed the process of SCR using a simple mathematical model to investigate how the kinetics of translating ribosomes influences the efficiency of SCR. Surprisingly, the analysis revealed that the rate of translation inversely regulates the efficiency of SCR. We tested this prediction experimentally in mammalian AGO1 and MTCH2 mRNAs. Reduction in translation either globally by harringtonine or locally by rare codons caused an increase in the efficiency of SCR. Thus, our study has revealed a hitherto unknown mode of regulation of SCR.


Assuntos
Códon de Terminação , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Códon de Terminação/genética , Códon de Terminação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Células HEK293 , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
9.
Protein Sci ; 32(10): e4781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703013

RESUMO

The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Νζ -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and Nζ -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.


Assuntos
Lipoproteína(a) , Pseudomonas aeruginosa , Lipoproteína(a)/metabolismo , Códon de Terminação/metabolismo , Peptidoglicano/metabolismo , Lisina/metabolismo
10.
Cell Rep ; 42(9): 113056, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37651229

RESUMO

Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25.


Assuntos
Fibrose Cística , Biossíntese de Proteínas , Humanos , Códon de Terminação/metabolismo , Códon sem Sentido , Ribossomos/metabolismo , Fibrose Cística/genética
11.
Biol Chem ; 404(8-9): 769-779, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37377370

RESUMO

Mitochondria are the essential players in eukaryotic ATP production by oxidative phosphorylation, which relies on the maintenance and accurate expression of the mitochondrial genome. Even though the basic principles of translation are conserved due to the descendance from a bacterial ancestor, some deviations regarding translation factors as well as mRNA characteristics and the applied genetic code are present in human mitochondria. Together, these features are certain challenges during translation the mitochondrion has to handle. Here, we discuss the current knowledge regarding mitochondrial translation focusing on the termination process and the associated quality control mechanisms. We describe how mtRF1a resembles bacterial RF1 mechanistically and summarize in vitro and recent in vivo data leading to the conclusion of mtRF1a being the major mitochondrial release factor. On the other hand, we discuss the ongoing debate about the function of the second codon-dependent mitochondrial release factor mtRF1 regarding its role as a specialized termination factor. Finally, we link defects in mitochondrial translation termination to the activation of mitochondrial rescue mechanisms highlighting the importance of ribosome-associated quality control for sufficient respiratory function and therefore for human health.


Assuntos
Fatores de Terminação de Peptídeos , Biossíntese de Proteínas , Humanos , Códon de Terminação/metabolismo , Especificidade por Substrato , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Mitocôndrias/metabolismo
12.
Biochemistry ; 62(14): 2098-2114, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37377426

RESUMO

Incorporation of more than one noncanonical amino acid (ncAA) within a single protein endows the resulting construct with multiple useful features such as augmented molecular recognition or covalent cross-linking capabilities. Herein, for the first time, we demonstrate the incorporation of two chemically distinct ncAAs into proteins biosynthesized in Saccharomyces cerevisiae. To complement ncAA incorporation in response to the amber (TAG) stop codon in yeast, we evaluated opal (TGA) stop codon suppression using three distinct orthogonal translation systems. We observed selective TGA readthrough without detectable cross-reactivity from host translation components. Readthrough efficiency at TGA was modulated by factors including the local nucleotide environment, gene deletions related to the translation process, and the identity of the suppressor tRNA. These observations facilitated systematic investigation of dual ncAA incorporation in both intracellular and yeast-displayed protein constructs, where we observed efficiencies up to 6% of wild-type protein controls. The successful display of doubly substituted proteins enabled the exploration of two critical applications on the yeast surface─(A) antigen binding functionality and (B) chemoselective modification with two distinct chemical probes through sequential application of two bioorthogonal click chemistry reactions. Lastly, by utilizing a soluble form of a doubly substituted construct, we validated the dual incorporation system using mass spectrometry and demonstrated the feasibility of conducting selective labeling of the two ncAAs sequentially using a "single-pot" approach. Overall, our work facilitates the addition of a 22nd amino acid to the genetic code of yeast and expands the scope of applications of ncAAs for basic biological research and drug discovery.


Assuntos
Aminoacil-tRNA Sintetases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Códon de Terminação/genética , Códon de Terminação/metabolismo , Proteínas/metabolismo , Aminoácidos/química , Código Genético , Aminoacil-tRNA Sintetases/genética
13.
RNA ; 29(9): 1400-1410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37279998

RESUMO

Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.


Assuntos
Saccharomyces cerevisiae , Códon de Terminação/genética , Códon de Terminação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aeromonas salmonicida/genética , Engenharia de Proteínas , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , Humanos , Conformação de Ácido Nucleico
14.
Free Radic Biol Med ; 206: 22-32, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355054

RESUMO

Reduced (NADH) and oxidized (NAD+) nicotinamide adenine dinucleotides are ubiquitous hydride-donating/accepting cofactors that are essential for cellular bioenergetics. Peroxisomes are single-membrane-bounded organelles that are involved in multiple lipid metabolism pathways, including beta-oxidation of fatty acids, and which contain several NAD(H)-dependent enzymes. Although maintenance of NAD(H) homeostasis in peroxisomes is considered essential for peroxisomal beta-oxidation, little is known about the regulation thereof. To resolve this issue, we have developed methods to specifically measure intraperoxisomal NADH levels in human cells using peroxisome-targeted NADH biosensors. By targeted CRISPR-Cas9-mediated genome editing of human cells, we showed with these sensors that the NAD+/NADH ratio in cytosol and peroxisomes are closely connected and that this crosstalk is mediated by intraperoxisomal lactate and malate dehydrogenases, generated via translational stop codon readthrough of the LDHB and MDH1 mRNAs. Our study provides evidence for the existence of two independent redox shuttle systems in human peroxisomes that regulate peroxisomal NAD+/NADH homeostasis. This is the first study that shows a specific metabolic function of protein isoforms generated by translational stop codon readthrough in humans.


Assuntos
NAD , Peroxissomos , Humanos , NAD/metabolismo , Códon de Terminação/metabolismo , Peroxissomos/metabolismo , Biossíntese de Proteínas , Oxirredução , Homeostase
15.
Cell ; 186(15): 3227-3244.e20, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339632

RESUMO

Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Ribossomos/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon de Terminação/metabolismo , Mamíferos/metabolismo
16.
Nucleic Acids Res ; 51(13): 6899-6913, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37246715

RESUMO

Diphthamide (DPH), a conserved amino acid modification on eukaryotic translation elongation factor eEF2, is synthesized via a complex, multi-enzyme pathway. While DPH is non-essential for cell viability and its function has not been resolved, diphtheria and other bacterial toxins ADP-ribosylate DPH to inhibit translation. Characterizing Saccharomyces cerevisiae mutants that lack DPH or show synthetic growth defects in the absence of DPH, we show that loss of DPH increases resistance to the fungal translation inhibitor sordarin and increases -1 ribosomal frameshifting at non-programmed sites during normal translation elongation and at viral programmed frameshifting sites. Ribosome profiling of yeast and mammalian cells lacking DPH reveals increased ribosomal drop-off during elongation, and removal of out-of-frame stop codons restores ribosomal processivity on the ultralong yeast MDN1 mRNA. Finally, we show that ADP-ribosylation of DPH impairs the productive binding of eEF2 to elongating ribosomes. Our results reveal that loss of DPH impairs the fidelity of translocation during translation elongation resulting in increased rates of ribosomal frameshifting throughout elongation and leading to premature termination at out-of-frame stop codons. We propose that the costly, yet non-essential, DPH modification has been conserved through evolution to maintain translational fidelity despite being a target for inactivation by bacterial toxins.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Fator 2 de Elongação de Peptídeos , Saccharomyces cerevisiae , Animais , Toxinas Bacterianas/metabolismo , Códon de Terminação/metabolismo , Mamíferos/genética , Fator 2 de Elongação de Peptídeos/química , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(22): e2221683120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216548

RESUMO

The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.


Assuntos
Cilióforos , Euplotes , Euplotes/genética , Euplotes/metabolismo , Código Genético , Sequência de Bases , Códon de Terminação/genética , Códon de Terminação/metabolismo , Cilióforos/genética , Deriva Genética
18.
Arch Biochem Biophys ; 740: 109580, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948349

RESUMO

Eukaryotic elongation factor 3 (eEF3) is one of the essential yeast ribosome-associated ATP-binding cassette type F (ABCF) ATPases. Previously, we found that eEF3 stimulates release of mRNA from puromycin-treated polysomes. In this study, we used a cell-free cricket paralysis virus (CrPV) internal ribosome entry site (IRES)-mediated firefly luciferase bicistronic mRNA translation system with yeast S30 extract. When eEF3 was partially removed from the crude extract, the product from the downstream ORF was increased by the readthrough of a UAA stop codon in the upstream ORF. eEF3 enhanced the release of luciferase from the polysome by eukaryotic release factor (eRF)1 and eRF3. These results suggest that eEF3 is a factor that assists eRFs in performing normal protein synthesis termination in yeast.


Assuntos
Fatores de Alongamento de Peptídeos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Códon de Terminação/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo
19.
Cell Rep ; 42(2): 112076, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753415

RESUMO

During translation of the genomic RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus in the COVID-19 pandemic, host ribosomes undergo programmed ribosomal frameshifting (PRF) at a conserved structural element. Although PRF is essential for coronavirus replication, host factors that regulate this process have not yet been identified. Here we perform genome-wide CRISPR-Cas9 knockout screens to identify regulators of SARS-CoV-2 PRF. These screens reveal that loss of ribosome recycling factors markedly decreases frameshifting efficiency and impairs SARS-CoV-2 viral replication. Mutational studies support a model wherein efficient removal of ribosomal subunits at the ORF1a stop codon is required for frameshifting of trailing ribosomes. This dependency upon ribosome recycling is not observed with other non-pathogenic human betacoronaviruses and is likely due to the unique position of the ORF1a stop codon in the SARS clade of coronaviruses. These findings therefore uncover host factors that support efficient SARS-CoV-2 translation and replication.


Assuntos
COVID-19 , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Códon de Terminação/genética , Códon de Terminação/metabolismo , Pandemias , Replicação Viral/genética , Ribossomos/metabolismo , RNA Viral/metabolismo
20.
Nucleic Acids Res ; 51(6): 2877-2890, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36840715

RESUMO

mRNA sits at the crossroads of transcription, translation and mRNA degradation. Many questions remain about the coupling of these three processes in Escherichia coli and, in particular, how translation may have an effect on mRNA degradation and transcription. To characterize the interplay between mRNA degradation and translation while accounting for transcription, we altered the translation initiation or elongation and measured the effects on mRNA stability and concentration. Using a mapping method, we analysed mRNA concentration and stability at the local scale all along the transcript. We showed that a decrease in translation initiation efficiency destabilizes the mRNA and leads to a uniform decrease in mRNA concentration throughout the molecule. Prematurely terminating translation elongation by inserting a stop codon is associated with a drop in local mRNA concentration downstream of the stop codon, due to the uncoupling of transcription and translation. In contrast, this translation alteration uniformly destabilizes the coding and ribosome-free regions, in a process triggered by RNase E activity, and its ability to form the RNA degradome. These results demonstrate how ribosomes protect mRNA molecules and highlight how translation, mRNA degradation and transcription are deeply interconnected in the quality control process that avoids unproductive gene expression in cells.


Assuntos
Escherichia coli , Elongação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Códon de Terminação/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...